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Explicit q —q Angular Correlations. II. Polarization Correlations
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The p-y angular correlation function for the case where one or both of the y-ray detectors is able to
discriminate between plane polarization states of a y-ray is given in terms of the corresponding y-p direc-
tional correlation. The formulas given are directly applicable to one-three type correlations in a triple
cascade, and also to direction-plane polarization correlations in which the unpolarized particle is not neces-
sarily a y-ray, e.g., P-polarized y. Correlations for the case where the detectors are sensitive to circular
polarizations are not treated.

1. INTRODUCTION

'HE methods explained in a previous article' give
the angular correlation function of two successive

nuclear radiations as a finite series in the three-dimen-
sional rotation group functions d&"&(8)„„,which reduce
to Legendre polynomials Pz(cos8) =d'"'(8)s, in direc-
tional correlations. One possible interpretation of the
correlation formula so obtained is to say that one is
using two diferent coordinate systems with which to
describe the detectors of the successive radiations and
that each detector lies on its own z-axis (the source is
at the common origin of the two coordinate systems);
the d&"'(8)„„appear then in the correlation formula
when one makes use of the linear relations that hold
between sets of nuclear states quantized with respect
to the two different coordinate systems. In addition to
the simplicity gained by needing only matrix elements
for emission of the radiations along the quantization
axis, one finds other deep simplicities in the structure
of the coefficients of the d &"&(8)„„in such an expansion
of the correlation. One of these, the breaking up of the
coeKcients into independent factors for the 'separate
transitions of the cascade, has already been brought
out in (Ia). In the following another property of the
coeKcients is made use of: the coefficients break up
into a nuclear factor (involving spins and multipole
amplitudes) and a polarization factor depending only
on the multipole orders and parities of the y-rays. ' '
The situation is probably best made clear by oGering
for inspection Eq. (2), below, for plane polarization-
plane polarization y-y correlations.

It does not seem that circular-circular y-y polari-
zation correlations) can be obtained from considerations

*Now at Bell Telephone Laboratories, Murray Hill, New
Jersey.' S. P. Lloyd, Phys. Rev. SS, 904"„(1952), referred to hereafter
as (Ia). The notation of the present article is mostly that of (Ia).' See G. Racah, Phys. Rev. 84, 910 (1951).' This is not quite true for P-decay, where one can have several
distinct interfering "multipoles" of the same angular momentum
and parity in a given transition. The notation and results of (Ia)
can be modified easily to cover the P-ray case. The formulas for
correlations measured with p-polarimeters will be rather more
complicated than the ones given in the following for y-polarim-
eters. The author has not investigated the point in detail. See
D. L. FalkofF and G. E. Uhlenbeck, Phys. Rev. 79, 334 (1950)
for detailed discussion of P-ray directional correlations; also, M.
Fuchs, thesis, University of Michigan, 1951 (unpublished).

f' There are no direction —circular or plane —circular correlations.
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as easy as those of Sec. II, and we postpone detailed
examination of the circular-circular case until a practical
"quarter-wave plate for p-rays, " or some such device,
has been developed.

2. POLARIZATION CORRELATIONS

(a) y-Ray Detectors

We suppose that a p-ray detector, besides establishing
the direction from source to detector as the direction
of the p-ray, establishes also a detector reference plane,
or, for short, a detector ptarre, containing the direction
of the p-ray, which has the property that the number
of counts per plane polarized y-ray traversing the
detector is e+ p cos2x, where x is the angle the electric
vector of the p-ray makes with the "detector plane. "
Clearly, e, (&0), is the efliciency of the detector
averaged over plane polarizations and

~
p/e~, ((1), is

a measure of the ability of the detector to sense the
direction of polarization in a plane polarized beam. 4

These eKciencies are functions of the y-ray energy.

The response of the detector to a beam of p-rays for which the
vector potential is, say, A =a exp( —iks+ikct)+c. c. will in general
have the form: (counting rate) ='a* R.a where R=R,* is a plane
hermitian dyadic. A canonical form (with respect to real rotations
in the x, y-plane) for such an R is:

R= (ii+jj)+p(ii —jj)+i (ij —ji).
Here, i and j are unit vectors along the x and y axes, respectively,
and ~, p, and o are all real. The 0-term in this expression for R
is invariant under real rotations in the x, y-plane, and, just as

~ p/6~ measures the sensitivity of the detector to plane poiari-
zations, the independent coeKcient ~a/e~, i&11, measures the
sensitivity of the detector to circular polarizations. It is assumed
in the following that 0 =0. If cr/0 were the case one would have
to go back and calculate the angular correlation with the quantum
Geld quantized according to "normal modes" of the detector;
i.e., setting p =r cos2v, 0 = v sin2v, one would use the two elliptical
pOlarixatiOn StateS: ei =i COSv+ij Sinv, e2=ii Sinv+j COSv, (ei ei
= e2* e2 =1,ei*.e2 ——0), as the (complex) independent polarization
states of a s-axis quantum. (There is a different set of e's for each
detector, of course. ) In terms of these the response dyadic R of the
detector is again diagonal: R =c(ei*ei+e2*e2)+r(ei*ei—e2*e2),
so that one needs only probabilities (and not amplitudes) for
emission into the independent states e~ and e2.

In the angular correlation, allowing e /0 would bring in terms

4 See M. Deutsch and F. Metzger, Phys. Rev. 74, 1542 (1948),
Fig. 1. If the detector plane is taken to be the plane through
crystals A and. B of the polarimeter, the parameter p is negative,
i.e., p/~= —(D—1)j(D+1) in terms of the parameter D of
Deutsch and Metzger. For their D=2.1, p/e= —0.35.
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involving the d& )(8)„„for which the index X is odd; in particular,
odd Legendre polynomials in circular —circular polarization
correlations. In the plane polarization correlations of the present
article, the pure multipole ) =odd terms vanish identically, and
the multipole mixture A=odd terms vanish as a result of the
reality property of the multipole scalar amplitudes.

(b) Polarization-polarization Correlations

Let the directional correlation between the p-rays
emitted in the nuclear cascade Ji(y) J(p)Jo be written as

W(8) =1+Jri&ri Pr2&Io'
XQ«A«(LiLi', LoLo')P«(cos8). (1)

The coefficients A«(LiLi', LoLo'), where Li and L,' are
the orders of the interfering multipoles in the Ji(y)J
transition and Lo and Lo' those for J(y)Jo, have been
given in some detail in (Ia),f. and tabulations of the
lowest multipole coefficients are to be found in (I).'
The coefficients A&(LiLi', I&L&') of Eq. (1) depend also
on nuclear angular momenta, and contain as factors
the appropriate scalar relative amplitudes (J&.'L:J,)
for 2z-pole multipole emission, which are defined in (Ia).

When the plane polarization-dependent correlation
is worked out from Eqs. (8), (13), and (29) of {Ia) the
advantages of the d~"'(8)„„expansion are apparent:
the polarization correlation. can be obtained from the
corresponding directional correlation by replacing
P«(Qi Q2) by a function f«(LiLi', L2L2 Qiei Qoed)
which is independent of nuclear spins and nuclear
matrix elements. Instead of giving these functions
explicitly, we give the result of combining the correla-
tion function W(Qi, ei, Qo, eo) so obtained with the
appropriate detector efficiencies. Let e 1, p, 1 be the
efficiencies of detector u for the first y-ray Ji(y)J of
Ji(y) J(y)Jo, obi pbi the eKciencies of detector b for the
same y-ray, etc. Angles y, and q~, which are the
inclinations of the respective detector planes to the
(u, b, source) plane, are both positive when measured
counterclockwise, looking toward the source. The func-
tion. X(8; oo„oob), the theoretical mean coincidence rate
in counters u and b due to correlations between succes-
sive p-rays, works out after straightforward calculation
to be, apart from normalization factors:

(li —2)!
&(8; es) bob)=1+ z E E ~«(L1L1'p L2L2') P«(P)+ [o '(paloboE«(L1L1')

I-l+1.1 J.2 + 1-2 (ii+2)!

+paoobiE«(LoL2 ))P«(p) cos2ooa+o (pbloaoE«(LiLi )+pbooglEK(LoLo ))P«(p) cos2pb

+ o '(pgipbo+ paoE«pbi)(LiL, ')E«(L2Lo') f-', d«( —p) cos2(oo, —pb)+ ', d«(p) co-s2(p,+ pb) j], (2)

-(l +2)!-
& (LL'11~LL') 2)

(l —2)!. (IL'—11~LL'l O)

=L'(L'+1) L(L+1) wh—en L+L'= odd,

X()+1)[L(L+1)+L'(L'+1)7
—[L'(L'+ 1)—L(L+1)j'

L(L,+1)+L'(L'+1)—X(X+1)

k«(LL') =—d' (X+2)! '
P«'(p) = (1—p') P«(p) = d (8)«o

dp' (li —2)!
(li& 2), (3)

and d«(p) is an abbreviation for

d«(p) =d'"'(8) a-o= d'"'(~ —8) o, o

where o=c,iobo+obio, o. Also, P&,'(p) are unnormalized and (with A=even)
associated Legendre functions (with p =.cos8):

&-s (—1)'{1—p)""(1+p)" ' '

a=o g!(@+4)l((X—2—«)!)'

(),—2)!(!i+2)!
(4)

2x

The coefficients E«(LL') are explicitly:

K«(LL') = s(LI.')k«(LL'),
with

s(LL')=1 for el L, el or mag L,',

s(LL') = —1 for mag I., el or mag I.',

f. There is an obvious misprint (due to ms error) in the expres-
sion for up(LL'), Eq. (23) of (Ia): the first factorial in the denomi-
nator which now reads (-,'()1L+L'))!should read (-,'(X+L—L'))!.' S. P. Lloyd, Phys. Rev. 83, /16 (1952).The coefficients in the
multipole mixture terms should have signs opposite to those
given in (I), as explained in footnote (22) of (Ia).

when L+L'= even. (6)

The original W(Qiei, Qoeo) from which Eq. (2) was
obtained can be recovered by setting e,1=&~2 ——p, 1——

p~&

&g2= 851=pg2= pb1= 0, and then putting prz= y»
qb ——Ooo. One haS then E(8; gi, Ooo)=W(Qiei, Qoeo),
where q1 and p2 are the angles the electric vectors e1
and e2 of the successive quanta make with the plane
containing directions Q1 and 02 of the quanta, and
where p, =cosO= Q1 Q2.

(c) Direction-Polarization Correlations

Evidently, direction-polarization correlations can be
obtained from Eq. (2) by setting the appropriate
detector efFiciencies equal to zero. For example, if
detector b is not a polarimeter one puts pp1=p&2=0,
leaving only the polarization terms involving cos2q, .
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TABLE I. Py'(p). The Ey'(lM) are even in p'. Py'( —p) =By'(p).

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3.00
2.97
2.88
2.73
2.52
2.25
1.92
1.53
1.08
0.57
0

—7.500—6.905-5.184—2.525
+0.756

4.219
7.296
9.295
9.396
6.655
0

13.125
10.698

+ 4.193—4.213—11.413—14.150—10.107
+ 0.691

14.160
20.128
0

Furthermore one sees from the derivation that Kq. (2)
gives direction-polarization correlations whatever the
unpolarized radiation. Thus the p-(plane polarized y)
correlation for Ji(P)J(y)Js is obtained from Kq. (2) as
follows: (1) For the coefficients A&,(LtLt', LsLs') in Eq.
(2) use the coefficients of the Jt(P)J(y)Js directional
correlation, which are assumed to be known; (2) if
detector a is the P-counter, put p, i——p, s

——0, corre-
sponding to the fact that the P-counter is not sensitive
to polarizations in either the P-ray or the y-ray beam;
(3) put pbi=0, since the y-polarimeter is not supposed
to measure polarization in the P-ray beam. $ If the
p-counter is shielded against p-rays, so that also ebb 0, ——
the efficiency e,i of the P-counter drops out of the
correlation, leaving pbs/ebs as the only parameter needed
for y-polarimeter b.

One can also use Eq. (2) as it stands for one-three

polarization correlations in triple cascades; one requires
only that the coefficient of P&,(p) in the corresponding
directional correlation be broken up into a sum of
contributions from each interfering multipole pair I., I'

As+ A sPs (cos8)+A sP4(cos8)+ A sPs(cos8) +A sPs(cos8)
=Q+R cos'8+S cos'8+ T cos'8+ U cos'8,

then
As =Q+ (1/3)R+ (1/5)S+ (1/7) T+ (1/9) U

As= (2/3)R+(4/7)S+(10/21) T+(40/99) U

A4 ——(8/35)S+ (24/77) T+ (48/143) U

A, = (16/231)T+ (64/495) U

A s——(128/6435) U
and

Q=Ao (1/2)As+(3/8)A4 —(5/16)As+(35/128)As
R= (3/2) A,—(30/8) A 4+ (105/16)A s—(1260/128)A s

S= (35/8) A 4
—(315/16)A s+ (6930/128) A s

T= (231/16)A s—(12012/128)A s

U= (6435/128) A s.

TABLE III. The kg(LL).

QL,

2

6

—12 12—30
8

120—56

120/17
40—840

30/3
30

140

(b) The Angular Functions

The first few of the functions of Eqs. (3) and (4) are
given in Tables I and II. They are explicitly:

in each transition. Specialized forms of Eq. (2) have
been given by -I'"alko8, ' Hamilton, ' and Zinnes. '

3. TABLES

(a) Power Series and Legendre Series

—1.0—0.9—0.8—0.7—0.6—0.5—0.4—0.3—0.2—0.1
0.0

+0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.0000
0.9025
0.8100
0.7225
0.6400
0.5625
0.4900
0.4225
0.3600
0.3025
0.2500
0.2025
0.1600
0.1225
0.0900
0.0625
0.0400
0.0225
0.0100
0.0025
0

d4(r )

1.0000
+0.3339—0.0972—0.3396—0.4352—0.4219—0.3332—0.1986—0.0432
+0.1119

0.2500
0.3584
0.4288
0.4569
0.4428
0.3906
0.3088
0.2099
0.1108
0.0324
0

TABLE II. d), (p) =d'"'(cos 'p)2,

ds(p)

+1.0000—0.1845—0.4135—0.2188
+0.0717

0.2791
0.3379
0.2559

+0.0835—0.1117—0.2656—0.3315—0.2893—0.1491
+0.0513

0.2537
0.3933
0.4173
0.3093
0.1195
0

.and

Ps'(p) =3(1—p')

P '(p) = (15/2) (1—ib') (7ib' —1)
P (ib) = (105/8) (1—ps) (33' —18ps+ 1)

d (p) = (1/4)(1 —p)'

d4(p) = (1/4) (1 p)'(7p'+7 p+ 1)—

d s(p) = (1/64) (1—p)'(495 p4+660„s+90„s—]08„17)

(c) The Coefficients k&(LL')

The multipole mixture coe%cients for the usual case
L'= L+1 are 4(L L+1)=2(L+1); the pure multjpole
coefFicients for correlation up to Ps(cos8) and L'= j(5
are given in Table III.
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) Correlations involving electron polarimeters would bring in
cosy instead of cos2p, anyway.
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