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The Density Effect for the Ionization Loss in Various Materials*
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The density eBect for the ionization loss of charged particles has been calculated for a number of metals,
scintillating materials, gases at various pressures, and photographic emulsion, using a dispersion model
involving an appropriate number of dispersion osciIlators for each substance. The results are presented in
the form of graphs which can be used to correct the ionization loss for the density effect. The theoretical curves
for silver chloride and anthracene are in reasonable agreement with experiments on the ionization loss of
p,-mesons. A general derivation of the equations for the density effect is given.

I. INTRODUCTION in reasonable agreement with the experiments. ~ The
second part of the paper gives the derivation of the
equations for the density eGect which has been previ-
ously obtained. ' The derivation involves fewer approxi-
tions than are made in the theory of Halpern and HalP
and the result obtained is more general, although there
are no essential differences between the two results in
most practical cases.

'HE reduction in the ionization loss of charged
particles due to the polarization of the medium

has been first treated quantitatively by Fermi. ' In
Fermi's treatment it was assumed that the dispersive
properties of the medium can be described as due to a
single type of dispersion oscillator. Halpern and HalP
showed that the reduction in ionization loss depends
strongly on the description of the dielectric properties
of the medium. Fermi's equations were extended to the
general case of an arbitrary number of dispersion oscil-
lators by Halpern and Hall, ' Wick, ' and the present
author. ' ' Halpern and HalP have given values of the
density correction for a few substances. More recently,
the reduction in ionization loss has been the object of
several experiments. ' These investigations conhrm the
existence of the density eBect and are in approximate
agreement with theory. However, some of the experi-
ments use substances for which the effect has not been
calculated, in particular the work of Whittemore and
Street on the ionization loss of p.-mesons in a silver
chloride crystal and the work of Bowen and Roser on
the response of anthracene crystals to p,-mesons. There-
fore, it appeared worth while to calculate the density
e6ect for silver chloride, anthracene, and for other
substances which are likely to be used in future experi-
ments. The results of this work are presented in the
6rst part of this paper. In addition to values of the
density eQ'ect correction, we have calculated the ioniza-
tion loss of p-mesons and electrons in some of the ma-
terials for which the density e&ect is evaluated. Equa-
tions are given from which the ionization loss can be
readily calculated for the materials whose density e6ect
has been obtained. The theoretical values of the density
eGect for silver chloride and anthracene are found to be

II. CALCULATIONS OF THE DENSITY EFFECT

As shown in the following section, the reduction in
the ionization loss AdE/dz (dE =energy loss in distance
dx) is

dE 2~ee4
[P;f, ln[(v 2+2)/v, 2]—P(1—P2)), (1)

dx sz'v

where e is the number of electrons per cc, m is the elec-
tron mass, s =Pc is the velocity of the passing particle,
f; is the oscillator strength of the ith transition, whose
frequency is f;, / is a frequency which is the solution
of the following equation:

1 i

p2 V '2+)2

Here y; is to be expressed in terms of the plasma fre-
quency of the medium given by

v, = (22S'/2r222) &. (3)

The s; must be obtained for each case from the energy
levels of the atoms considered. As a first approximation,
the frequencies are given by the ionization potentials
hv; of the K, I., M, shells and the f; are equal to
the corresponding occupation numbers divided by the
atomic number Z. The ionization potentials were ob-
tained from the table given by Sommerfeld. For the
outermost shell, the tables of Bacher and Goudsmit'
were also used. With the v; thus obtained, the geo-
metrical mean v of the frequencies is calculated; we
have

lnv =Q;f, lnv;.

A. Sommerfeld, Atomic Structure und Spectra/ Lines (Methuen
and Company, London, 1934), third edition, p. 237.

9 R. F.Bacher and S. Goudsmit, Atomic Energy States (McGraw-
Hill Book Company, Inc., New York, 1932).

*Work done under the auspices of the ABC.
'E. Fermi, Phys. Rev. 57, 445 (1940).' O. Halpern and H. Hall, Phys. Rev. 57, 459 (1940).' O. Halpern and H. Hall, Phys. Rev. 73, 477 (1948).
4 G. C. Wick, Nuovo cimento (9), j., 302 (1943).

R. M. Sternheimer, thesis, University of Chicago (1946)
(unpublished).' See also, A Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 24, No. 19 (1948).' F. L. Hereford, Phys, Rev. 74, 574 (1948); W. L. Whittemore
and J. C. Street, Phys. Rev. 76, 1786 (1949);F. Bowen and F. X.
Roser, Phys. Rev. 85, 992 (19521.
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A check on the value of v is provided by the deter-
mination of the average ionization potential I which
occurs in the Bethe-Bloch stopping power formula, "

dE 4mme4 2m''
ln- ——p' .

dx IIse' I(1—P')
(5)

In their recent measurement of the stopping power of
340-Mev protons, Bakker and Segre" have obtained
values of I for a number of elements. According to the
Bloch theory I should be proportional to Z. Bakker and
Segre conhrm this dependence for Z)26, where I is
approximately given by

I=9.4Z ev. (6)

For smaller Z, the values of I are somewhat larger than
given by Eq. (6). The mean of the frequencies should
equal I/O. It was found for all cases that the values of

obtained from the ionization potentials must be
increased by a factor of order 1.3 to give agreement
with I/h. Thus for Ag, the v, correspond to the following
ionization potentials: 1878 ry, 260 ry, 36.3 ry, 4.82 ry,
0.55 ry for the I=1, 2, 3, 4, 5 shells, respectively (rI
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FIG. 2. Density effect correction 8 for gases as a function
of the momentum/mass of the passing particle.

"M. S. Livingston and H. A. Bethe, Revs. Modern Phys. 9,
285 (1937).

u C. J. Bakker aud E. Segrh, Phys. Rev. 81, 489 (1951),
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FIG. 1. Density effect correction 8 for condensed materials as a
function of the momentum/mass of the passing particle.

=principal quantum number). The f; are 2/47, 8/47,
18/47, 18/47, 1/47. The resulting hv is 25.2 ry, which
is a factor 1.25 lower than the experimental value" of
31.5 ry. To obtain the frequencies to be used in Eq. (1)
the v; obtained from the ionization potentials were
raised by the factor 1.25. This procedure was carried
out for each substance. In the following, the experi-
mental mean frequency is denoted by v

' and the cor-
rected transition frequencies are denoted by v, so that

V = P P P'. (7)

The factor v '/v is perhaps an indication that the
average of the states to which the electrons are excited
lies in the continuum above the ionization limit. The
values of v, used in Eq. (1) are obtained from

//V;=V; ( V&. (8)

The solids for which the density effect is obtained
include gold, photographic emulsion, anthracene, silver
chloride, in addition to the metals investigated by
Bakker and Segre." For the gases, we have calculated
cases at high pressure for possible application to ex-
periments with diGusion and expansion cloud chambers.
The results for H2 and A at 0.2 atmos are included on
account of their use in counters. The results are shown
in Figs. 1 and 2, in which the quantity in brackets of
Eq. (1),

"p =+;f, ln((vs+P)/v') —P(1—P')

is plotted against logyp(P/IEc), where P is the momentum
and p, is the mass of the passing particle. This semilog

plot was used because 8 is then approximately a straight
line at large P/IIc. The data which were used. to calcu-
late b are given in Table I. In this table are listed the
ionization potentials hv; (in ry units), the resulting
mean excitation potential hv, the experimental value
hv ', and the factor v„'/v„by which the v; are multiplied
to give the v . The table also shows the oscillator
strengths f; and the plasma energy hv„. The last two
rows give the constants A and 8 )see Eqs. (13a, b)j
which are useful in calculating the ionization loss. In
cases for which v

' was not obtained experimentally,
it was obtained by interpolation from Table I of
Bakker and Segre."

In cases of compounds the frequencies for the com-

ponent atoms are listed. For anthracene and toluene

v&, v2, v3pertain to C, and v4 pertains to H. The values
of hv ' listed are the geometric means of the Itv ' for
the component atoms and are the values to be used, in
the Bethe-Bloch'formula. The factors by which the v;
are multiplied are given in the tables for graphite and
H~. FOr H20, v~, v2, v3 pertain tO 0, and v4 pertainS tO

H. For 0, we have hv =6.14 ry, hv ' =7.26 ry, v '/v

=1.18. For AgCl, v~—v5 refer to electrons bound in Ag
atoms and vp—vs refer to Cl. The factor v '/v„ for Ag is

1.25 (see table for silver), while for Cl, hv =11.8 ry,
hv„' =13.5 ry, so that v '/v =1.14. Thus hvr' for n =1
of Ag is (1878)(1.25) =2348 ry, and hvp' for n =1 of
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Cl is (208)(1.14) =237 ry. The hv are then divided by
hv„= 3.33 ry. In calculating 8 for photographic emulsion,
it was assumed that 47 percent of the oscillator strength
is due to Ag, 33 percent to Br, and 20 percent to N. The
small amount (1.2 percent) iodine was lumped with the
silver, and the dispersive characteristics of the light
elements, mostly 0, C, and H were taken to be those of
N. Only the hv; of Br are listed; the frequencies for Ag
and the light elements can be found in the tables for
silver and N2, respectively. For Br, hv =21.1 ry, hv '
=24.2 ry, so that the factor v '/v =1.15. The value
listed hv '=21.0 ry is the geometric mean appropriate
for emulsion. "For NaI, vi—v5 pertain to I, while v6—vs

pertain to Na. For I, hv =29.7 ry, hv '=36.6 ry, so
that the values of v; were increased by a factor 1.23.
For Na, the corresponding energies are hv =6.73 ry,
hv

' =9.57 ry, so that v '/v =1.42.
For a gas at a pressure of P atmos, hv„ is P' times

the value of hv„at 1 atmos, listed in Table I.Correspond-

ingly, v s in Kq. (2) is reduced by a factor 1/P. Thus,
the value of P for which the density effect sets in is
raised as P is increased. The appropriate P =Ps is

given by
(9a)

Figure 2 shows the increase of the density eftect as the
pressure is raised. This effect corresponds to the increase
of the polarization as the density is increased.

Figures 1 and 2 also show a general decrease of 8

with increasing Z. As the atomic number increases, the
electrons are more strongly bound and hence are less
effective in polarizing the medium. Thus for two sub-
stances with the same e, 5 is smaller for the one with
larger Z. Some of the curves of 8 for condensed ma-
terials are not shown in Fig. 1 because they closely
coincide with curves that are on this figure. The curve
for Li lies 0.13 below the Be curve in the region of
large p/pc where 8 is linear. The curve for toluene is

0.2 below the anthracene curve. It may be noted that
stilbene, terphenyl, and phenylcyclohexane (CsH&CsH»)
have about the same 8 as anthracene, while the toluene
curve also applies to benzene. The curve for xylene
lies 0.1 below the anthracene curve. 5 for graphite is
15.6 at p/pc =10', the curve lies 0.19 above the an-
thracene line for large p/pc. 8 for polyethylene prac-
tically coincides with the curve for graphite.

The values of 5 for Fe and Cu lie close to the Al curve.
8 for Fe is about the same as for Al for large p/pc() 10')
and is 0.12 higher at p/pc=10". The Cu curve lies
close to the Al curve for low momenta and is 0.10
below it for large p/pc() 10'). 8 for silver is 0.2 above
the AgCl curve. 8 for emulsion is 0.1 above the AgC1
curve. 8 for Au is 0.07 higher than 5 for Sn, while 5

for% is 0.18 higher than 5 for Sn. The curve for Pb

"If it is assumed that only the energy loss in the AgBr crystals
is detected, the relevant density effect is that for AgBr. LE. Pickup
and L. Voyvodic, Phys. Rev. 80, 89 (1950)].b for AgBr is ~equal
to 5 for AgC1. The corresponding values of A and 8 are A =0.0668
Mev jg cm~, 8=15.1.

TAsz, E I. Data used to calculate the density effect.
Energies are given in Rydberg units.

Ma-
terial Li Be Graphite Al Fe Cu

hv&
hv8
hv8
hv4
f1
f2
f8
f4
hvm
hV Ns

v~'/v~
hvp
A
B

Ma-
terial

hvi
hv8
hv8
hv4
hv8
hv8
fi
fs
f8
f4
fs
fs
hvar
h vis
v~ /Vers

hvp
A
B

Ma-
terial

hvi
hv8
hv8
hv4
hv8
fl
f8
f8
f4
f6
hvar
hv~
v '/vm
hvp
A
B

5.3
0.4

~ ~ ~

2/3
1/3
0 ~ ~

~ ~ ~

2.22
2.50
1.13
1.01
0.0661
19.9

Ag

1878
260

36.3
4.8
0.6

~ ~ ~

2/47
8/47

18/47
18/47

1/47
~ ~ ~

25.2
31.5
1.25
4.53
0.0667
14.8

H8

1.0

~ ~ ~

1.00
1.15
1.15
0.020
0.153
21.5

10.9
1.0

~ ~ ~

2/4
2/4
~ ~ ~

~ ~ ~

3.31
4.44
1.34
1.90
0.0678
18.8

2150
304

46.4
6.4
1,3

~ ~ ~

2/50
8/50. :

18/50
18/50
4/50
~ ~ ~

26.8
35,2
1.31
3,72
0,0644
14,6

He

1.8

~ ~ ~

1.80
1.98
1.10
0.020
0.0765
20.4

23.0
4.1
1.3

~ ~ ~

2/6
2/6
2/6
~ ~ ~

5.00
5.67
1.13
2.26
0.0765
18.3

5114
812
157

22.8
3.6

~ ~ ~

2/74
8/74

18/74
32/74
14/74

~ ~ ' ~

43.8
51.3
1.17
5.90
0.0615
13.9

30.3
3.5
2,3

~ ~ ~

2/7
2/7
3/7
~ ~ ~

~ ~ ~

5.38
6.45
1.20
0.053
0.0765
18.0

115
6.7
2.4

~ ~ ~

2/13
8/13
3/13
~ ~ ~

8.18
11.0
1.34
2.43
0.0737
17.0

Au

5940
975
193
24

4.1
~ ~ ~

2/79
8/79

18/79
32/79
19/79

~ ~ ~

42.6
54.6
1.28
5.89
0.0614
13.7

Ne

64
4.0

~ ~ ~

2/10
8/10

~ ~ ~

7.02
8.85
1.26
0.046
0.0759
17.4

524
55.3
5.0
0.9
2/26
8/26

14/26
2/26

13.1
17.9
1.37
4.05
0.0713
16.0

Pb
6463
1053
214

28.1
5.8
2.8
2/82
8/82

18/82
32/82
18/82
4/82

45.4
55.6
1.22
4.49
0.0606
13.7

235
21.6
2.9

~ ~ ~

2/18
8/18
8/18
~ ~ ~

~ ~ ~

11.5
14.1
123
0.060
0.0698
16,5

562
72.1
5.4
0.6
2/29
8/29

18/29
1/29

14.2
20.5
1.44
4.29
0;0698
15.7

U

8477
1419
335

51.6
11.3
2.9
2/92
8/92

18/92
32/92
18/92
14/92

51.9
64.8
1.25
5.69
0.0590
13.4

Kr
1050
129
11.2
2.9

~ ~ ~

2/36
8/36

18/36
8/36
~ ~ ~

18.3
25.0
1.3?
0.085
0.0658
15.3

Xe
2545
373
61.1
12.4
1.9

2/54
8/54

18/54
18/54
8/S4

32.1
37.4
1.17
0.104
0.0629
14.5

hvt
hv8
hv8
hv4
hv8
hv8
hv7
hv8
ft
f2
fs
f4
fe
f8
f2
f8
hv~'
hvp
A
B

Arithra-
cene Toluene H80

23
4.1
1.3
1.0

23
4.1
1.3
1.0

42.3
4.0
2.9
1.0

~ ~ ~

28/94
28/94
28/94
10/94

~ ~ ~

~ ~ ~

14/SO
14/SO
14/50
8/SO
~ ~ ~

~ ~ ~

2/10
2/1O
4/10
2/10
~ ~ ~

~ ~ ~

4.75
1.72
0.0808
18.7

~ ~ ~

4.39
1.46
0.0831
18.8

~ ~ ~

5.00
1.58
0.0851
18.5

A@el

1878
260
36.3
4.8
0.6
208
14.8
4.0

2/64
8/64

18/64
18/64
1/64
2/64
8/64
7/64

25.6
3.33
0.0684
15.3

Emulsion NaI

993
120
16
2

~ ~ ~

2/35
8/35

18/35
7/3S

0 ~ ~

21.0
2.82
0.0708
1$.7

2448
356
56.6
10.8
1.4
96
5
0.4

2/64
8/64

18/64
18/64
7/64
2/64
8/64
1/64

28.8
2.65
0.0653
15.0

lies 0.14 below that for U. NaI and LiI have the same
5 within 0.1 as U. This result arises because the smaller
Z for iodine which leads to a stronger polarization per
electron is compensated by the smaller electronic
density of the iodides as compared to uranium.

The values of 8 for the cases of gases which were
calculated are shown in Fig. 2 with the exception of
H2 at 0.2 atmos. This curve lies close to the curve for
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Material

Li
Be
Graphite
Al
Fe
Cu
Ag
Sn
W
Au
Pb
U
H2
He
Ne
A
Kr
Xe
Anthracene
Stilbene
Toluene
Xylene
H20
AgCl
AgBr
Emulsion
NaI
LiI
Ng

2.81
2.70
2.82
4.06
3.97
4.13
4.88
5.49
5.33
5.45
6.03
5.86
9.11

10.19
11.52
11.92
12.37
12.77
3.03
3.03
3.20
3.14
3.30
5.08
5.14
5.02
5.77
5.52

10.60

10a

3.56
2.60
3.18
0.38
0.88
0.99
1.62
2.43
2.14
2.54
3.16
3.27
3.4
98
2.17
3.89
5.37
7.94
4,3
4.0
4.6
4.5
3.77
1.39
1.60
1.56
2.78
2.77
1.12

2.99
3.38
3.15
4.25
3.47
3,40
3.10
2.85
2.93
2.80
2.71
2.64
5.01
4.11
3.34
2.80
2.56
2.19
2.79
2.90
2.77
2.77
3.15
3.30
3.18
3.17
2.77
2.72
3.84

2
2
2
3
3
3
3
3
3
3
3
3
3
3

4

4
2
2
2
2
2
3
3
3
3
3
4

—0.10
0.00
0.04
0.39—0.01
0.00—0.03
0.17
0.21
0.25
0.38
0.20
1.76
2.00
2.10
1.96
2.00
1.72
0.09
0.09
0.12
0.12
0.08
0.18
0.10
0.17
0.09—0.07
1.81

TABLE II. Values of the coefficients of Eqs. (10) and (10a)
for the density correction b.

The coeKcients a and m were obtained by fitting Eq.
(10) to 5 at xe (5(xe) =0) and at a point near the middle
of the range (x, xi). Table II gives the values of C, a,
m, xi needed to evaluate (10), in addition to xe. The
values given for gases pertain to normal pressure. It
can be easily shown that 5 at any other pressure P
(atmos) can be obtained from 8 at P=1 by means of
the relation

(10c)

where» (lj,) denotes b for a pressure P' and momentum
y. To prove Eq. (10c), we consider Eq. (2) and note
that an increase of pressure by a factor P decreases
vP by the same factor. The left side of (2) is (pc/p)'.
Consider a momentum p for the gas at normal pressure;
a certain l corresponds to p. If the pressure is increased
and a new value of l, l'=lP &, is considered, the left
side of (2) corresponds to a momentum p'=pP t. In
this process the values of (v 2+2)/vP are unchanged
and hence the first term of Eq. (1).For P= 1, the second
term of 6 equals P(tie/p)' —which is also constant.
Thus 8v(p') =8&(p). This relation can be used in all
ca,ses of int.crest, since P= 1.

With the values of b, the ionization loss dE/dx was

Ne. However, h for H2 remains zero up to logic(p/tie)
=2.11 instead of the cutoff 1.81 for N2. For large
p/tie() 10") the H2 line lies 0.13 below the N& line.
We note that 8 for 02 lies 0.1 below the N2 curve, so
that the correction for N2 can also be used for air.
Whenever the pressure is not indicated in Fig. 2, the
gas is at normal pressure.

In order to give more accurate values of 8, which do
not involve the use of Figs. 1 and 2, the calculated
values of 5 have been fitted by means of an analytic
expression as follows:

M

s
V
~M
7
II

w ScD

g 2.5
I-

g0
KO

to
Io io'

SILVER CHLORIDE

Io lo

Mf SON KteERGY (Mevt

lt =4.606x+C, (x)xi) (10a)

lt =4.606x+C+a(x, —x)-, (x,&x&x,) (lo) FIG. 3. Ionization loss of p-mesons in various condensed ma-
terials. The broken curve given the values of (1/p)(dE/dx) which
would be obtained without the density effect.

where x=logio(p/tie) and a, m, C are constants which
depend on the substance; xo is the value of x which
corresponds to the momentum below which 8=0 Lsee
Eq. (9a)]; xi corresponds to the momentum above
which the relation between 6 and x can be considered
to be linear. The linearity of 5 at large energies can be
seen from Figs. 1 and 2. The linear relationship is
given by Eq. (46b) below, from which one obtains

7
s
~J
C7

6
N

5
ae
Z
Q

H2

C= —2 ln(v '/v„) —1. (10b)

The term a(xi —x) in (10) is int. roduced in order to
correct for the fact that in the intermediate region 8

exceeds the asymptotic value, Eq. (10a). Hy means of
a suitable choice of x~, the resulting expression was
made to fit the calculated values of 5 to within 0.2 in
all cases, and generally with deviations less than 0.1.

)Os

I

~oe 'Os

MESON ERERG& tMev)

FIG. 4. Ionization loss of p,-mesons in various gases. The broken
curves give the values of (1/p)(dE/dx) which would be obtained
without the density effect.
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where T is the maximum energy transfer and is given
by14

2c4

T—
pc' (p/2m+ m/2p+ E/pc')

(12)

calculated for several cases. The loss is obtained from
the equation"

dE 2mne4 me'T
ln +1—P' —8

dx mv' (hv„')'(1 —P')

4.c

vI
K
~ 3C

I
& 25
z0
l~
f4

g, 2.O

ANTH

SILVER CHLORIDE

Here E is the energy of the passing particle, whose mass
is p, . For p-mesons, T approaches asymptotically the
value E p'c'/2—m. For very large E(E»200pc'). For
the ionization loss of electrons, one must use

tc'as i 2 s e

GOLD

l«I1 I I I

10 Io

ELECTRON ENERGY IMevi

Io 5XIO

FrG. S. Ionization loss of electrons in various condensed ma-
terials. The broken curves give the values of (1/p)(dE/dx) which
would be obtained without the density effect.

T = ,'(E m-c')— (12a)

1dE A p——=—8+2 ln—jlnT'+1 —p' —5

p dx p' pc
(13)

where

instead of E—mc' as given by (12) to take into account
the fact that the incident electron and the electron of
the atom are indistinguishable. "Figures 3 and 4 show
the ionization loss of p,-mesons for several solids and
gases. For comparison the values of dE/dx which would
be obtained without the density e6'ect are also shown
(broken curves). Among the solids, anthracene has the
largest density effect. Figures 5 and 6 show dE/dx for
high energy electrons.

In order to compute the ionization loss, it is useful
to write (11) as follows:

H2. 0, 2 &TMOS

CII

6
6

Hv

4l 6

I

N
R
O 3—

He.
III R ~~

i I

OS I 2 5 Io io2 ioS

ELECTRON ENERGY IMev)

~ I

sxee

Fj:G. 6. Ionization loss of electrons in various gases. The broken
curves give the values of (1/p)(dE/dx) which would be obtained
without the density effect.

A = 2m.ee4/mc'p

8= ln[mc'(10' ev)/(hv'„)']

(13a) the result can be somewhat simplified on account of
(12a). Thus for electrons of high energy (P=1), (13)
can be written

T' is the energy trasnfer in Mev, p is the density, so
that (1/p)(dE/dx) gives the loss per g cm '. Values of
A and 8 for each substance are given in Table I. At
high energies P=1, and the sum in brackets reduces to
four terms. As an example, we calculate dE/dx for
p-mesons of energy 10' Mev in uranium. Equation (12)
gives T =0.91X10 Mev. Using p,c'=100 Mev, one
finds p/pc =10' for which Fig. 1 gives a value of 8 =7.9.
With A =0.0590 Mev/g cm ' and 8=13.4, Eq. (13)
gives

(1/p) (dE/dx) =0 0590[13 4. +13 8+. 11 4 .7.9].—
=1.81 Mev/g cm '

Equation (13), together with Eq. (12) or (12a) for T,
applies to any charged particle. However, for electrons,
"We note that there is some uncertainty concerning the theo-

retical expression for dE/dx. We choose the same expression as
was used by Halpern and Hall (see reference 3) and previously
given by W. Heitler, The Quantum of Radiation (Oxford University
Press, 1936),p. 218, Eq. (1).

"H. J. Bhabha, Proc. Roy. Soc. (London) 164, 257 (1937).
'~ W. Heitler, The Quantum Theory of Radiation (Oxford Uni-

versity Press, London, 1936), p. 218.

1dE
——=A 8 1.4+3 ln ——8 . —
p dx mc

(14)

1
+in~ —1 ~+1—P' —8 . (15)

( (1—p')1 )
For high energy particles which lose energy in a thin

target there are appreciable fluctuations of the ioniza-

As an example, dE/dx for 10' Mev electrons in U will
be calculated. For p/me=1960, Fig. 1 gives b=9.3.
One finds

(1/p)(dE/dx) =0.0590[12.0+22.7—9.3]
=1.50 Mev/g cm '.

For low energy electrons (P(0.95), the following equa-
tion may be used as an alternative to (13),

1dE A
——=—8 1.4+2ln—

(1—P')-:
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tion loss. The most probable loss is smaller than the
average loss given by Eqs. (13) and (14). This effect
has been investigated by Landau" who found that the
most probable loss e~„b in a target of thickness t g cm '
is given by replacing T in Eq. (11) by (At/P')exp(0. 37
+P ). Making this substitution in Eq. (13), we obtain

At -
p At

e»ob= —8+2 ln—+ln—+1.37—b .
p' pc p'

(16)

Equation (16) is valid for T))At/P' and holds for any
charged particle. Thus for a uranium target of thick-
ness 0.5 cm, 3 =9.35 g cm ', the most probable loss of
10' Mev mesons is found from Eq. (16) with At =0.55
Mev to be 11.1 Mev, while the average loss eA„ is
(1.81)(9.35) =16.9 Mev. For 10' Mev electrons in the
same target, 6p b =11.0 Mev and eA„——14.0 Mev.

Since we have
b =C+2 1n(p/pc) (17)

(C =constant) for large p/pc, it is seen from Eq. (13)
that dE/dx increases only on account of the term lnT'
at high energies. When T is the full kinetic energy of the
passing particle, the extreme relativistic increase of
the average loss dZ/dx is thus only -', as fast as it would
be without the density effect. This behavior is shown
in Figs, 3—6. The most probable loss 6p b approaches
a finite limit for large energies, as is seen from Kqs.
(16) and (17), since the increase of b just cancels that
of 2 ln(p/pc). The different behavior of the average and
the most probable loss is due to the possibility of a
large energy transfer (up to the maximum T) which
raises the average energy loss with increasing E but
does not aGect the most probable loss."

The theoretical values of b for AgCl can be compared
with the experiment of Whittemore and Street' on the
ionization loss of p-mesons in a silver chloride crystal.
This investigation confirmed the existence of the den-
sity effect. On the basis of the most probable loss in the
crystal, the authors obtained a curve of the correction
8 which when applied to the Bethe-Bloch formula gives
best agreement with the experimental results (see Fig. 3
of their paper). The experimental values of b agree
essentially with the curve presented here, although
they are larger by 0.8 for large p/pc than our values.
This discrepancy is quite small and may be due partly
to experimental uncertainties as well as to uncertainties
in the theoretical expression" for dE/dx used by
Whittemore and Street. We conclude that our values
of 8 for AgC1 are in reasonable agreement with ex-
periment.

Bowen and Roser' investigated the response of an
anthracene crystal to high energy p-mesons. They
found no rise in e~„b with increasing energy in the
relativistic region. This result also confirms the exist-
ence of the density effect. Ke note that the curve of

' L. Landau, J. Phys. (U.S.S.R.) 8, 201 (1944); K. R. Symon,
thesis, Harvard University (1948) (unpublished).

6p b as a function of meson energy, as obtained from
Eq. (16) with our values of b for anthracene has a
plateau of 6.0 Mev for meson energies above 500
Mev, in good agreement with the experimental results
of Bowen and Roser. Our curve also agrees (within

0.1 Mev) with the ev„b curve obtained by these
authors, using estimated values for b.

We have compared our values of 6 with those of
Halpern and HalP in the cases treated by these au-
thors. The present values of 8 generally agree with
those of Halpern and Hall within 1 unit. The small
differences between the two results arise because of the
use of different frequencies for the dispersion oscilla-
tors. The corresponding values of dE/dx agree with
those of Halpern and Hall (obtained with I=13.5Z ev)
within 0.1 Mev/g cm '.

co,~—2zq, (o—co2
(19)

where the atomic frequencies co;, the damping constants
2q;, and ~ are to be expressed in rad/sec. It was shown

by Fermi' that the ionization loss to atoms with impact
parameter greater than b is given by

2e'b
Rl ~

(
——P2 ~~k*Z,(eb)lt, (kb)d~, (20)

"0 (1+n )
where Eo and E~ are the modified Bessel functions of
the second kind, Rl denotes the real part, and k is the
square root with real part ~0 of

(20a)

Upon using the approximate expressions for E0 and E~,

Eo(kb) = ,'ln(4/3 17k'—b'), . (21)

Eg(k*b) = 1/k*b, (21a)

one obtains from Eq. (20)

4ee' n ) 4mv'
R.l

)
1-P'-——

( ln
J, P 1+&) 3.17~b2+c~(1—P~)

( p2~—2lnv —ln~ 1—
~

ivdv, (22)
1—2)

III. EQUATIONS FOR THE DENSITY EFFECT

In this section we give the derivation of the equations
of the density effect which has been previously ob-
tained. ' If the electric 6eld E of the passing particle
and the polarization P of the medium are Fourier
analyzed, a relation

n(a)) E„=4~P„ (18)

is assumed to hold for the Fourier components of fre-
quency s&. 0.(&v) is 47r times the polarizability, for which
we write

4mwe'
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t'22e') & f;
sec '=

( )
—(units v„).

L.~222) 4~
(23)

In order to evaluate (22), it is useful to write n/(1+ n)
as a sum of partial fractions,

where v=—le(42rlle2/222) b I.n the following, it is assumed
that the damping constants 2q; and binding frequencies
v; are also expressed in units of the plasma frequency,
so that the factor (42r22e'/222) of n disappears. In the
case where the transition has v, =0 (conduction elec-
tron), 2/; is related to the static conductivity e as
follows:

tors of (26) and (27). One finds

Fi+F2=fi+f2,

Fib+F2h= fin2+ f2'»

Fl/2 +F2/1 flv2 +f2vi ~

(32)

(33)

(34)

(35)

These equations are satisfied by F;=f;, up to terms
of order fif2((f 21 P'

The result of Eq. (25) can be understood by consider-
ing the singularity near v =v;. Near v; only the ith term
of (19) is of importance, so that

/ 2—2j$;v —v2

where F,, /;, 2$; are the modified oscillator strength,
frequency, and damping constant, respectively, associ-
ated with the ith transition. From the expression for
n [Eq. (19)]it will be shown that to a good approxima-
tion, F;=f,, $,=2/, , and

(25)

It follows from (25) that /, =v;, except for v, &1, i.e.,
for the transitions from the most loosely bound elec-
trons. In order to prove these results, we consider a
simplified case in which the medium can be represented
by only two types of dispersion oscillators. The fre-
quency vi (in units v„) is assumed »1, while v2&1.
From (19) one obtains

where p;=0 has been assumed for simplicity. The de-
nominator of (35) vanishes for v'= vP+ f;, which agrees
with Eq. (24) regarding the singularity at v'=/P In.
case there is an oscillator with v;=0, /, =f;1 and (24)
becomes 1 near V=O, which is seen to be the correct
limit from the expression for 0.. The preceding proof of
Eq. (25), which was given for a system of two disper-
sion oscillators, obviously holds for an arbitrary num-
ber, since near each v; only the ith term of 0. matters
and the replacement of v; by $; ensures that the singu-
larity of n/(1+u) occurs at the correct v.

By means of (24) with F;=f;, $;=2/;, Wb can be re-
duced to the following integrals:

Ii——Rl t ivdv,J,

with

n f, (r 2 22212v —v)+ f2(v p —2i2/iv v')——
(26)

1+& D I2 Rl~ iv lnvd——v,
0

D= (vP —2i2/iv —v') (v2'+f2 2zg2v —v')—

+fi(v2' 22q2v v') —(26a)— .

Alternatively, Eq. (24) gives

I2 Rl, ivln 1——— -P, — dv,
1—P2 v 2—2zg;v —v'

I4; Rl ~ i——vdv, —
/

2—2ig, v —1'

f
(27) Ib, = Rl — iv lnl dv,

~ p l&
—2zg~'v —v

n Fi(/2' 2i$2v v')—+F2(/p—2i)iv v')— —

1+n (/P —2zgiv —1') (/22 —22$2v —v')

We equate the denominators of (26) and (27). Equating
the coeS.cients of all powers of v gives &2 /' 2zgl'v v

$1+ t2 'gl+ g2

/P+/2'= vP+v2'+ fi+ f2,

(2g)

(29)
Xln 1— P; dv. (36)

1—t/2 v;2 —2i2/, v —v'

$2/1 +$1/2 = elv2 +'g2vl +'g2f1+'211f2) (30)

/1 /2 vl v2 +flv2 +f2vi ~ (31)

These equations are satisfied by $,=2/; and by Eq.
(25) for /, . In (31) the assumption that vP»1() fi)
was used. In order to obtain Ii, we equate the numera-

The path of integration is along the positive real axis.
These integrals can be evaluated in the manner shown
by Fermi' by considering the closed contour consisting
of the real axis up to a large distance 8, a quarter of
circle of radius R with center at the origin and the
positive imaginary axis from iR to 0. There are no
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singularities inside the contour, so that the integral
along the real axis is the negative of the integral along
the rest of the contour in the counterclockwise direction.

The evaluation of (36) will be illustrated by calcu-
lating I6,. For large R, the contribution from the
circle is

where

(42)

(n '-l')'
tanh-~ . (l, &q,) (42a)

(li' —vi') &

T„= ta,n ', (l,&q;)
(li' 2i—i')

)w/2 ( p2

Rl
i f, lni 1+ )d8=0(R '),

J p 0 (1—P2)R2 exp(2i8) J From Eq. (22) one finds

which goes to zero as R~~. The integral along the
imaginary axis is

4mv'4ne4
Ip(p' —1) QiI4—, ln

mv 3.172rb'ne'(1 —P')

I6 = —Rl
l,'+ 2p,y+ y2 +2 (2I +I,) (43)

Xln 1—
p2

4mv'2mne4

iydy (37) Upon inserting the values (41) into (43) one obtains
p.2+2~ .y+y2

For large y, the bracket )0 and the integral has no W'= +if~ ln(li'+P+22iil)
2nv' 3.1722b'ne' 1—'

real part. For y(l, where l is defined by

1

p2 v '+2v;l+P
(38)

Q)2f, (T„— Tp, )+P(1——P') —P' (44)

the logarithm gives —ix so that
The density effect is obtained by comparing 8'b with

the classical ionization loss Wbo to a system of isolated
atoms which is given by "

Ip = 2rf, ,

—
~2 1,'+2ri, y+y' 2xne4

ln —p' —Q,f; lnvp . (45)
2 2 2 2

~f li2+2„1+Pq 2nv - 72rb ( p )

The reduction of the ionization loss is

where
l(l' —2i ') &

tan ' (l, &~ )
l,'+g, l

(39) Wpp —Wp=
2xne4

V .2

(1,'+P+22i, lq

mv'

l(2i ' li')
Tp, =tanh '' . (l, &g,) (39a)

(n '-1') ' l 2+q, l

The singularities of the integrand are at

v = iri;a (v '+ ri'—) & 2ri, a (li'+—ri') &

Since damping of the dispersion oscillators is not taken
into account in Wpp, Eq. (46) gives the combined effect
of the polarization and damping. ' For P&Pp Lsee Eq.

(40) (9a) J, 1=0 and one obtains only a small effect

Ig=
I3=
I4;=
75;=

16&=

I2——0,
—-', ~P+-,'&P2/(1 —P')

7r
1

222rf& lnl, 222rf, T., —— ——

22rf, in[(lip+2+—22i,l)/l22j+prf, Tp

(41)

and lie in the lower half-plane outside the contour.
Hence I6;= —I6 .

The condition l;&q; holds in most actual cases,
whereas l, &q; applies only to conduction electrons
(v, =0) in case there is strong damping (poor conduc-
tor). The values of I„are

22rne' p (l,'~ y
Wbp —Wp=

] &,f, »/ —
I l.

2nv2 0 4v 2) 2
(46a)

in agreement with the results of Fermi' and others. "

For the case of a single dispersion oscillator, Eq. (46a)
gives (22rne'/2nv2)lnp, where p is the static dielectric
constant. This agrees with Fermi's result. ' For very
high energies, l= (1—P') & and we obtain

2mne4

Wpp Wp= ——ln(1 —P2) —P,f; lnvi2 —1, (46b)
mv'
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f
(4g)—2$'g jov —vf

1—-' P3
jr~0 vj —2'Lgjv —v

where jo is the transition, if present, for which v, =0.
If we let f,' = f—,/3—, we may write

Tsjo —Tbjo= 2 ln(1+2gjo/l),

Equation (46) for the density eEect is valid for an polarizability upon inclusion of this term becomes
arbitrary number of dispersion oscillators, each having
its own binding and damping characteristics. The 1, f
can be taken as the excitation frequencies v;, except
for the conduction electrons for which 1,= fj& should be
used. The damping terms T„, Tq; are obtained from
Eqs. (39) and (42), and 1 is obtained by solving (38).

In the case in which damping can be neglected for
all but one transition (j=jo) and if vp'o))ljo, we have

20

n(v) = —3—+
1+f' 2i—rjjov v'—

(49)

(1+2gjo) '
+fjo in' I

-P(1-~') (47)
vjp

If v, & 1 for jQ jo, fj can be replaced by v; and the result

agrees with that of Halpern and Hall. "We note that
the qjo term makes a sizable contribution to 5'~0—5'~
if fj, is appreciable. This contribution does not become
zero for low energies when 1=0. The gjo term corre-
sponds to the fact that a strong damping is equivalent
to a binding in reducing the ionization loss.

%hen the mean excitation frequency v
' is deter-

mined experimentally as in the work of Bakker and

Segre, " v
' includes the eA'ect of damping so that the

8, which must be applied to the Bethe-Bloch formula
with the experimental v ', should become zero at low

energies. The procedure used in the calculations of Sec.
II in which it was assumed that q;=0 gives zero cor-
rection at low energies (when l=0). In all cases (see
Table I), the excitation frequencies v; exceed fj& so

that Ij= v, . Thus Eq. (46) reduces to Eq. (1) which was

used in the numerical work.
Halpern and HalP have considered the effect of the

Lorentz term in the dielectric constant. Thus the

'7 See Fq. I,'17) of reference 3.

iso vj —2tgzv —v

The first term of (49) is of the same form as n/(1+n).
Corresponding to the results obtained above )see
Eqs. (24) and (25)), we find

fj'

1+f j+jo v j2 2igj—v v'—
where

v&=(v&'+f, ')'=(vF f,/3)' (i 4—jo)

Upon inserting (50) into (49) it is seen that the eGect
of the Lorentz term is merely to replace v; by v, , except
when v;=0 in which case v; must still be used. The re-
sulting equation for /j is

Ij=(vj2+f )'= (vj2+3fj)' (j&jo) (52)

Equation (46) with I, as obtained from (52) gives the
density effect when the Lorentz term is taken into
account. However, since in all cases of Sec. II, the
diGerence between /; and v, could be neg]ected, we may
conclude that the Lorentz correction is also unim-
portant for these cases.
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