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energy yields I',/T=% on the statistical model. With
the same estimate of | J|2 as for O', this gives | F|2~1N
at the peak of the giant resonance. The shoulder at
lower energy, however, has the same order of | F|? as for
N* and O. Incoherent ED excitation need not be af-
fected by partial breakdown of the coherent mechanism.

It should perhaps be remarked that the matrix ele-
ments |J |2 are exceptionally large. They are computed
on the assumption that the wave functions of the initial
and final states in the photoelectric transition overlap
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perfectly. Any deviations from this correspondence
would in general reduce the magnitude of |J |2, which
could not be tolerated in the face of the measured cross
sections. Although such perfect overlap may seem
reasonable in low energy v-transitions considered in the
shell model, it is rather a surprise to find one-particle
wave functions so much alike for ground and highly
excited states.

It is a pleasure to record a stimulating conversation
with Professor L. Katz.
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Solar “Enhanced Radiation?’ and Plasma Oscillations

Harr K. SEx
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The dispersion relation for a plasma oscillating in a static magnetic field is derived by the Laplace trans-
form method. The plasma oscillations are found to be unstable in frequency bands around multiples of the
gyrofrequency. A numerical application to spot magnetic fields at coronal distances indicates sufficient
amplification to make plausible the theory of the origin of solar “enhanced radiation” in plasma oscillations
of electrons gyrating round the magnetic field of sunspots.

HE sun is known to emit radiofrequency radiation
in the meter range of wavelengths which main-
tains a high but variable level for periods of hours or
days.! This “enhanced radiation” proceeds from the
direction of sunspots and shows circular polarization.
An attempt is made in this paper to ascribe this
phenomenon to motion of solar material (prominence
or corpuscles) in the magnetic field of sunspots.? In the
highly conductive corona, the prominence (or corpus-
cles) will move along the lines of magnetic force. The
transverse component of any tendency to oblique
motion of the material will set the electrons (and ions)
gyrating round the lines of force with a peaked velocity
distribution.

Malmfors® was the first to point out the similarity
between the conditions in the solar corona and in a
trochotron and ascribe the origin of solar noise storms
to plasma oscillations of electrons in the spot magnetic
field. When the current exceeds a certain limit, noise
and negative current are observed in the trochotron.
Ordinary collision processes cannot explain the effect.
The physical picture seems to be that any distortion of
the distribution of the electrons is repeated with the
gyro-period of the electrons. The space charge electric

1J. P. Wild, Australian J. Sci. Res. A4, 36 (1951).

2 A thermal origin cannot satisfactorily explain this “enhanced
radiation” which must be distinguished from the slowly varying
component, at frequencies of 600 Mc/sec and above, that is
closely correlated with sunspot area. See J. H. Piddington and
H. C. Minnett, Australian J. Sci. Res. A4, 131 (1951).

3 H. Alfven et al., “Theory and application of trochotrons,” Kgl.
Tekniska Hogskolans Handlingar No. 22 (1948).

field varies with the same period, achieving an effect
similar to what obtains in a cyclotron.

In a later paper, Malmfors* has given a more detailed
treatment by the hydrodynamic equation of motion of
the states of oscillation in a system of electrons moving
with uniform speed in circular paths perpendicular to a
magnetic field, and has found that the system is
unstable.

Plasma oscillations in electric and magnetic fields
have been treated by Bailey® with Maxwell’s transfer
equations. The Maxwell transfer equations (the so-
called “hydrodynamic approximation”) are easier to
apply than the Boltzmann equation, and it is fortunate
that they lead in most cases to qualitatively correct
conclusions (particularly at long wavelengths). How-
ever, to obtain accurate results one must apply the
more general Boltzmann equation. One may thus
obtain not only quantitatively more accurate results,
but also qualitatively new ones, e.g., the heavy damping
at wavelengths near the Debye length.

Gross® by a kinetic theory treatment has obtained a
dispersion relation different from Malmfors’.” Gross

4 K. G. Malmfors, Arkiv. fys. 1, 569 (1950).

5V. A. Bailey, Phys. Rev. 83, 439 (1951).

8 E. P. Gross, Phys. Rev. 82, 232 (1951).

71In the opinion of the author, the reason for the discrepancy
between Malmfors’ and Gross’ results in the following. Malmfors
(see reference 3) has used the same vectorial angle ¢ in his Fig. 1,
which refers to velocity space, and in his equation of perturbation,
in Sec. 3, of the x coordinate, which refers to ordinary space.
Making correction for this error (changing ¢ into ir+¢ in
Malmfors’ continuity equation), the author finds that the two
results check.
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finds from his dispersion equation the existence of gaps
in the spectrum at frequencies that are approximately
multiples of the gyrofrequency. The magnitude of the
gap depends on the temperature of the gas, being
proportional to it for long wavelengths. This leads him
to the prediction of selective reflection of waves im-
pinging on a plasma with frequency in the forbidden
range.

On account of certain singularities® appearing in
Gross’ treatment, the author has thought it worth
while to reconsider the Boltzmann equation in a
magnetic field by the Laplace transform method used
by Landau® in an analogous problem. The analysis
confirms Gross’® dispersion equation. But it is found
that the system is unstable in frequency bands around
multiples of the gyrofrequency.

We consider an electron plasma gyrating with a
uniform speed v, round a static magnetic field of
strength H.

Let f(r,v,£) be the distribution function of the
plasma satisfying the Boltzmann equation10

Gf
it
E is the electric field due to the space charge. We

assume the absence of static electric fields and neglect
collisions."* For oscillations of small amplitude, we may

put
f(r: v, l)=f()(V)+f1(r, v, t): (2)

where fo(v) is the equilibrium distribution, and f1< fo.

In this approximation the Boltzmann equation is
linear and reduces to

af1 e e
—tV- Vfl_"v¢' vao—i“*—(VX HO) : va1= 07 (3)
ot m me

’vazo- (1)

where the electric potential ¢(r, ) satisfies the Poisson
equation!?

Vip= ——47reff1dr(dr=dvxdvydw,). 4)

8 Gross’ distribution function (fi) (see reference 5) has singu-
larities at multiples of the gyrofrequency (w.). When w=nw, f1
cannot be made periodic in & (vectorial angle), except for the
trivial case of vanishing ac electric field. The Laplace transform
method, as we shall see, enables us to work directly with the
electric potentxal which happens to be nonsingular.

L. Landau, J. Phys. (U.S.S.R.), Vol. X, l%o. 1, 25 (1946).

1 S. Chapman and T. G. Cowling, The Mathematical T heory
of Non-Uniform Gases (Cambridge University Press, Cambridge,
1939), p. 322, Sec. 18.2.

11 We suppose the ions to be stationary, on account of their
large mass, and smeared into a uniform charge distribution

sufficient to cancel the static negative charge of the electrons.

We also consider the atmosphere to be rarefied enough to justify
the neglect of collisions.

2Tt is true that in a static magnetic field there is a strong
coupling of longitudinal and transverse motions and we should,
in strictness, use not the Poisson equation but the full set of
Mazxwell’s equations. The use of the Poisson equation is, however,
justified for the limiting case of separation of plasma from electro-
magnetic waves, i.e., when ck>w, and ck>w., where w, and w.
are, respectively, the plasma and gyrofrequencies, % is the wave
number and ¢ the velocity of light (see reference 5).
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The equilibrium distribution fo(v) satisfies the
equation
vXHy vy fo=0. )
A solution of (5) is fo(v) = fo((vs2+72,2)%, v.), where H,
is assumed to be in the Z direction. The Maxwellian
distribution can therefore be an equilibrium one in a
static magnetic field.”
Assume that Eqgs. (3) and (4) have solutions of the

form
Si= fl(v; t)eﬂm)
Then (3) and (4) reduce to

1 af1 ad
—~f—+]k7)zf1-l-wc['v,—']i— Vg™ f ]—]kf‘iﬁ‘ff: 0; (7)

o= o(t)ei*=, (6)

07, dvy, m 0v,
and
Ko(l)=4dme f fudr. @®)
Here,
We= 6Ho/m0 (9)

is the gyrofrequency.
Following the Laplace transform method," we define
the function f,(v) by

fol0)= f 113, er'ds, (10)
0 |
where
1 +jo+y
fin = — foMerdp.  (11)
2mjs) —ioty

We suppose on physical grounds that fi(v,?) has a
continuous derivative and that | fi(v, £)| <Ke*!, where
K and ¢ are positive constants. Then v in (11)>c.

Multiply both sides of Eqgs. (7) and (8) by e~?¢ and
integrate over £ This yields

. 0fp  9fp S
(P+]k7)z)fp+‘UC{vy— ]"]k"ﬁt‘p“‘:g(v) (12)
dv, - 61} Y m vy
and )
k2¢p=47reffpdr, (13)
where
g(v)= fi(v, 0). (14)
On transformation into cylindrical coordinates,
=pCcosd, v,=psing, v,=v,, (15)
Equation (12) reduces to
_ afy e dfy
(p+7kp c088) fp— we—— jk—¢,—— cosé=g(v). (16)
ad m  dp

On account of the axial symmetry, we shall hence-
forth suppose the dependence on z of the physical
variables to have been taken out by integration over z,
and shall consider only the polar variables (p, §).

1 See Appendix I.

HH. S. Carslaw and J. C. Jaeger, Operational Methods in
A pplted Mathemalics (Oxford University Press, London, 1941),

p. 72.
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If we regard (16) as a linear differential equation in
(8), the solution is

The condition that f, given by (20) must be periodic
in & with period 27 gives
Jolp, )= A(p)etrsrite rioiec

ato=— 2 Ean(-2) | ]

8
— g(pb+iks sinanwcf e~ (pd+ikp sind)/we
0

Xg(VH- jk(e/m)dp(dfo/dp) cosd

e df ko 1
;a7 —ij OJn(—~){ T
e 2" —p/wctj(n+1)
where A(p) is an arbitrary function of p, which must be
determined from the physical consideration that f,
must be periodic in é with the period 2. F— } (21)
Let the initial perturbation —p/wetjn—1) ;
g(V)=21 Aup)e®. (18)  Thus we have
We use the expansion o
o 6]kp 8ind/we
eiz sinb= 3" T (5)¢ind, (19) folp, 8)=— w__.
and set (18) into (17). Thus we obtain . e
E s a2
Jo(p, 8)=epotike sind)fwe A(p)~— Z Z A:(p) p/wetj+n)
We
kp el—plocti(l+n)16 — 1 dfo ei(n+1)8
XJn(——)—_— +Z]n( )]k—— ——l——-——————
we/ —p/wst jl+n) n 2m  dp | —p/w+j(n+1)
kp e df(l e["‘@/wc“f“f(ﬂ‘i"l)”—- 1
Y TR .
" wd” e, dp | —pfwtjnt1) +-—————————|] (22)
el=plocti(n—1)16__1 —p/wetj(n—1)
- ” (20)
—p/wetjn—1) We set (22) back into (13) and obtain
A p)]n(__kp/wc)ei[(l+n)6+kp sind/wc]
| a dr
47e n P/wc”"](l'i'%) 23
¢p*—w~ dfo gi(nt18 . eitn—1)d ’ 23)
By - [— { |
Mma,

k
+ - }Jn(.__li)ejkp siné/w‘;d,r
—p/octin+l) —p/otijn—1)

We
where, in our coordinate system (15), dr= pdpdé

We use in (23) the following properties of the Bessel functions of integral order

1 2T

Jon(z)=—] eindeizsindgg,
27!‘ 0 (24)
Ju(—=2)=(=1"Tu(z), J-u(z)=(—1"Tu(2),
and obtain
(=1 ® kp kp
——— 1 Ay(p)] Jiin d

87l zl: Xn: P/coc—j(l+%)>£ o) ( ) a (wc)p g 25)
we afy

we I X | G I G | P

e
Mw, »

—p/wctjn
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We shall suppose, on physical grounds, that the
functions A4,(p) that determine the initial perturbation
and the function fo(p) that determines the unperturbed
distribution are such that the integrals in (25) are
convergent. When  is an integral multiple of jw,, both
the numerator and the denominator of ¢, in (25) have

o L)
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singularities that cancel out. Thus ¢, is a meromorphic

function of the complex variable p with poles at the

values of p that make the denominator of (25) vanish.

In other words, the poles of ¢, are the roots pi, s,
<Py v Of the equation (in p)

472 (26)
mkwe » /2
——+jn
2F
We shall suppose again on physical grounds that ¢(f) equation (26) reduces to the form!®
has a continuous derivative and that |¢(f)| <Ke, o
where K and ¢ are positive constants. Then, by (11), 1= 1dr o JaM) {1 +Tnra(N} 32
we have = _'_2' N < _ , (32)
2o ral S n—w/w,
L where
() =—o- ePid 27
() 27rj oty ¢17 P’ ( ) )\=k7)0/wg, (33)
where y>¢ and wy is the plasma frequency given by
Now ¢, in (25) is O(p~"). Hence the line integral in wo?=4mnee?/m. (34)
(27) can be replaced by the integral over any circle C, ) e )
center the origin, that includes all the poles of ¢,.!% For the Maxwellian distribution function
Thus, by Cauchy’s residue theorem, m o \?% m
= —_ (92 2
$O=E, b, 29 fen(z) x| oo} o9
where p, is a root of Eq. (26), and b, is the residue . . )
of ¢, at the pole p. the dispersion equation (26) reduces to
From (6), the potential ¢ is given by : . +o 12T ,2(\)
, = - —\%/2p
¢=ZT b eiketort, (29) = 4w 2T >\e an n=z—w n+w/wc (36)
Equation (26) is therefore the required dispersion
equation. where 20
The transform of the electron distribution function A=kp/w. and 1/u=(m/xT)(wl/k).  (37)

f1(v, t) is the meromorphic function f,(p, 8) given by
(22), which has poles for p=jnw., besides the poles of
¢, given by (26). The poles at p=jnw, contribute
frequencies that are multiples of the gyrofrequency to
the distribution function fi(v, £) of the electrons.

Before we can apply the dispersion equation (26), we
must specify the unperturbed distribution function
fo(p). For a system of electrons gyrating round the
magnetic field (Z axis) with a uniform speed v,, we
may write

Jo(p) = (n0/2m06)5(p—wo), (30)

where 7o is the electron density and ¢ is the Dirac
é-function whose derivative has the integral property

[ 1@ e—ai=—r@. (31)

Using (30) and (31), we find that the dispersion

15 See reference 14, p. 76.

The relation (36), which was obtained by Gross,$ is
further considered in Appendix II.

Gross® has considered the dispersion relation (32) for
small A (A1) and has shown that in this case there
are gaps in the spectrum at approximate multiples of
the gyrofrequency. He believes that “the same type of
consideration would seem to hold for all values of A\.”
He has not, however, undertaken a complete study of
the dispersion relation (32) (i.e., for large ).

The author has thought fit to consider the dispersion
equation (32) for A> 1, and finds that it can be satisfied
by complex values of w, leading to unstable oscillations
growing exponentially in time.

We set

K= (wo/we)?=4rNomc?/H?, w/w.=a+jB, (38)
in the dispersion equation (32), and, equating real and

16 Gross obtained thé dispersion equation in this form from a
direct solution of the Boltzmann equation (see reference 5). As

Gross assumed the oscillating quantities to vary as eikz=9D | we
have replaced p in (26) by —jew.
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Fi16. 1. Curve showing the variations of 8 (amplification) with a
(frequency in units of the gyrofrequency).

imaginary parts, obtain
2__ 2 2
n(n*— o+ 6%) o 2)=l
\J n41 n—1
n=1 (nz_ a2+ ﬁ2)2+4a262
Jn+12_Jn—12

% =0.
El (%2— 0¢2+BZ)2+4042ﬁ2

+0

(39)

+o

A numerical solution of Eq. (39), for different values
of K as a parameter, shows that the equation can be
satisfied by real positive values of o? and (%;!7 thus,
the dispersion equation (32) can be satisfied by complex
w, indicating amplification of random fluctuations with
time.

We will state our results for the particular value of
K =355, which applies to spot magnetic fields (H=30
gauss) at coronal distances (=~10" cm above the
photosphere) and to the density of prominance material
(mo=5X10° cm™3).

Figure 1 gives the variation of 8 with «, and the
progression of the A\-values corresponding to the different
points.!® The curve oscillates round multiples of the
gyrofrequency, and fairly large amplifications are avail-
able over a wide frequency range. The values of B
indicate that the amplification will amount to several
powers of 10 in a few seconds. We will not quote precise
results, as we cannot trust any first-order theory for
such large amplitudes. The frequency band width about
covers the range of 70-130 Mc/sec in which the
Australians! have observed ‘“enhanced radiation.”
Though a nonlinear theory would be required to achieve
quantitative accuracy, we believe that the results
obtained herein have a qualitative significance, inas-
much as they render plausible the theory of the origin

17 For real N, the quantity within the brackets in Eq. (32) is
real. It can be reduced to the form:
S 4T 2(N) .
112 —a?+B32—2jaf
If this sum is real for any particular «, 8, it is real and has the
same value for any of the four combinations 4=, 8. Hence the

roots of (32) occur in quadruples #a--78.
18 There seems to be a cut-off near A=3.84; see Appendix II.
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of solar “‘enhanced radiation” in plasma oscillations of
electrons gyrating round the magnetic field of sunspots.

We may note two points in this connection. As the
gyrating electrons have a peaked velocity distribution
on account of the prominence motion, they do not
suffer from the thermodynamic limitation as in the
case first treated by Kiepenheuer.!® Further, amplifi-
cation is available over a large frequency band width,
which will enable the radiation to escape through
regions that are normally overdense for the gyro-
frequency .

The amplification tends to increase with K as defined
by Eq. (38). This tendency may explain the abnormal
increases in the enhanced level found at the time of
solar flares.? The background continuum shows at
times short-lived increases to exceptionally high values
and of broad band width (tens of megacycles per
second). The agency in this case may be the dense
corpuscles shot out from sunspots at the time of a
solar flare.

The “‘storm bursts” that occur on the enhanced
level! have a narrow band width (4 Mc/sec) and seem
to owe their origin to a different mechanism that is
probably localized in the solar atmosphere, e.g., shock
waves due to solar corpuscles moving with supersonic
velocity. A physical theory of the propagation of shock
waves in an ionized gas subject to a static magnetic
field will be relevant to this case.

The author’s best thanks are due Miss Loris B.
Perry for the numerical solution of Egs. (39) and the
drawing of Fig. 1,

APPENDIX I

The Steady-State Solution of the Boltzmann
Equation in a Magnetic Field

Let the distribution function f= fo(v, £) be a solution
of the Boltzmann equation? in the magnetic field H,
of gyrofrequency w.,

af of  of
~+wc[‘vu"—*— Vs ]=Bv2vf+3ﬁf+6v. VVf; (1)
ot dv,  Omy

where

B=g«T/m, (2)

k being the Boltzmann constant and 8 the electronic
collision frequency.

Put
1= o ©
Then Eq. (1) reduces to
of [ of of
Ztolu v |- B v @
a¢ 07, dv,

19 K. O. Kiepenheuer, Nature 158, 340 (1946).

20 M. Ryle, Rept. Prog. Phys. XIII, 229 (1950).

2t Reference 1, p. 42.

22 S, Chandrasekhar, Revs. Modern Phys. 15, 35 (1943), Eq.
(249).
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Change to cylindrical coordinates:

V,=p €080, V,=psing, v,=1,. 5)
Then, Eq. (5) reduces to
af af af af
Bp We Bo.
at dp ) dv,
af 1491 a?f’ e
=B{—+ +——]. ©)
9> pOp p? 98 092

The left-hand side of (6) equated to zero is a linear,
homogeneous first-order partial differential equation,
and its solution can be derived from the following
Lagrangian subsidiary equations:

dt=dp/—Bp=dd/— w.=dv,/ — .. (7

Independent integrals of (7) are

d+wd=cs, v,e8t=c;. (8)

Accordingly, to integrate (6), we make the following
change of variables:

peft=cy, and

peft=¢, Stwd=n, veft=¢ t=i. 9)
Equation (6) reduces, in the new variables (, 7, ¢, £),
to
af 62f’ IBf 1 8 &f
—= B[ . ]e”‘ (10)
ot g E 9¢ 52 an* o

The right-hand side of (10) is the Laplacian of f’ in
the cylindrical coordinates

E=fcosy, n'=¢sing, '=¢. 11
With the substitution (11), Eq. (10) reduces to
3f'/ot= BBV RS, (12)

We now apply the following lemma :%
If ¢(#) is an arbitrary function of time, the solution

of the partial differential equation,
9x/9t=¢*()V,*x, (13)

which has a source at p=p, at time =0, is

[41r f ¢2(t)dt]

Applying the above lemma to Eq. (12) and going
back to the old variables (g, §, v., £) by means of Egs.
(9) and (11), we find that

Jo(v, )=[(27B/B)(1—e*) T exp[—{p cos(8+w)
— po €088oePt}2— { p SIn(d+ w.t) — po sindee )2

— (0= e #)*)/[(2B/B)(1—e**)]. (15)

2 See reference 22, p. 34, Lemma 1.

exp[~le 00| %/4 f ¢2(t)dt] (14)
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As t—oo | the distribution function given by (15)
tends to the Maxwellian one,

on substituting (2).

Note that the presence of the magnetic field does
not affect the steady-state solution of the Boltzmann
equation. Appendix I gives an alternative proof of this
well-known result’® via the Fokker-Planck diffusion
equation (1).

(16)

APPENDIX II

A Closed Expression for the Dispersion
Equation (32)

The infinite sum in the dispersion equation (32) can
be expressed in a closed form as follows:

Let J.(N{J Jns1(A
® n—1 A n+1
SO @)= XZ_ MmN+ +()}, W
where ne
‘w/we=a. (2)
Then
w 12 2(N)
SO\, a)=43
n=1 n2—-—a2
- o Ja*(N)
=437 2(>\)+4a22 T 3)
1 1 w—a
Now,

2
(=D 2(N) =-—f Jo(2X cosB) cos(2n6)ds, (4)

and
c052n0 1 7 cos(2af)
Z (=)™ - . ®)
n:—a? Za2 2 a sin(ra)
Hence,
o Ja2(M\) 1 /2
=— Jo(2X cosh)do

1 —a? ma?dy

f’“ﬂ Jo(2X cosf) cos(2a8)d6

a sin(ra)
1 T o(M)J —a
=L g LT, ©
202 2a sin(ra)

Also,

i:i T2 =3— 372 (N). )

% W. Magnus and F. Oberhettinger, Formulas and Theorems
for the Special Functions of Mathematical Physics (Chelsea Pub-
lishers, New York, 1949), p. 28, Sec. 6.
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Hence,

S\, a)=2{1— J oM T —a(N) }.25 ®

sin(ra

From the series expansion?
(=)"GEN)(2m)!

(m )T (a+m+1)T(— atm+1)

where o is not an integer, we can show that the dis-
persion equation (32) reduces, when A1, to

2(c2—4)+ 32
21— ) (d—a?)

0

JaMJ—a(N)= 2

m=0

©)

1
K
where K is given by (38).

Equation (10) gives, for A=0, the relation for a
static plasma, viz.,

w'=wi+ws, (11)
where w is the plasma frequency given by (34).
Setting in Eq. (10),
w .
a=—=+/2+7j\/9, (12)
We

equating real and imaginary parts, and eliminating x,
we have
16y°4-8(5+ K)y+ (K —3)*+ 602K =0. (13)

Neither root of Eq. (13) can be real and positive. Hence
the dispersion equation (32) cannot have complex roots
for small AM(<1). This result is in conformity with
Gross’ conclusion® and the lower cut-off limit for A in
our Fig. 1.

The Dispersion Relation for a Maxwellian
Distribution

The integral in the dispersion relation (36) for the
Maxwellian distribution function (35) can be expressed

25 Formula (8) is due to Dr. J. J. Freeman.
26 G. N. Watson, Theory of Bessel Functions (Cambridge
University Press, Cambridge, 1944), p. 147.
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in terms of the generalized hypergeometric function?’
F .
2472

® +o 12T 2(\)
f e Mgy 3
0

n=—x n+a

=aulFy(1, 35140, 1—a; —21)—1], (14

where « is given by (2).

Formula (14) follows from Eq. (8) and the following
integral relation :28

f X exp(—aN)J (N _a(A)dM

sin(we) 1
= 2F2(1, %‘; 1+a, 1—0{; ——). (15)

2aTa a

We shall assume that
u/ o= (kT /m)(k*/w?)<1. (16)

Then using only the first two terms of the series
expansion of »F, in (14), we can reduce the dispersion
equation (36) to

W= w4+ we— 3uwe?/ (4—a?).

an

Equation (17) again reduces to (11) for 7—0. In the

first approximation, Eq. (11) can be set for @ in (17),
which will lead to the following relation:

3w (kT /m)k?

2 2+ S —

w?= w2+ wel—

3wl— wo?

kT W
=w62+wo2+3——k2(1+3———), (18)
m wo2

when w2/ w1,
Equation (18), which leads to the correct limiting

forms for zero magnetic field and/or temperature,
should be compared with Gross’® Eq. (30). -

27 Formula (14) is due to Dr. Fritz Oberhettinger.
28 See reference 26, p. 396.



