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points the spike rarely settles, but oscillates about the
surface with great rapidity. With steel points, on the
other hand, the discharge frequently anchors itself to
one spot, and there remains quite steady, only moving
about when the field is increased almost to Qashover. It is
not unusual for the stem to take up a position off, and
inclined to, the axis of symmetry. When the point is
subsequently examined under the microscope it is
usually found that the spot favored by the root of the
discharge, coincides with a small crater on the surface.
These form more readily on steel than on platinum, the

process no doubt being assisted by chemical action, and
this may account for the effect referred to.

Discourse on the mechanism of the transition from
the Trichel pulse regime to the pulse-free discharge
would be little more than speculation at this stage,
comment is therefore reserved until a more thorough
investigation of the phenomenon has been made. It is
perhaps worth stating that too much importance should
not be attached to the changes in shape of the induced
Trichel pulses as the transition is approached, since
these are largely conditioned by the circuit.
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Solutions of the three-dimensional Schrodinger equation are discussed for a potential which is the sum of
a potential with the periodicity of the crystal lattice plus a perturbing potential. A general theory of large
over-all perturbations, such that the energy lies close to one permitted band in one region of the crystal and
close to a second permitted band in another, is developed. The theory is then applied to a one-dimensional
crystal in a uniform electric field, using the narrow band approximation; the probability for an electron to
cross a forbidden energy band is calculated. These results are considered in connection with the interpreta-
tion of the current-voltage characteristic of an N —P junction of germanium at high electric fields.

I. INTRODUCTION

A METHOD for obtaining solutions of the per-
turbed periodic wave equation

—(h'/2nt) V'f —(E Vt (r) —V(r)) «t =—0, (1)

where Vt (r) is a periodic potential associated with a
crystal lattice and V(r) is some sort of perturbing po-
tential, has been described by Slater. '

The method consists of expanding P in terms of
localized functions, originally used by Wannier' in
connection with the theory of the exciton, and defined
as follows: Let fo(p; r) represent a solution of the
periodic wave equation [Eq. (1) with V(r) =0] corre-
sponding to the effective momentum y and such that

~4.*(p; r)A(1; r)«= 1,

the integration being taken over the volume of the
crystal. In a permitted band y assumes values given by
N;p ~,=n;h, where the n; are integers which have
values 0, &1, ~2, ~, the ~; are the primitive lattice

*This work was supported in part by the Signal Corps and is
based on a thesis presented in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at Purdue Uni-
versity.' J. C. Slater, Phys. Rev. 76, 1592 (1949).' G. H. Wannier, Phys. Rev. 52, 191 (1937).

translations, and each E; is the number of cells of the
crystal extending along an axis parallel to ~;. Now, if
the phases of the «to(p; r) are properly chosen,

I a*(r rg)a—(x r )d—V „ito„=

It can also be shown that

«t'o(p; x) =Po expt ( /h) ep x ]a(r r), —(4)

the sum being taken over all atoms of the crystal.
The solution of Eq. (1) proposed by Slater has the

form
«t (x) =go y(r, )a(r—r.). (5)

Slater shows that if this expansion is valid and if
V(r) is so slowly varying as to be considered constant
over a distance comparable with the range of the Wan-

a(x—ro) =X «Qp expL —(o/h)p ro$««o(p; r) (2)

represents a function localized around the kth atom of
the crystal. (The choice of phases of the fo is very
important and will be discussed in considerable detail
in the appendix. ) The number of atoms of the crystal
is N and the sum is taken over all values of y in a par-
ticular permitted band. Thus, corresponding to each
permitted band of the crystal, there is a Wannier func-
tion for each atom of the crystal. It is easily shown that
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nier functions, the P(ro) can be obtained by solving
the set of diGerence equations

—&4(ro)+2* ~(ro—r*)e(r.)+V(ro)4(r. )=0- (6)

The A's depend on the unperturbed problem only and
have a simple interpretation. Let E(y) represent the
energy of the unperturbed problem as a function of the
momentum. If a single permitted band is considered,

E(y) can be treated as a periodic function of y, and it
can be shown that

~(r )=& 'Z. CxpL(o/h)y r.Ã(y)

E(y) =P, expL —(i/h)y r,]A(r,).

Thus the A's are just Fourier coeKcients in the expan-
sion of the energy of the unperturbed problem as R

function of the CKective momentum.
The following criticism' of Slater's theory can be

made llowcvcl'. If Eq. (2) Is substituted lllto Eq. (5)
wc obtRln

4(r) =Z"(y)A(y; r),
where

~(y)=& 'Zo 4(ro) cxPL —(o/h)y roj.

Now, all the well-behaved solutions of the periodic
problem form a complete set, but those corresponding
to one permitted band do not; thus Eq. (9) and Eq. (5)
represent an expansion of f(r) in terms of an incom-

plete set of functions. It is a good approximate solution
provided that the energy considered lies always close
to only one permitted energy band. (The Wannier
functions used in Eq. (5) must then be those which

correspond to this particular permitted, band. ) If the
energy considered lies close to two overlapping per-
mitted bands or if the energy lies close to one permitted
band in one region of the crystal and close to a second
permitted band in another, the approximation is no
longcl' R good onc.

This limitation of Slater's theory has also been pointed
out by Adams, 4 who has considered the perturbed
periodic problem for the general case of a perturbing
potential which is a function of both position and
momentum, Adams expresses the solution of the
perturbed periodic wave equation in the form

4 =go, .4.(ro)~ (*—ro), (1o)

where the sum over k is taken over all atoms of the
crystal tas in Eq. (5)j; a„(r—r&) are the Wannier
functions corresponding to the nth permitted band
and the sum over N is taken over all permitted bands of
the crystal. The wave function P is thus expanded in
terms of a complete set of functions. Adams then derives
R set of simultaneous diBcrential cquRtlons from which

3 The discussion of the limitations of Slater's theory, the general
theory of large over-aB perturbations, and the application of the
general theory to a crystal in a uniform electric field, which follow,
were presented on October 27, 1951, at the 308th meeting of the
American Physical Society.' E. N. Adams II, Phys. Rev. SS, 41 (1952).

the @„(ro},considered as continuous functions of r, can
be determined.

It ls thc pulposc of this pRpcr to plcscnt Rn RltcrnRtc
formulation of the problem, for the case in which the
perturbing potential is a function of position only. The
solutions f of Eq. (1) will be expressed in the form of
Eq. (10) and difference equations will be derived for the
g„(ro). The general theory will then be used to discuss
a special model of a one-dimensional crystal under a
uniform electric field, and the probability per unit time
for an electron to cross a forbidden energy band will be
calculated.

II. THE DIFFERENCE EQUATIONS

Substituting Eq. (10) into Eq. (1), we obtain

(IIo Z+ V(—r))Po, „y„(ro)a„(r ro)—=0,

~
aI*(r—r„)c„(r—ro)dV=8„18& . (12)

For, according to Eq. (2), a„(r—ro) is a linear combina-
tion of unperturbed wave functions Po„(y; r), the sub-
script N being used to denote the nth permitted hand;
8111111RI'ly cl(r—ro) ls R llllcRI' comblnatlon of llIlpcr-
turbed wave functions foI(y; r) of the /th permitted
band. When N/l, all functions fo and poI are orthog-
onal and hence the integral above vanishes for Rll values
of h and m. When II= 1, Eq. (12) is the same as Eq. (3).
Consider

II„(r„—ro) = cI*(r—r„)IIoa„(r—ro)d V.

Using Eq. (2)

II„(r„—ro)=s—Igo, o expL(o/h)y r„j

&«xpL —(&/h)y' ro3 AI*(y; r)IIofo. (y', r)dV.

When the unperturbed Hamiltonian operates on
Po„(y'; r), the wave function is just multiplied by the
energy corresponding to the CBective momentum y'.
Thus

II„(r„—ro)=X Ig, o exP/(i/h)y r„]

&m L
—(o/h)y' roj&-(y') ~4oI'(y; r)A-(y'; r)d V.

Since all poI and fo„are orthogonal for Io&f, II„=O for

IIo= —(h'/2m) P+ VI (r)

is the unperturbed Hamiltonian. To obtain diAerence
equations for the P„(ro) we multiply Eq. (11) by
alo(r —r„) and integrate over the volume of the crystal
The following integrals are then of interest. It can easily
be seen that
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present without the others. In order to obtain a solution
which is a good approximation when the energy lies
close to one permitted band in one region of the crystal
and close to a second permitted band in another, it is
thus necessary to consider variation in the potential
over a distance comparable with the range of the Wan-
nier functions; that is, it is necessary to include more
terms in the Taylor expansion of V(r). (The formula-
tion of Adams' leads to a similar conclusion. ) The
simplest case to consider is that for which the potential
energy varies uniformly with distance, as it does when
a uniform electric Geld is applied to the crystal.

Fro. 1. Potential and energy bands in a periodic potential
perturbed by a linear potential.

nW/. When n=L,

Ai (u; r)A~(p'; r)dV=4&'

In(r„r, ) =—S 'gp ex-pL(i/h)p (r„—rg) j@(p).1

Comparison of this with Eq. (7) shows that

In(r rI,)=A ((—r rl,). —

Using Kqs. (11), (12), and (14), we then obtain the
difkrence equations

—Zy, (r„)yg, y, (r,)W)(r„—r~)yP~, „4„(r~)

ta)*(r—r„)V(r)a„(r—rg)d V =0) (15)

which must be satis6ed for all values of r . There is a
set of such equations corresponding to each permitted
band of the crystal, that is, for each value of l. These
are the basic equations for further discussion.

It will now be shown that the type of approximation
used by Slater is not suKcie~tly accurate in the present
case. Suppose we approximate the integrals in Eq. (15)
by replacing V(r) by V(r ). Then, because of the
orthogonality properties of the a' s, Kq. (15) becomes

—~4 ~(r-)+Z~ 4 ~(r~)~ ~(r-—r~)+ V(r-) 4 ~(r-) =o. (16)

The above procedure amounts to expanding V(r) in a
Taylor series around r= r and neglecting all terms in
the expansion except the erst. But Eq. (16) represents
the Slater diGerence equations corresponding to the 3th

permitted band. There is a set of such difference equa-
tions corresponding to each permitted band, that is,
corresponding to I= 1, 2, 3, But these sets are, re-
spectively, independent equations in p~(r„), &2(r„),
Pq(r ) . . They would be satisfied by solutions of the
type Qz= &3= ——0 and P&(r„) determined by Eq. (16)
with /= 1, or by p&

——p3
—— .——0 and &2(r ) d termined

by Eq. (16) with l=2, etc. Such solutions correspond to
states which would exist if one permitted band were

Bi.(x.—») =
~

«*(x x.)(x *.—)a„(* —x,)d* (1—9).
These integrals can possess useful symmetry properties.
If the periodic potential is symmetric about the cell
centers, it can be shown that by proper choice of the
phases of the Po of Eq. (2), the Wannier functions
a(x—x~) can be made real and either symmetric or anti-
symmetric around x=xq. (This is discussed in detail
1n the appendix. ) It ls then easily deduced that

B..(x;)=B..( *;), B)„(x,)=B.g—(—x;), (20)

B (0)=0. (21)

Moreover, when a~(x—x~) and a„(x—x~) have opposite
symmetries around x= @1„it can be shown that

B„g(x;)=B„(( x~). —(22)

III. ELECTRONIC STATES IN A CRYSTAL UNDER
AN APPLIED ELECTRIC FIELD

A. General Theory

We now consider the difference equations, Eq. (15),
for a one-dimensional crystal when the perturbing
potential is V(x)=eFx where F is the electric field
strength. Thus, we consider solutions of the one-dimen-
sion Schrodinger equation,

—(h'/2m)d'P/dx' {F.—Vp(x) eFx—}P =—0. (17)

The periodic potential and the energy bands under a
strong perturbing electric ield are sketched in Fig. I.
As indicated there, we wiH restrict our attention to a
region of the crystal such that the energy lies close to
the hrst permitted band in one part of the region and
close to the second permitted band in another. In this
region, a good approximate wave function will be

f=P ~{&~(x~)a~(x—xk)+ pg(xg) a2(x —x~)}, (18)

which is just the one-dimensional analog of Eq. (10),
with contributions from bands other than the erst or
second neglected. In evaluating the integrals in the
difference equations which are the one-dimensional
analogs of Eq. (15), it is convenient to use the Taylor
expansion V(x)=eFx +eF(x x„). We have—then to
evaluate integrals of the type
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The difference equations for the p& and @2 which corre-
spond, respectively, to Eq. (15) with /=1 and l=2
(with contributions from permitted bands other than
the first and second neglected) then become

Eg—,(x )+eFx yi(x )+P, Ai(x, )yi(x —x,)

+eFQ, Bii(x,)yi(x„—x,)

+eFQ, Bip(x,)yp(x„—x,) =0, (23)

Egp(x—)+eFx gp(x )+P, Ap(x, )pp(x~ —x,)

+eFQ, Bpp(x, )yp(x„—x,)

before they are brought together to form the crystal,
and are solutions of

h' d'u(x —x„)—(Ep—U(x —x„))u(x—x„)=0, (27)
2w dx

where U(x —x„) is the potential associated with the
isolated atom T.he constant c(p) is determined by the
normalization condition

imp*(P; x)imp(P; x)dx= 1.

+eFQ, Bis(x,)4'i(x~ —x,)=0. (24) Assuming that

In the sums over k which appear in Eq. (15), k has been
set equal to m —s, and the sums taken over s. In order
to obtain specific expressions for the A's and for the
Wannier functions, a particular crystal model must be
considered. The difference equations, Eqs. (23) and (24),
will now be examined using the so-called narrow band
approximation.

I u*(x—x„)u(x—x„)dx=1 for m=u,

= 6 for m= @+1, (28)

=0 otherwise,

it easily follows that
B. Unperturbed Wave Functions and

Wannier Functions e(p) =e"[1+'25 cos(pu/h)]-~, (29)

Katsura, Hatta, and Morita' have discussed solutions
of the Schrodinger equation, Eq. (17), and have used
the narrow band approximation to show that, in this
approximation, there is no distortion of the energy
bands when a uniform field is applied to the crystal.
These authors had not read Slater's paper at the time
their work was done. Their method consists of expressing
the ip of Eq., (17) as a sum of atomic orbitals, multiplied

by coefFicients. Difference equations are then obtained
for these coefficients. (The method is similar to but less
general than that of Slater. After completing their work,
Katsura, Hatta, and Morita' became aware that their
calculations could be improved by using an expansion .

in terms of Wannier functions rather than atomic
orbitals. ) They considered, however, only a range of x
such that E lies always close to a particular permitted
band; thus interaction between the bands was not
discussed and only one set of difference equations was
obtained.

In the narrow band approximation, ' it is assumed
that the crystal atoms are far apart and the solution of
the unperturbed periodic wave equation,

—(h'/ 2) meed/ |x'd(E—I r—(x))i)=0 (25)

is written as

imp(P; x) =X &c(P)g„exp[(i/h)Px„]u(x x„) (26—).
The n's are wave functions characteristic of the atoms

~ Katsura, Hatta, and Morita, Sci. Repts. Tohuku Imp. Univ. ,
Series I, Vol. XXXIV, No. 1, 19 (1950).

6 Katsura, Hatta, and Morita, private communication.
7 F. Seitz, Moderrf, Theory of Solids (McGraw-Hill Book Com-

pany, Inc. , New York, 1940), pp. 303-307.

where e" is an arbitrary phase factor.
The energy E as a function of the effective momen-

tum p is then given by

h' d'
E(p)= ~A*(p' x) — + I'~(x) A(p; x)dx.

2m dx'

Using Eqs. (27) and (28) and letting

u*(x—x„){Vi (x)—U(x —x.)}u(x —x )dx

= —n for m=e,

for m= m~1, (30)

it is easily shown that

=0 otherwise,

Ep n+ 2(5Ep —pp) c—os(pa/h)

1+28 cos(pa/h)

Assuming b is small, we have

E(p):Ep n 2y cos(pa—/h), —— (31)

where y = yp —n8. Equation (31) defines a narrow
permitted band of width 4~ y ~

. If u(x —x„) is a function
symmetric around x= x„,p) 0; if antisymmetric, &&0.

The Wannier functions corresponding to such a
permitted band are given by the one-dimensional
analog of Eq. (2), the sum being taken over values of
p=sh/1Va, s=0, &1, &2, &sV/2. Inserting Eq. (26)
into Eq. (2) with p=sh/Xa, using Eq. (29), x„=ma,
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xq=ku, and k= h/27r, we obtain

a(x- xp) =P„b„pu(x x—„),
1 exp[2'.i(s/sV) (e—k)]

&.-a=—Z
[1+25cos(2m s/S)]&

(32)

difference equations, Eqs. (23) and (24). The A's of
the difII'erence equations satisfy equations which are the
one-dimensional analogs of Eqs. (7) and {8).Compari-
son of Eq. (34) with Eq. (8) indicates that

Ag(0) =Eog—ag, Ag(a) =Ay( —a) = —y),
A2(0) E02 a21 A2(+) A2( +) y2)

(35)

In the expression for c(P), 8 has been set equal to zero;
it will be shown that when this is done, a(x—xq) has the
desired localization around x=xI,. The sum over s can
be replaced by an integraL Letting y= 2xs/77,

1 I. cos(n k)—y
~n—I=- dg.

[1+2b cosy]&

This integral can be expressed in terms of the hyper-
geometric function

46'
F=F! -'u —k+-'u —k+1.

[1y(1-4~o)1]o)

it can be shown that

and that all the other A's are zero. In dealing with the
coeScients 8 in this approximation, integrals involving
overlap between Wannier functions associated with
atoms further apart than nearest neighbors will be
neglected. We thus include terms involving B(0) and
B(a) and neglect all other B's. Then, using Eqs. (21)
and (35) and setting x =ma, the difference equations,
Eqs. (23) and (24) become

{ E+eF—ma+

Eood

ag}pg(—x~)

+{—»+eFB»(&)}{4~(x—&)+Pi(x +o)}
+ePBg2(0) yo(x„)+eFB)2(a)

X{~.(*-- )+~ (.+ )}=0; (36)

(2u —2k —1)!!—( 1)o-k

(2u —2k)!!

X
1+(1—4P)' 1+(1—4P)'*

F, (33)

{—E+eFma+Eo2 —a2}&2(x )

+{»+eFBoo(a)}{42(x—~)+42(x +a)}
+eFBg2(0)g|(x )+ePBg2{a)

&& {41(x-—~)+4~(x-+o)}=0 (37)

where 2m!!= (2m)(2m —2)(2m —4) 2. The hyper-
geometric function is rather insensitive to changes in
n and, for small values of 6, b„ I, decreases with e—k
essentially as 8" ".Thus, in Eq. (32), the term involving
u(x —xy) is the most important; the other u(x —x ) of
the sum are multiplied by coefficients which are smaller
the greater the distance of the Nth atom from the kth.
Thus a(x—xq) has the desired localization around the
kth atom.

C. Solution of the Difference Equations

Consider now a crystal of the type described in
Part 8, under an applied uniform electric field. I.et the
first and second permitted bands be characterized by
equations of the form of Eq. (31):

Eg(P) =Eo,—a,—2y, cos(pa/h),

Eo(p) =Eoo—ao+ 2y2 cos(pu/h).

The unperturbed wave functions go~(p; x) correspond-
ing to the first permitted band have the form of Eq.
(26), with orbitals u~(x —x ) symmetric about x=x„;
the unperturbed wave functions fo2(p; x) are similarly
constructed from orbitals u2(x —x„) which are anti-
symmetric about x= x . (This accounts for the opposite
signs of the third terms of Eq(p) and Eo(p) where both

» and yo are positive. ) The Wannier functions ai(x —xq)
and ao(x—x~) have the form of Eq. (32). The solution
of the Schrodinger equation, Eq. (17), is given by
Eq. (18) with the $~(x1,) and po(xq) determined by the

Interaction between the bands is described by the terms
containing the Bi~. To obtain zero-order approximations
to the solutions of Eqs. (36) and (37), we consider these
equations with the 8~2 ——0. For a particular value E=E'
of the energy, they can be written in the form

:Pa
bio(x„—u)+yP(x„+a) =2!

E y ~
—eFB)~(a))

E'—Eoj+ail
Xi — iq, (.„); (38)

ePa )
c

!goo(x„—a)+goo(x +a) = —2!
( Y2+eFB22(g) )

E'—Eoo+ao)
&&! m —

!y,o(x„). (39)
ePa

Z, (q)+Z (q) = (2m/q)Z (q), (40)

These equations are independent equations in Q~, and
@2 and describe energy states which would exist if one
band were present without the other. Each equation
is thus of the type obtained by Katsura, Hatta, and
Morita, except for y's defined in a slightly difkrent way
and terms in B~~ and 822, which appear because a better
approximation has been used here. They have recog-
nized that such equations have the form of the recursion
relations,
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(E Eo1+&I)
~1

IePIa

2(vl —ePB11(a))
gy=--

IeFIa

(E E02+ 122)
l2— (42)

fePIa

2(y2+ eFB22(a))
(43)

IeFIu

and where C~ and C2 are constants. It has been assumed
that the 6eld is applied in the negative x direction.
Katsura, Hatta, and Morita have also pointed out that a
Bessel function J +~ will not be well behaved as
m~+~ un1ess it is of integral order; this condition
quantizes the energy.

It is clear that a value of E' which corresponds to an
integra1. value of /q may rjot correspond to an integral
value of /2. For such a case, C2 would have to be set
equal to zero and, the zero-order solutions would be
yl'(x„) =CIJm+11(—ql), y2'(x„) =0. Similarly, there
could be energy states such that l2 is integral and l~

nonintegral, corresponding to solutions of the type
@I'(xm) =0) qs2'(xm) =CIJm+l2(q2). On the other hand)
for particular values of the field strength I', energy
eigenvalues can be such as to make lj and 12 siniul-
taneously integral. This is the degenerate case and the
one which will be discussed in detail here. From Eq. (42)
it follows that

I= (Eol—~2—Eol+ ~I)/I eP
I
a. (44)

Thus, the condition for degeneracy is that g be an
integer. In such a case, neither C~ nor C2 need be zero,
and the zclo-order wave function may bc written ln
the form

p= Q„{CIJm+11(—ql) al(x —x„)

+CIJm+12(q2) a2(x —x„)}. (45)

To the approximation considered above, C~ and C2 are
undetermined; they can be fixed only by considering
interaction between the bands —that is, by including the
Bg2's in the diGerence equations. Now, provided that
the B12's are small, we can expect Eqs. (36) and (3'/)
to have solutions for eigenvalues E'+E' where E' is
slllall alld sucll tllRt. the corresponding QI(x ) alld

&2(x„) can be written

of the cylinder functions, Z (q). Now Z (q) can be
written as CJ (q)+DE (q). Since the tt(x„) must ap-
proach zero as ImI —+00 and since X (q)100 as
ImI-+~, D must be set equal to zero. Comparison of
Eqs. (38) a,nd (39) with Eq. (40) indicates that

e"(x-)=C J-+I ( q)-, 4 '(x-) =C J-+I (q ), (41)

where

where f and g are small. Inserting these expressions
for &I and &2 into Eqs. (36) and (37), and recalling that
the J's satisfy Eqs. (38) and (39), we obtain

E'J—m+11( ql)—+( E'—+eFma+Eol al)—f
+( pl+—eFBII(a))f 1+(-el+—eFBII(a))fm+I

+eFB12(0)CIJm+12(q2)+ eFB12(0)g

+eFB12(a)C2{Jm+12 —1(q2)+JmyI2yI(q2)}

+ePB»(a)(g--I+a-+I}=o (47)

E'CIJ—m yI2(q2)+ ( E'+e—Fma+E02 n2}g-
+{v2+eFB22(a))g -I+(v2+eFB22(a))g +1

+eFB12(0)CIJm+11(—ql)+eFB12(0)f
+eFB12(a)CI(J'm+11-1(—ql)+ Jm+11+I(—ql))

+eFB12(a)(f I+f„q.l) =0. (48)

Second-order terms of the form E'f and Elg„have been
neglected. We now multiply Eq. (4/) by Jm+I, (—ql)
and sum over all values of nz. The 6rst term can be
simpli6ed, usings

Q J '(x)= I

for aH values of x. The second, third, and fourth terms
become

Em f ( —E +eFma+Eol —02i}Jm+II( —ql)

+(—vl+eFBII(a)}Z f IJ +11( ql)—
+{ 71+eFBII(a))Zm fm+lJm+11( ql).

By replacing m by m+ 1 in the second sum and m by
nz —1 in the third, these terms combine to yield

f ${ E'+eFma+—Eol 121}Jm+11(—ql)—
+(—pl+ eFB11(a))

X (Jm+ 11+1(—ql)+ Jm+11-1(—ql) )]= 0&

Slllce Jm+11(—ql) Satlsf les Eq. (38).
Terms involving products of Bessel functions can be

simplified using the addition theorem

J-(y+s) =Z- J-b)J.--(s),

and the relation of Eq. (44), l2 ——ll —12. Equation (47)
6naIly becomes

-EC+(-~)"FC.LB.(0)J.(q+q.)
—B»(a)J 1(ql+q2) —B»(a)J~I(ql+q2) j
+ePB„(0)p„J'm+ 11(—ql) g

+ F» ()Z- J-+ (—q){g-+g )=o (5o)

4 (*-)=CJ-+ ( q)+f-—
y2(x )=CIJ +12(q2)+g, (46)

G. ¹ Watson, Bessel Functions (Cambridge University Press
Cambridge, 1944), p. 31.

9 See reference 8, p. 30.
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Approximate values for C~, C2, and E' can be obtained
by neglecting the terms containing f and g in Eqs. (50)
and (51), which then reduce to

—E'Ci+Xcs ——0,

E'Cs+ —Xci 0, ——
where

X= (—1)"eF [Bio(0)J„(qi+qs)

(52)

(53)

B»(a){J=i(qi+qs)+ J~i(qi+qs) }j (54)

Consisten. cy of Eqs. (52) and (53) requires that

E =~
I
x I; c,/c, = ~1.

Since the f and g have been neglected in this ap-
proximation, the wave functions have the form of
Eq. (45)

f=cg {Jm+ti(—qi)ai(x —x„)

Similarly by multiplying Eq. (48) by Jm+is(qs), sum-

ming over all m and proceeding as above, we obtain

—E'Cs+ (—1)"eFci(B12(0)J (ql+qs)

—B»(a)J.-i(qi+qs) —B»(a)J-+i(qi+qs) j
+eFB»(0)gm Jm+ is(qs)fm

+eFB»(a)pm Jm+is(qs) {f~i+fm+i) =0. (51)

easily seen, however, that in a time t such that (Eii—Ei)t
=h/2, /=fr f—rr corresponding to an electron local-
ized near the second permitted band. Thus the prob-
ability per unit time F for an electron to cross the
forbidden energy band is given by

7=2(E —Er)/h=4IXI/h. (58)

(The argument used here is similar to that used in the
so-called double minimum problem of quantum
mechanics' to obtain the probability per unit time for
an electron to pass from one potential well. to another. )

We now consider the expression of Eq. (54) for IXI.
Equations (44) and (34) indicate that n, is the ratio of
the energy difference between the centers of the per-
mitted bands of the unperturbed crystal to the change
of the perturbing potential over a single cell of the
crystal; thus for physically interesting cases, e is very
large. Equation (43) indicates that qi+qs is of the order
of the ratio of the sum of the half-widths of the first
and second permitted bands to the change in the per-
turbing potential over a single cell of the crystal. Since
we consider here the case of narrow permitted bands and
wide forbidden bands, it follows that the order of th, e
Bessel functions which appear in Eq. (54) is greater
than the argument; we may therefore use the asymp-
totic expression"

J„(n sechx)~e-et~'»"*&/[2' tanhx7&. (59)

From Eqs. (54), (58), and (59) we then obtain+Jm yis qs as(x —x„. 55

eFa(eFa) & t o 2o f r t&The constant C is chosen so as to normalize P. Using I'
I I

EexpI ln
I

1
I

I, (60)
Eq. (49) and the orthogonality properties of the a' s, h ( o ) I eFa r ( os)
it easily follows that C= 1/K2. Thus the wave functions,
corresponding to the energies E=Eo&

I
X

I
are

Pi = (1/v2)P„{Jm+ii( —qi) ai(x—x„)

+Jm yis(qs)as(x —x )), (56)

Prr = (1/V2)Q {Jm+ii( —qi)ai(x —x„)

Jm+is(qs)—as(x x„)) (5—7).
The coefficients J +i(q) are oscillatory for values of m
such that Im+lI &q and behave exponentially else-
where. Thus fr and frr are oscillatory within the first
permitted band (where m assumes values such that
Im+liI &qi) and within the second permitted band
(where m is such that Im+lsI &qs).

D. Probability of Penetration of the Forbidden Gay

Consider now a solution of the time dependent
Schrodinger equation given by

P=Pr exp[ iErt/h5+Prr exp—[—sErrt/h).

B»(0) Bio(a)R~
x&(1—r'/o') O a

2o ( rs) &

X exp —ln—+I 1——
r E o')

2o
+exp in—

I
1

I

I,.) I'

o=Eos—~s—Eoi+~i,

r = 2(pi —eFBii(a)+ps+ eFBss(a)j.
Since we consider narrow permitted bands, e is essen-
tially the width of the forbidden energy gap. The
quantity v is essentially the average width of the
permitted bands.

It is of interest to compare Eq. (60) for F with the
expression obtained by Zener" by another method and

From Eqs. (56) and (57), it is seen that at t=0, f= Pr "S.Dushman, Etements of Qnantnm Mechanics (John Wiley @

+mt'ri represents a wave function corresponding to an
electron localized near the first permitted band. It is & Z. Zener, proc. Roy. Soc. (Loildon) 145, 523 (1934).
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using the approximation of nearly free electrons
(narrow forbidden bands). Zener's expression is

exp-'
emcee

(61)

where m is the electron mass. In both expressions for I',
the important factor is the exponential and in particular
the quantity e/eFa of the exponent, which is just the
number of cells traversed as the forbidden band is
crossed. For ordinary fields, this is very large and F
is negligibly small. In Eq. (61), vr'ma'e/h' is essentially

e/r, the ratio of the forbidden band width to the
permitted band width, and Eq. (61) is valid when this
ratio «1. This is to be compared with [1n(2e/r)
—(1—r'/e')'7 of Eq. (60), which is valid when e/r»1
Thus, if applied to a practical intermediate case, Eq.
(60) will predict a smaller field for which penetration
of the barrier becomes important than will Eq. (61).

I= (use/a') P, (62)

where g is the number of electrons per cell and n the
number of cells in the barrier. Using an expression for
I' derived by Shockley (the method of derivation is
not indicated), which has the form I'=(eFa/h)e s'~,
where p= (m'/eh)(m/2)ate&, they write I as

I—
Uerbs

—P tE (63)

where n=ln(e'z/a'h) and V is the applied voltage.
Using Eq. (63) with appropriate constants for germa-
nium, they find that the predicted slope of the lnI —lnU
curve is in good agreement with experiment but that
the predicted field at which current should become ap-
preciable is too higk.

If one now uses Eq. (60) for F, one can write I in
the form of Eq. (63) with

n = ln(e's/a'h)+ lnR(eFa/e) 1,

p = (e/ea) [ln(2e/r) —(1—r'/e') 1j.

"McAfee, Ryder, Shockley, and Sparks, Phys. Rev. 83, 650
(1951).

E. Comparison with Experiment

The considerations of the preceding sections imply
that for sufficiently high fields applied to a crystal,
one should be able to observe a sudden increase in
current, associated with the tunneling of electrons from
the filled band to the conduction band. This has been
observed in experiments carried out at Bell Labora-
tories by McAfee, Ryder, Shockley, and Sparks" on
E—P rectifiers formed in single crystals of germanium.
They find that for fields 2&&10' volts/cm, the current
in the back direction of such a rectifier increases sud-
denly and rapidly. They call this increase in current the
Zener current and, assuming the field in the barrier to
be uniform, give a theoretical expression for the current
density I, which can be written

Fro. 2. Periodic potential in a one-dimensional lattice.

In comparing this new expression with the experimental
current-voltage characteristic, a could be considered as
essentially constant since the observed values of the
field varied little. Values of n and P obtained from the
experimental curve were found to correspond to
lnR=0. 3 and e/r=2. 3. The fairly large value of e/r is
consistent with the assumptions made in deriving
Eq. (60) but not with the known band structure of
germanium.

The author is most grateful to Professor H. M. James
for much valuable advice and discussion during the
course of this work.

APPENDIX

The Wannier functions a(r —rz) are defined by Eq.
(2); it should be emphasized, however, that in Eq. (2),
each solution ate(p; r) of the unperturbed problem con-
tains an arbitrary phase factor t,'f~~). It will be shown
here that the a(r —rq) will have the desired localization
about the kth atom of the crystal only if the f(p) are
appropriately chosen, a point not discussed by Wan-
nier. It will also be shown that the Wannier functions
can possess useful symmetry properties.

To obtain a more detailed knowledge of the Wannier
functions they will be investigated here using a one-
dimensional model originally used by Shockley" in dis-
cussing surface states, and later considered in more
detail by James" in discussing solutions of the periodic
and perturbed periodic wave equations.

Figure 2 shows the electronic potential energy as a
function of position in the crystal. The potential is
symmetric about the center of each cell. The crystal
wave functions are expressed in terms of functions
g(E; x) and u(E; x) which are solutions of the Schro-
dinger equation for the single potential well associated
with the zeroth cell. g(E; x) and u(E; x) are respec-
tively symmetric and antisymmetric about the cell
center x=0. Moreover,

g(E; 0)= 1; g'(E; 0)=0; u(E; 0)=0; u'(E; 0)= 1, (64)

where the primes signify derivatives with respect to x.
Within the pass band, corresponding to an energy E,
there are two independent crystal wave functions—
complex conjugates of each other. In the eth cell,
these are

f„=exp& (ipua/h) {n(E)g(E; x—x„)
+P(E)u(E; x—x„)), (65)

'4 W. Shockley, Phys. Rev. 56, 31/ (1939)."H. M. I@ines, PliyL Rev. 76, 1602 (1949).
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where

&(E) .go(E) go'(E)uo(E) '
= Wi = +i8(E). (66)

(E) "o(E) go(E)"o'(E)

The subscript 0 indicates the value of the function at
the left edge of the 0th cell. n(E) is determined, except
for a phase factor, by normalizing the wave function.
For an energy corresponding to a band edge, one of the
quantities g0, N0, g0', N0' vanishes and there is only one
well-bebaved wave function. Below are listed the vari-
ous possibilities for band edge wave functions (in the
nth cell).

go(E,) =0, P„(E„'x) =c(E,)(—1)"g(E.; x—x„). (67)

2. If
gp'(E. )=0, P.(E.; x) =c(E,)g(E„.x—x„). (68)

3. If
uo(E,)=0, f (E„x)=c(E.)u(E, ; x—x ). (69)

uo'(E. ) =0, f (E„x)=c(E.)(—1)"u(E„x—x ). (70)

Various bands will now be classified according to their
upper and lower edges, and Wannier functions corre-
sponding to these bands will be constructed.

Case 1:—Consider a band with edges E,i and E,2

corresponding to go'(E, &) =0 and gp(E g) =0. The
Wannier functions localized around the zeroth cell
are then given in the nth cell by [Eqs. (2), (65), (66),
(67), (6g) 7

«5/a

a(x)=N ' p (2 cos(pna/h)n(E)g(E; x—x„)
p=0

+2 sin(pna/h) n(E) 8(E)u(E; x—x„)}, (71)

where a(E,~) =-',c(E.~) and cr(E,q)=-', c(E,2). (Since E
is a function of p the quantities n, b, g, and u are all
functions of p.) It will now be shown that by choosing
a(E) real and positive, the function a(x) is made real
and localized as desired around the zeroth cell of the
crystal. In order to carry out the above summation it is
necessary to know the specific potential distribution
within the zeroth cell, since this determines the g's
and I's. One can see qualitatively how the localization
comes about, however, by examining a(x) at the center
of the zeroth cell, 6rst cell nth cell. At the center
(x=0) of the zeroth cell a(x) is given by Eq. (71) with
n=0. Thus

(0) =N 'Z. (E)g(E;0)=Z (E),

(since g(E, 0) = 1), each term of the sum being positive.
On the other hand (since u(E; 0)=0),

a(x„)=N &P„n(E) cos(pna/h)

Now u(E) is a smoothly and slowly varying function of
E or p. [For the special case of a constant potential,
n(E) is constant and equal to (Na) '.7 Since cos(pna/h)
becomes more and more rapidly oscillatory as n in-
creases, the terms of the sum change sign more and
more rapidly and the magnitude of the sum decreases;
thus a(x) is attenuated with increasing

~
n

~

. To
get an idea of the rate of attenuation, let us com-
pare Pa(E) cos(pna/h) when n=0 and n=N/2 Wh. en
n=0, we obtain a sum of positive terms, which can be
written Nn(E)A„We n.ow recall that in the sum,
p=sh/Na, where s=0, 1, 2, . Thus, when n=N/2,
the cosine term behaves as (—1)' and the series has a
value of the order of magnitude of a single term of the
series, which in turn is of the order of n(E)A„or less.
Thus, the ratio of the value of the sum in the (N/2)th
cell to that in the zeroth cell is 1/-', N at most; attenua-
tion may actually be much more rapid.

It can easily be seen, using the symmetry properties
of the g and u, that a(x) is symmetric around x=0.

Case Z:—Consider a band with edges E,3. and E,4

corresponding to uo'(E, 3) =0 and uo(E,4) =0. The
Wannier functions localized around the zeroth cell
can then be written [Eqs. (2), (65), (69), (70)7

«A/a

a(x) =N & p 2 cos(pna/h) p(E)u(E; x—x„)

P(E)—2 sin(pna/h) g(E; x—x„), (72)
~(E)

where P(E~) =-,'c(E,3) and P(E,4) =-,'c(E,4). Since in
this case the function is zero at the center of the zeroth
cell, we obtain information about the function by con-
sidering its slope at the centers of the various cells.
At the center of the zeroth cell, a'(0) is the sum of
P(E)u'(E; 0) over the permit ted band. Since u'(E; 0) = 1,
each term of the sum will be positive if P(E) is chosen
positive. To obtain a (x„), however, it is necessary to
sum over products p(E) cos(pna/h) (since g'(E; 0)=0).
Using arguments analogous to those applied to the dis-
cussion of a(x) in case 1, it is seen that here a'(x) is
attenuated with increasing

~
n~.

It can easily be shown that the a(x) of Kq. (72) is
antisymmetric about x= 0.

Localized Wannier functions which are symmetric
or antisymmetric around the cell centers can be simi-
larly constructed for the other types of bands.


