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isotope with the 2-meter crystal spectrometer in 1949
and 1950, which formed part of his thesis for the doc-
torate. The erst mentioned of the two sources, the
narrower and the weaker of the two, was the one used

by him. Actually all the wavelengths have been remeas-
ured with the second source because certain changes in

the spectrom, eter in the meanwhile have rendered the
applicability of our present calibration to this older
data too uncertain. Nevertheless, Brown's pioneering
study on this isotope has been of the greatest value to
us, and it is a pleasure to acknowledge here our indebted-
ness to him.
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Penetration and Diffusion of X-Rays: Calculation of Spatial Distributions
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Methods are presented for calculating x-ray spectra in an infinite homogeneous medium. These methods
are particularly useful for calculating spectra at great distances from the radiation source. The transport
equation is solved numerically by characterizing angular and spatial distributions. with a small number of
suitable parameters. Attention is called to a mathematical technique which is extremely useful for this
purpose, whereby a function may be approximated from a knowledge of moments, derivatives, or values.
Sample numerical applications include spectral intensities at various distances from a plane monodirectional
10.22-Mev x-ray source in Pb and a plane monodirectional 5.11-Mev source in Fe.

I. INTRODUCTION

HE very deep penetration of photons which
experience multiple Compton scattering' has been

studied previously in a number of papers. ' 4 These
treatments —all completely analytic —have been de-

signed to yield information about the asymptotic form
of the x-ray penetration law. In this paper we shall

present a numerical approach which makes use of these
asymptotic penetration laws; therefore, in Appendix A
we summarize these earlier results and discuss briefly
some unpublished work of the same kind.

The complicated nature of actual x-ray cross sections
militates strongly against the usefulness of purely
analytical methods in finding realistic spectral intensi-
ties in specific situations. Numerical m, ethods hold much
m,ore promise. One such numerical method has been
presented' 7 which relies an expansions in suitable
spatial and directional polynomial systems. The di6u-
sion equation is reduced through these expansions to a

*Work supported by the ONR.
' At the low energy end of the spectrum, where the energy shift

of the scattered photons can be disregarded or treated as a small
correction, the diffusion of photons has been studied by S.
Chandrasekhar (Radiative Transfer, Oxford University Press,
London, 1950), but without specific reference to very deep pene-
trations. At the very high energy end, where large amounts of
x-rays are regenerated by secondary electrons, a full development
of the shower theory is required. Pair production will be treated
here as a mechanism for outright absorption. (The results of this
paper can be applied to the tail end of showers. )' Bethe, Fano, and Karr, Phys. Rev. 76, 538 (1949).

3 U. Pano, Phys. Rev. 76, 739 (1949).' Pano, Hurwitz, and Spencer, Phys. Rev. 77, 425 (1950).
~ L. V. Spencer and U. Pano, Phys. Rev. 81, 464 (1951).
6 L. V. Spencer and U. Fano, J. Research Natl. Bur. Standards

46, 446 (1951).
~ L. V. Spencer and Fannie Stinson, Phys. Rev. 85, 662 (1952).

form, suitable for ordinary numerical integrations. This
polynomial method has proved very useful for pene-
trations up to 16—24 mean free paths of the hardest
spectral component; but it is in no sense asymptotic
since the burden of the numerical integrations tends to
increase rapidly with the penetration.

We present here a method for numerical calculations
which might be called "semi-asymptotic. "It is capable
of yielding as much information as the polynomial
method, while the numerical work involved is nearly
independent of the penetration. This method relies upon
a Fourier-Laplace transformation in the spatial vari-
able. In Sec. II the diffusion equation is presented and
is reduced, through this spatial transformation and
through integrations over photon directions, to an
interlinked system of integral equations. Section III
describes schematically an approach to the solution of
this system. Section IV presents the method which was
actually used. The success of this method is largely
due to a new mathematical technique for approximating
functions. In order to preserve continuity of thought,
this technique is described in Appendix 3 rather than
in the body of the text. In Sec. VII the inversion of the
Fourier-Laplace transform is discussed. The details of
the inversion are given in Appendix C.

The results of actual calculations for the following
three problems are presented and discussed in Sec. VIII:
(1) a plane nmnodirectional 10.22-Mev source in Pb;
(2) a plane rnonodirectional 5.11-Mev source in Fe;
(3) a plane isotropic 5.11-Mev source in Fe. Spectral
intensities are given for penetrations up to j.60 mean
free paths in the erst case and 50 mean free paths in
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the second. The calculations for the third case are more
restricted.

II. THE DIFFUSION EQUATION

We consider the penetration, degradation, and di6u-
sion of x-rays in an infinite medium with a plane source.
Under conditions of plane symmetry the spectral energy
density 7 of the x-rays depends only on the distance x
from the source, on the obliquity co of the direction of
propagation ~, and on the wavelength X (in Compton
units). This energy density obeys the transport equation

to,cjF(x, to., X)/Bx+ p, (X)F(x, o)„X)
~'A

' dX'k(X', X) dto'1/2m 8(1—'A+X' —to to')

X F(x, t0,', X')+source, (1)

where p(X) represents the total attenuation coefficient,
k(Y, X) represents the differential Klein-Nishina prob-
ability for Compton scattering of a photon of wave-
length Y into the interval from X to X+L&,"and the
Dirac 8-function represents the Compton condition.

As in references 3 and 4 we represent the solution of
(1) as a superposition of space distributions which
decay in depth exponentially, by the method of the
Fourier-Laplace transformation. The "transform" of Y,
i.e.,

y(p, &o., ).)= " dxe&'I" (p, to., X),

obeys the equation

(~(l )—p~.ly(p ~. &)

dX'k(X', X) de'1/2rr5(1 —)t+X'—to to')
Jp d4

Xy(p, co ', X')+source. (2)

We are primarily interested in calculating the quantity

yo(p, X)=(1/2~)Jt dtoy(p, to., X).
4w

The inversion of yo(p, X) to obtain the depth distribu-
tion will be discussed in Sec. VII.

The "topography" of y as a function of p is as follows:

y is de6ned on a strip parallel to the im, aginary axis
such that —p, &Rep&~+p„where p, is the attenuation
coefficient of the hardest scattered x-rays. (For

~
Rep~)p„ the integral defining y diverges. ) The singularities

of y are related to the vanishing of the factor [g(X)—pto,j.This occurs, within the strip of definition, only
if p(X)—+p„to,—+1. Thus, y has singularities at &p„
i.e., on the real axis. (The type of singularity which y

~' Since F refers to energy density rather than number density,
the function k(X', X) referred to here differs from that in reference
6 by a factor 1X/h').

may have at +p, is given in Appendix A.) Because of
the location of the singularities, for every set of values

(x, to„X) there must exist a saddle on the real axis for
some value ~P~ (p, . For large x, this saddle will be
close to +y„while for small or negative x, the saddle
will lie at small or negative values of p. Since we are
primarily interested in evaluating y near the saddle
point, we want to assign to p real values within the
range of de6nition.

Clearly those components are most penetrating
which have the smallest attenuation coefficient and
which travel directly away from the source. The
components which control the deep penetrations tend
to have directional distributions strongly peaked at
co =1. Now, any sharply peaked distribution requires
many spherical harmonics for its description. This
means that spherical harmonics are not the most con-
venient quantities to use in describing the directional
distribution of the deeply penetrating radiation. ' A
more convenient quantity to use in characterizing these
directional distributions is the "angular moment"
defined as follows:

1
y„(p, X)=—t dto(1 —co.)"y(p, to., X).

27K 4w

In order to find equations for these angular m, oments,
we multiply (2) by (1—M,)" and integrate over all
directions. The result is the following system of equa-
tions:

L.O)- p)y-(p, ~)+py-. (p, ~)

dX'k(X', X) P (X—X')" "'S„""'(X—X')
0 n'-p

Xy. (p, Y)+source, (4)

where S„"'(s) are polynomials of degree (e—m'), '

(—1)- L2---'~"(~—~') 3~„-'(s)
(dn/dsn) [sn—n'(2 s) n] (5)

Notice that the set of Eqs. (4) is interlinked by the
term y +r(p, ),) in such a way that the whole system
must be solved simultaneously. Every y„depends upon
every other y„. If p/(p —p) is small enough, it is
feasible to break the interlinkages by expanding the y„
in powers of p or perhaps p/(p, —p). Such a procedure
is equivalent to the polynomial method. ' However, we
are interested in solving for y„(p, X) at values of p large
enough so that such an expansion converges very
slowly; hence we must now consider the simultaneous
solution of Eqs. (4).

III. DISCUSSION

In order to solve Eqs. (4) simultaneously, we may
resort to trial and error methods. We may define a

These (Jacobi type) polynomials are self-adjoint over the
interval 0 &~ s &&2 with respect to the weight function s"'.
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function gi(p, X)=yi(p, X)/yo(p, X). If we guess this
function, the whole chain of equations can be unraveled
and values for all the y„'s can be obtained. However,
these values for the angular moments will correspond
to a well-behaved function' only if gi(p, )i) has been
guessed correctly. Thus gi(p, X) plays the role of an
"eigenvalue. '"' This suggests that if it is possible to
determine whether or not a set of values for the y„(p, X)
correspond to the moments of a well-behaved function,
it may be possible to determine whether or not any
estimated gi(p, X) is correct.

Because Compton scattering always increases the
photon wavelength X, the integration of (4) proceeds
naturally from smaller to larger A' s. As a matter of
fact, if y(p, co, X') is known for all )~' & X, then y(p, co,, )i)
must be completely determined. Thus, if a numerical
integration could be made of the whole infinity of Eqs.
(4) simultaneously, using infinitely small integration
steps, it would yield automatically the correct solution;
and no "eigenvalue problem" would exist. Such an
idealized procedure can be outlined in the angular
moment scheme as follows: If the infinity of quantities

y (p, Y), 7'&)i, are known, the right-hand sides of
Eqs. (4) are completely determined except for a sirigle
infinitesimal interval which can be neglected. Further-
more, according to (2) the right sides of Eqs. (4) are
the angular moments of the quantity R(p, &o„X)
= [p()i)—pro, jy(p, cu„X). Because we know an infinity
of these moments, we can determine R(p, &o, )i) and
thereby y(p, &o„X) exactly.

In practice such a perfect integration scheme is
impossible, of course. It is necessary to use finite steps
of integration and a finite number of equations. This
means that incomplete information about y(p, ~ „)i'),
for X'( X, must suKce in our determination of
y(p, ~„X).The problem is thus to find a procedure for
making such "educated estimates" of gi(p, X) that no
harm arises from the lack of complete information
about y(p, ar„)i') for X'&X.

The critical information which apparently must be
included in any such procedure is the fact that
y(p, co„X) and therefore R(p, co„X) are well-behaved
functions of co . Thus, our method of solution (which
is outlined in greater detail in the next section) is to
determine at each step of a progressive numerical
integration in X, an approximate function R(p, a&„X).
This function has three properties:

(a) The first r angular moments of R agree with the
right sides of the first r Eqs. (4).

(b) R is well-behaved.

98y "well-behaved function" we mean a function which is
positive and fInite (except possibly for known 8-function terms)
and agrees with as much of our other c priori information, such
as number and location of maxima and discontinuities, as it is
feasible to consider.

&'Other combinations of the y 's can be used as well in this
connection. The function g~(p, X) is chosen here because of other
advantages discussed in Sec. VI.

(c) The first r approximate angular moments g„(p, )i)
which occur on both sides of (4), are given by the
relations

R(p, a)., )~)
g„(p X)= I d(o, (&—(g,)"

p(lI.)—pro,
(6)

These approximate values, g„(p, X), then enter into the
integrals in (4) for all further integrations.

The accuracy of this method depends upon the
integration technique and also upon how well we can
describe E with r angular moments. Section V is a
discussion of this point.

=Q A)~,u,k()i, , Xi) Q (l~i —X,)"—"'
i=0 n'=0

XS~" "'()ii—X,)g (p, X;)+source. (7)

The ui are the weights associated with some integration
formula or combination of integration formulas. The
QXi need not be all the same size. The bar over the
various quantities indicates that we are working now
with approximate quantities limited in accuracy by the
finiteness of the integration intervals and by the number
of moment equations used. If we separate the lth
term from the sum on the right, we have

i=0 n'=0

XS„" "'(Xi—)i;)g„.(p, X~)+source. (8)

Consider a situation in which we have determined
g„(p, )i;) for 0~&)i,&~Xi i. We are now in a position to
calculate the right hand side of Eqs. (8) except for the
term in brackets. This term can be made small relative
to the other terms on the right by taking AX& sufficiently
small. Furthermore, since the y 's must be continuous
functions a good estimate can be made of this term.
We now perform the following sequence of operations:

(a) We estimate the g„(P, Xi) and call our estimate
g„'(p, )~i).

(b) We insert the g„'(p, )ii) into the bracketed terms
of (8) and thus calculate the right sides of (8). We call
these quantities R„'(p, Xi). These B„o(p, 7~i) are the
zero'th approximation to the moments of

R(p, co., Xi) = [p(Xi) —pea, ]g(p, co„Xi).

IV. AN ITERATION PROCEDURE

Having decided to use numerical procedures to
integrate Eqs. (4), we now write the integrals as sums:
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(c) We construct a well-behaved function. 8'(p, co„hi),
whose first moments are the quantities P '(p, Xi). This
is our main problem, . Methods for doing it are discussed
later in this section and in Appendix B. In problems
involving a plane, monodirectional source, where r
equations are used, we have taken

'QNs

Ro(p, +., X,) = P —e—&'—"-&Ii'-+D(p ~ X&) (9)

where D(p, co, Xi) represents essentially the effect of
low orders of scattering, which we can calculate exactly.
The r parameters, g and P, are so chosen that the
first r moments of 8'(p, co„Xi) are equal to the
8„'(p, Xi). Various other forms for 8' have proved
convenient under de'erent circumstances.

(d) We calculate the quantities

f' oo 8'(p, (a., Xi)
g„(p, )~,) = d(1-~,)(t.-~.)" . (10)

~(&i)—p~*

The upper limit of this integration is actually 2, but it
can be taken as ~ if the source is monodirectional and
if ) ~

—) 0&&2. This is a convenient, though unnecessary
approxim, ation.

(e) We insert the g„'(p, Xi) into the bracketed terms
of (8) and call the new approximation to the right sides

so obtained 8„'(p, Xi).

Since this last step corresponds to step (b) we have
a closed cycle defining an iteration procedure. This
cycle of operations is repeated until it yields negligible
change in the quantities g„(p, Xi). These values are
then used in exactly this same way to calculate the

g-(p, &i+i).
This iteration procedure can be used to calculate the

g„(p, X&). For this first interval it may be convenient to
take 8'(p, a&„Xi)=D(p, &o, Xi) in the first iteration,
since the low orders of scattering always predominate
very close to the smallest wavelength for the problem.

As was mentioned in the third step of the iteration
cycle, the main problem of this method of solution is
that of determining a well-behaved function corre-

sponding to r approximately known m,oments. The
most widely used general procedure for solving such a
moment problem is that of combining the moments
into coefficients of some orthogonal polynomial system.
(For a discussion of this, see reference 6.) This poly-
nomial method is especially useful if a proper "weight
function" can be ascertained from available information
about the distribution. Experience indicated that our
knowledge of E. and the R„ is insufficient to make use
of the, polynom, ial method. We could devise no poly-
nomial system which gave adequate convergence, and
were forced to seek new methods for approximating
functions.

The form of 8' given in (9) corresponds to a different

m,ethod of using moments to approximate a distribution

function. This method, which proved very satisfactory,
is described in Appendix B. It is a generalization of a
type of numerical integration due to Gauss. (Szego"
and Chandrasekhar' give good discussions of this type
of numerical integration. ) Gauss' type of numerical
integration may be regarded as a method for approxi-
mating some standard function by a sum of Dirac
8-functions. The generalization which we use substitutes
continuous functions such as the exponentials of (9)
for the 8-functions. This procedure is particularly
accurate and flexible when integrals of a function are
desired in terms of moments of the function. This is
just what we need, since we must evaluate the integrals
(10).

V. ACCURACY OF THE CALCULATIONS

Of the two types of approximations involved, the use
of finite integration steps is less troublesome than the
use of a finite number of moment equations. It is
always possible to decrease the interval size or use a
better integration procedure to obtain the desired
accuracy. Since the y„are all continuous functions of X,
no special difficulties arise. It is quite advantageous to
make use of our u priori knowledge of the y„ to decrease
the number of intervals or to increase the accuracy of
th.e integration. Thus, near the singularity the y„will
change rapidly with ) and fine integration intervals
should be used; whereas if p and X are such that the
singularity is far away in the (p, X) plane, coarse
integration intervals can be used. Also, in plane, mono-
directional, monoenergetic problems the y„behave as
(X—Xo)" near ) 0. The integration should be weighted to
take advantage of this knowledge.

With regard to the use of a limited number of
moment equations and therefore limited information
about 8, we may say several things:

(a) All of our present knowledge of photon directional
distributions indicates that oscillations or sharp discon-
tinuities which would require many moments for their
description are not an essential feature of this problem.
It is true that if the source is monodirectional and
monoenergetic the first scattered beam is indeed a
8-function; the second scattered beam contains a step
function discontinuity; and in general the e'th order of
scattering contains a discontinuity in the (e—2) deriva-
tive."However, these discontinuities are a feature of a
particular source type, and they tend to wash out as
the penetration increases. "

(b) Our feeling that a relatively small number of
moment Eqs. (8) may suffice is strengthened by exami-
nation of the fourth step in the iteration procedure.

"G. Szego, Orthogonal Polynomials (American Mathematical
Society, Colloquium Publications, 1939), vol. 23.

~ L. V. Spencer and Fannie Jenkins, Phys. Rev. 76, 1885 (1949).
"In practice, the first scattered beam may be calculated

separately; and the step function discontinuity in the second
scattered beam may be easily reduced to a harmless discontinuity
in the derivative by subtracting out and calculating separately a
rectangular directional distribution whose ordinate is the same
as that of the second scattering discontinuity.
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Since the g„(p, 5&) are to be obtained by evaluating
integrals, they will tend to be insensitive to the fine
features of E(p, s&„X~).

(c) These deep penetrations are a heretofore unsolved
problem, and no independent results exist which can
serve as a check. We can, however, consider a sequence
of approximations using 1, 2, 3, equations and see
how rapidly it converges.

(d) An estimate of the accuracy obtained by using r
mom, ent equations can be made by calculating the
eigenvalues of simplified problems with the methods
discussed here. " These can be compared with the
values given by standard eigenvalue procedures. This
was done in a preliminary investigation. In the homo-
geneous Wick equations corresponding to constant and
linear mean free paths we approximated R with Gaus-
sians (i.e., B=g (g /P ) exp( —~0'/P )). The sur-

prising result was that as few as two moment equations
yielded the eigenvalue at least as accurately as any of
the eigenvalue methods of reference 4.

Because of this result, it seem, ed reasonable in mono-
directional source problems to use only two moment
equations and to approximate E. by a single exponential
of the form given by (9).

On the other hand, in plane isotropic source problems
the angular distribution has a long and very strong tail.
For these problems it was necessary to use four moment
equations, in order to describe both the peak at co =1
and the tail. Here the approximation was of the form

E= +
Po+ (1—~*) Pi+ (1—~*)

(This analytic form is exact for the unscattered radia-
tion. )

VI. THE "MEAN SQUARE DEFLECTIO¹' PARAMETER

The parameter g&(P, X) =y&(P, I)/yo(P, X) is a very
useful quantity which has some physical significance.
From the definition of the angular moments, we see that
for small deflections 8, gq(P, X) = (1—co,)A,—(8'/2)A, .
Thus, the g&(p, X) is essentially a mean square deflection
and measures the angular "spread. "

The gq(p, X) has a number of very convenient prop-
erties. It is a smooth, positive, bounded, slowly varying
function of p and X. As mentioned in Sec. III, the g~
can be regarded as playing the role of an eigenvalue.
A knowledge of the g~(p, X) makes it possible to reduce
the system of Eqs. (4) to a single equation, similar to
Eq. (3) of reference 3, for the flux yo(p X). If yy(p X)
is expressed as gq(p, X)yo(p, X), the first of Eqs. (4)

'4 Such problems would be the homogeneous equations with
constant or linear total cross section. These problems were first
treated by Wick. See reference 4 and Appendix A.

(e=0) becomes

L~(l )—P+Pg~(p»)7yo(P»)

=~~ dX'k(X, X')yo(p, X')+source.
0

The asymptotic solution of the equation, for p p, is

L~(l )—P+Pg~(p~~) 7yo(p ~)
X 1

=exp C t dX' (12)
I (&') P+P—g~(p ~')-

where C=k(X X) "'
Equation (12) differs from Eq. (3) reference 3 by the

additional term pg&yo(p, X). This term disappears if one
assumes a "straight ahead" approximation, i.e., g~=0,
as in reference 3. The equation without the term
pg, y, (p, X) also pertains to a somewhat different prob-
lern. If one regards the variable x in (1) as the total
path length traveled, rather than as the distance
attained from the source, then co must be replaced by
1 in this equation and the coeKcient g& never appears.
Accordingly the factor pgq in (12) represents an addi-
tional absorption due to obliquity of path, which makes
the depth of penetration shorter than the path length
traveled.

VII. INVERSION OF THE FOURIER-LAPLACE
TRANSFORM

In order to obtain the spectral density as a function
of penetration away from the source, it is necessary to
evaluate numerically the complex integral

1
I'p(x, X) = — dpe "yo(p, X).

2' 2 $QO

(13)

We have a number of pieces of information with which
to work in making this inversion:

(a) We have values of go for four or five real values,
p;, of p. These numbers are approximations, as discussed
earlier.

(b) yo(p, A) is a smooth function of p and Vo(x, A) is
a smooth function of x. The values p, will have been
chosen conveniently for interpolation.

(c) Both yo and I'0 are positive functions.
(d) Exp( —px)yo(p, X) has a saddle point on the real

axis as discussed earlier.
(e) We know approximately the variation of both y

and F for small p and small x.
(f) All singularities of yp(p& X) are located on the real

axis, as discussed earlier.
(g) We know the type as well as the location of the

singularities of yo(p, X) and the corresponding asymp-
totic form of I'0(x, X).

"The eigenvalue C mentioned in Appendix A is related to gi by

~=&lL&+Pgi/(I —P) j
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which has a minimum within the range of integration.
We also made calculations for both plane monodirec-
tional and plane isotropic source types. The attenuation
coeKcients were furnished by White, " and the full
Klein-Nishina diGerential scattering cross section was
used.

The calculations were not extended to include compo-
nents below 1 Mev in energy. Also, the isotropic source
calculation was limited to a single value of p. Economy
of effort was the main reason for these limitations. If
desired, low energies (which come quickly into relative
equilibrium) and small values of p can perhaps be
more easily calculated by the polynomial method. '

A. Plane Monodirectional, -10.22-Mev Source in Pb
K
I-~ i.o
0
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Fro. t. Scaled differential x-ray intensity in units (Mev/cm sec)/
Mev at various distances x from a plane monodirectional
source of 10.22-Mev photons in Pb. The factor exp( —p x} has
been divided out. The strength of the source is 10.22 Mev jcm' sec.
The narrow beam attenuation coeScient of the source radiation
is 0.561 cm ', while that of the most penetrating component is
0.466 cm '.

The method of inversion which erst suggests itself is
saddle point integration, because of (d) and (f). In order
to do such an integration, we would 6t an approximate
curve or curves to the points gs(p, , X), determine the
function and a few derivatives at the saddle point, and
substitute in the proper formula. In so doing we would
be taking no advantage of important information Le.g. ,
item (g)] which we might have about higher derivatives
of gp.

In general, we can expect that most accurate results
can be obtained by an inversion process which incorpo-
rates a maximum of the available information. The
inversion technique which we actually used is described
in Appendix C. Basically it consisted of fitting the
values with smooth, positive functions which have both
the correct type of singularity and the correct behavior
for small p. These functions were then inverted exactly.
The results were considered reliable for that range of x
where the saddle point method could have been used.

VIII. NUMERICAL APPLICATIONS

In order to explore the range of application of these
methods, we made calculations for both a monotonic
attenuation coefficient and an attenuation coeKcient

In this problem, ys(p, )I) was calculated. for P/p =0,
0.65, 0.85, 0.95, and 0.98. The Fourier-Laplace trans-
form was inverted as in Appendix C. Figure 1 presents
the resulting spectra, for penetrations up to p @=160.'7
The dashed line gives for comparison the results of a
polynomial calculation for p @=10.The same attenu-
ation coefficients were used for both calculations. The
agreement is within about 3 percent.

Notice that the ordinate is exp(+p„x) V,(p„x, E)
rather than the exponentially decreasing Vs(p x, E).
(If Fs had been plotted, it would have been necessary
to use 70-cycle log paper!)

The main characteristics of the x-ray spectra of Fig. 1
are as follows: There is a 6-function source at 10.22
Mev, represented by the arrow. At 10.22 Mev there
is a singly scattered component which varies as
psxexp( —pox). Since we have discounted an expo-
nential, this component behaves, in Fig. 1, as
p x exp[—(ps—p )a]. In general the components with
energies above E (E„corresponds to the minimum
attenuation coeKcient) behave asymptotically as
(p„x) o'"'&"' exp) —(p—p )xj.rs As the energy ap-
proaches 8 from above, the exponential factor becomes
weaker and (C//l) becomes larger. At E, the expo-
nential factor becomes unity and the build-up is
maintained asymptotically at approximately the rate
x s~' exp(-'5x'") "

At low energies a relative equilibrium is established.
(This means that at low energies the spectrum does not
change shape as the penetration increases. ) All compo-
nents "build up" together over the exponential at
approximately the rate a sls exp(bx'"). 's The more
penetrating the scattered component, the greater the

"G.R. White, Natl. Bur. Standards Rep. 1003, 1932 (unpuh-
lished).

"At high energies and great penetrations, the spectrum is not
given. This is because the singularity for )«) is located at
p= p(X) )~. Since we did no calculations for p)0.98~ we did
not, in general, approach very closely to the singularity for

. Thus, the saddle point for deep penetrations at these
high energies lay outside the range of our calculations."Refer to Appendix A for a summary of asymptotic penetration
laws.
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penetration at which this relative equilibrium is
established.

Since the low energy corn, ponents "build up" as
x sls exp(5x'~s), whereas the E„comp onent "builds up"
as x "' exp(-', 5x'"), there must be an energy region in
which a transition occurs from one asymptotic pene-
tration law to the other. This nonequilibrium region
becomes narrower with increasing penetration, and the
difkrence between the penetration laws becomes more
serious. Thus the spectrum becomes enormously steep
at energies near E .

Perhaps the most striking feature of the spectra is a
maximum at an energy substantially below E„=3 Mev.
This maximum is apparently a feature of the equi-
librium spectrum. "It is located about at the energy at
which the sum of the photoelectric and pair creation
cross sections is a minimum. %hereas the steeply rising
portion of the curve is determined by the minimum in
the total cross section, the maximum may be deter-
mined by the interplay of photoelectric absorption and
pair creation.

The gr(p, X) given by these calculations is presented
in Fig. 2. The linear rise near )0=0.05 represents 6rst
scattering, The dip at ) 0.2 illustrates the fact that
the components controlling the deep penetration have
directional distributions strongly peaked at (1—&v,) =0.

l00

0"l-
B
hJI-
2 lo

I-
C3

h
O
LLI

O
cO

I.O
0

,go

,po

aSO

t I I

2 5 4

ENERGY, MEV

,50

p=0

Fro. 3. Scaled differential x-ray intensity in units (Mev/cm'sec) /
Mev at various distances x from a plane monodirectional
source of 5.11-Mev photons in Fe. The factor exp I' —p,0x) has been
divided out. The source strength is 5.11 Mev/cm~ sec and the
attenuation codBcient of the source radiation is 0.246 cm
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Finally, at large )I the curves for different p have nearly
the same shape, indicating relative equilibrium in the
directional distributions, as weB as the Qux, of the low

energy components.
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Fre. 2. The "mean square deflection" parameter g1(p, &)
for the Pb calculation.

'9 In voter there is a maximum in the equilibrium spectrum at
about 70 kev vrhich is determined by the interplay of scattering
and photoelectric absorption. (See references 5 and 6.)

3. Plane Monodirectional 5.11-Mev Source in Fe

Calculations of gs(p, X) were made at the values

p/ps ——0, 0.65, 0.85, and 0.95. Figure 3 presents the
calculated spectral intensities for various penetrations.

The ordinate is exp(psx) I's(psx, E) rather than
I's(psx, E). Since ps is the smallest attenuation coeK-
cient, all scattered components increase in Fig. 3. The
lowest energy components reach relative equilibrium at
relatively small penetrations. These equilibrium compo-
nents "build up" at the rate (psx)o'&', C/jets)1. Just
below the source energy Eo is a nonequilibrium region
of the spectrum which narrows as the penetration
increases. Since the trend of the build-up changes from

x to x+&0 in this nonequilibrium region, the spectrum
becomes increasingly steep.

The solid curves in Fig. 4 give the gr(p, X) for this
problem. They behave like (X—Xs) near Xe, indicating
single scattering. For large X and for p near ps, the
curves tend to become parallel, indicating an approach
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material) cascade processes become sufFiciently im-

portant to make this a poor approximation. Some work
has been done on this problem by Cohen and Plesset, "
who attempt a rough calculation of the effect in Pb
and U. It is our intention to concentrate some eGort
on this and related problems in the future.

In this paper we have concentrated on great pene-
trations. These methods of calculation can probably
also be used effectively to study the spectral distribu-
tions of those x-rays which reverse their direction and
penetrate back to and behind the source.

The writer wishes to thank Dr. U. Fano for many
discussions and suggestions, and to acknowledge the
able assistance of Mrs. Fannie Stinson, who did most
of the numerical work for this paper.
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FIG. 4. The parameter g~(p, X) for the plane monodirectional
Fe calculation (solid curves) and the plane isotropic Fe calculation
(dashed curve).

to relative equilibrium in the directional distributions
of the low energy components. "

IX. REMARKS

In conclusion it may be worth noting that the work
required to accomplish a second calculation like the Pb
calculation of Fig. 1 would be of the order of three or
four man weeks.

As mentioned in the first footnote, pair production
has been considered as being simply a mechanism for
absorption. Cascade processes have been neglected.
One may wonder at what source energy (for a given

"Since the attenuation coeKcient is nearly linear, the slope
gj=8g&/8) for the equilibrium portions of the curves is related
to Wick's eigenvalue in the following way:

C =C/(1+pgi/p).
(See footnotes 14 and 15 and Appendix A.)

l

C. Plane Isotropic 5.11-Mev Source in Fe

This calculation was made only for the value p/po
=0.95. The dashed line in Fig. 4 gives the resulting g~.
Notice that it starts at a finite value corresponding to
once scattered radiation. It then dips, indicating a
concentration of scattered radiation with directions
near 0=0. Finally, it tends to become parallel with
the solid curves, indicating the establishment of
equilibrium.

In this isotropic problem, four moment equations
were used, whereas only two were used in the corre-
sponding monodirectional problem. This gives rise to a
slight difference in the slope of the g& in the equilibrium
region of wavelengths. (The comparison is between the
two curves with p/ps=0. 95.) The effect of this on the
asymptotic penetration law is to change the exponent
of the build-up factor by perhaps two or three percent.

F(x, ))~[x '"e p(xb )x]e &", (2)

where b=3[oroC'/2IJ~]'io and ji =(doer/dhs) . Surpris-

ingly, the ) component was found to vary asymptoti-
cally as

F'(x, X ) ~ [x-'i' exp(-'sbx'i')]e»" (3.)

(c) The small angular deflections have a substantial
influence on the intensity at deep penetrations. These
de6ections were taken into account in reference 4, but
only for a io()) which increases monotonically with

increasing ). The resulting asymptotic behavior was
found to be

F(x, ~., ) ) x«~oe », -
"S.T. Cohen and E. H. Plesset, Rand Corporation Report

RAD-264, May 20, l948 (unpublished).

APPENDIX A. SUMMARY OF CALCULATIONS OF
ASYMPTOTIC PENETRATION LAWS

(a) The initial work on this problem followed the
"straight ahead" approximation method, i.e., it disre-

garded the small deQections which accompany Compton
scattering with small changes of wavelength. In addition
to this, reference 2 assumed, in particular, that the total
("narrow beam" ) attenuation coefFicient p()i) increases

steadily as the photon wavelength increases in the
course of successive Compton scatterings. Under these
assumptions the spectral energy density I'(x, )i) was

shown to vary asymptotically as

P'(x~ ),) eo xelooe vo- (l)

where C= k('A, )I,) is the probability density for Compton
scattering without wavelength change and po, jo are
the zero'th and first derivatives with respect to X of the
attenuation coeKcient p at the smallest source wave-

length.
(b) Reference 3 removed the restriction of a mono-

tonically increasing attenuation coeKcient and treated
the case of an attenuation coeKcient which has a
minimum value p =p()i ) at some wavelength greater
than the smallest source wavelength )«. The asymptotic
penetration law for those spectral components with

wavelengths greater than ) was found to be
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where (—C) is the lowest eigenvalue of a certain
Schrodinger type equation. The resemblance to (1) is

apparent, and indeed C is an upper limiting value to C.
This progress represents an application of a method
used by Wick" in solving the analogous problem of
neutron penetration.

(d) The case of a constant attenuation coeKcient has
importance even though it is physically nonexistent.
Application of the methods of references 2 and 3 is
straightforward in the "straight ahead" approximation,
and the result is

V(x, X) ~ exp[2(CQ —lio)x)&]e»*.

Angular deflections can be taken into account by the
method of Wick, which yields the asymptotic form

I"(x, ra„ li) ~ exp[2(C(li —lio) x) &]e»*, (6)

where (—C) is the lowest eigenvalue of a Schrodinger

type equation very similar to that associated with
expression (4).

(f) To complete the picture, we must discuss (b)
generalized to include angular deflections. A study
of this problem has been made by Fano. '" The asymp-
totic penetration law behaves like

I'(x, sr., X) [x 'i' exp(5x'")]e &"*

I'(x (v. X ) ~ [x-'i' exp(i 5x'i') ]e ~*,

where b=b(C), fi has the meaning previously ascribed
in paragraph (b), and C is the eigenvalue of a constant
mean free path problem obtained by completely
ignoring variations of y near p .

(g) Associated with each asymptotic penetration
law is a singularity in the spatial Fourier-Laplace
transform variable y(p, ~„X).The following is a list of
these singularities:

y(p, (o„X)~
pp—

(monotonically increasing p(li)),

' G. C. Wick, Phys. Rev. 75, 738 (f/49).~' This material is part of a comprehensive report on the sub-
ject to be published in the J. Research Natl. Bur. Standg, rds.

where (—C) is again the lowest eigenvalue of a
Schrodinger type equation.

(e) The situation in which the attenuation coefficient
decreases monotonically has never been discussed even
though it is pertinent if A(X . The asymptotic pene-
tration law in straight ahead approximation is

I"(x, X) ~ x '»~"~e—

Angular deflections change this to

I'(x ~ )i) x c'I'&")e I'~'*—
,

y(p ~.»)"—
p(li) —p

(monotonically decreasing p(),)),

y(P. .. l ) - {-p[(~-~.)/(. -P)])'
(constant p, p, = po),

The parameter $ must be determined, in every case, by
determining the lowest eigenvalue of a Schrodinger
type equation.

APPENDIX B. A METHOD FOR APPROXIMATING A
FUNCTION FROM A KNOWLEDGE OF ITS MOMENTS

We want to approximate a distribution function H(x)
by a sum of terms

H(x) v&f(x) Pi)+'7&f(xy P2)+n3f(x, Ps)
+ +n-f(x, P-), (1)

where the q, and P, are parameters to be fitted so that
the first 2e moments of the approximate function agree
with the corresponding moments of H(x). (Notice that
in contrast to the polynomial method, each term on
the right involves two constants to be determined
instead of one, and that all the terms have the same
form. ) This can be accomplished for a broad class of
functions f(x, P,).

I. The Gauss Method of Numerical Integration

According to this well-known integration technique,
if an integral

U
C

H(x)S(x)dx (2)

is to be evaluated, H(x) and all its moments over the
interval being known, the most accurate n point
numerical integration that can be performed is to take

e
H(x)S(x)dx=g gg(P, ),

where the P; are the zeros of a polynomial h„(x), which

is the e th self-adjoint polynomial associated with the
weight function H(x). The g; are the so-called Christoffel

numbers, which may be calculated from the formula

I'H(x)h (x)
ds.

f dh„q

Kdx) p; ~~ x Pg

(In Gauss' original scheme, H(x) =1, c= —1, d= 1.)
The reason for the accuracy of this approximation is

that in this procedure we are actually replacing H(x) by

y(p, ~„ li) [exp(p„—p)-&]&

(p(X) with minimum at li ).
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a much more manageable function, namely,

H(x) =Q q, b(x—P~). (5)

The scheme for choosing the P, , g; is such that the
first 2e moments of the sum of Dirac delta-functions
are made to agree with the first 222 moments of H(x).

From our standpoint the most remark. able feature
about this method of describing H(x) is the fact that
the P, and 21, are all determined from a knowledge of
the moments of H(x), rather than from the function
itself. Thus the 8-function is one of the functions which
can be used in the approximation (1).

2. Generalization to Other Types of Functions

If we multiply (5) by x and integrate over x, we

obtain the following set of equations, where II
J' "xmH(x) dx:

simple problem:

+g2 =Hp/0! =Hp*,
qlPl+g2P2 =Hl/1! =Hl*,
'glP 1 + g2P2'H2/2 ~ H2

nl PF+npp2'= H2/3! =Hp*

Using "orthogonality relations" we obtain the poly-
nomial which is "self-adjoint" with respect to the
"weight function" whose "moments" are the H

h2*(x) =x' ax—+b,
where

EX*II* B *2

+2 +0 II1 +2 +0 +1

The roots of the equation h2*(x) 0 are

Po=-:[ -("-4b):j; P =![+("-4b)'j
For the corresponding "ChristoGel" numbers, we have

+n2 + +n. =Hp
211pl '+'gpp2 + ' ' +'gnPn 'Hl
nlpl' +npp2' + +rl.p.'

'Q1

2Pl —a" 2

P2Hp* Hl*-
(x—P2)Hp*(x)dx =

(a' —4b)&

nlpl'" '+212P2'" '+ +g.P.'" '=H2. l.

(6) 1 f P1Hp Hl
(x pl) H p*(x—)dx=

2p, -aJ, (a' 4b) &—

These are 2e equations in 2e unknowns. The equations
are nonlinear in half of the unk. nowns.

Since the first e self-adj oint polynomials can be
obtained from a knowledge of the erst 2e moments of
the weight function, the polynomial h„(x) is determined

by the known constants H . The zeros of h„(x) and
the relations (4) determine the P; and l7; which satisfy
this nonlinear system of equations.

A set of equations with exactly the same form as (6)
can be shown to obtain if we take moments of the
relation (1), where f(x, P,) may be one of the following

group of functions:

(a) f(x/p, ), c&~x/p;&~d, where f(x/p;) is any func-
tion, and c, d are arbitrary constants such that moments
of f(x/p~) over this range exist.

(b) xe'e —~, 0&~x~& ~.
(c) e 'lFl( —p;;1; —x), 0«x« pp, where lFl is the

conQuent hypergeometric function.
(d) xe'(1 —x)" e', 0&~x&~1, A arbitrary.

3. Illustration

As a very simple illustration, suppose we have four
moments H of a function H(x), 0~&x&~pp, and we
want to approximate H(x) by two exponentials. We
write

'Qg Y/2

H(x)= —e *~e'+—e *'e'.
Pl P2

APPENDIX C. INVERSIO N OF THE
FOURIER-LAPLACE TRA NSFORM

1. Approximating a Function if Several Values of
the Function are Known

If we have several values H =H(x ) of a function

H(x), we may make the same type of approximation as
in Appendix 8, provided the B are properly spaced.
The useful function types in general diGer from those
of Appendix B. (This method has been worked out
independently and applied to a similar problem by a
UCLA group. )"

As an example, suppose we choose four values II'0, H~,
IJ2 H3 of a function which we want to approximate by
exponentials. The approximate function must agree
with the exact one at the values (H, x ). The x are
so chosen that (x +l—x ) = (x —x„ l). We write

H(x) ape eP +pie e'*.

Next, we define pp*=e e"' "'; Pl*=e e"" *"' a *
= qoz

—~0*0; g &*——q &e
—»*0, The set of equations which

must be solved to pass the approximate function
through the values (H„, x„) is thereby reduced to the
form (6) of Appendix B.

A class of functions most useful in making this

type of approximation is the class [W(x) je, where W(x)
is any function and P is a constant. All the singularities

which may determine the asymptotic form of I'p(x, )l)

are of this type.

"Greenfleld, Specht, Kratz, and Hand, J. Opt. Soc. Am. 42,
Takmg moments, we have the relations (6) for this Q(19/2).
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2. Numerical Applications

In order to make the best possible use of our infor-
mation about yo(p, X) we accomplish the inversion in
the following ways:

(a) Where the controlling singularity has the form
(Po—P) e, as in the Problem of a monodirectional
source in Fe, we made the approximation

yo(p, &)=e '"bi(I o p) —"+no(I o p) —']
Here, d is an arbitrary constant which is chosen to
make the approximate function as smooth as possible.
We chose this method of introducing such a smoothness
parameter because it does not make the exact inversion
more difficult or complicated. The inverted function
Fo(x, l),) is then given by the relation

$1 'l2
Fo(x )),) e I o (x+d—) (x+d) e&—I+ (x+d) t)o—&

-r(p~) r(p, )

Notice that the d merely introduces a shift in the
penetration.

(b) In the problem of a monodirectional source in Pb,
for )«X, where the controlling singularity has the
form (p—p) e&"), we made the approximation

() o p)'yo(p, ~)-=e '"[ni(I p) "+no-(I p) "]-
Here, d is again chosen for smoothness. Notice the
factor (go —p)' on the left. This discounts features
of yo which are characteristic of the source aiid which
tend to obscure the approach to asymptoticity. (The
unscattered component of the radiation is not included
in yo. ) Taking this factor into account explicitly in this
way gives greater accuracy by introducing one more
piece of our information. When this approximation is
inverted, the flux is given by the expression

'fti

Fo(x, X)=e ~&*+') P ( +xd) e+'

;=i,o r(p+2)
X iFiL2; 2+P;; —(vo —v) (x+d)].

(c) Finally, in the problem of a monodirectional
source in Pb, for X&X, where the singularity has the
form )exp(p —p) &]~, we use the approximation

() o
—p)'yo(p, ))=e '"fni expLpi/() -—p)']

+no exp[po/() -—p)']),
with d again chosen for smoothness. The behavior of
yo(p, l).) for small p is again taken into account ex-
plicitly.

In order to obtain the flux in this last case, we
must find the inverse transform of the function
(po P)-' expLP;/(p —P)&]. There are various ways in
which this inversion can be accomplished, but the one
which turned out to be most convenient was to expand
the exponential and invert term by term. This yields
a strongly converging sum:

i00

ape "'*+")()o
—p) 'expt p*/() .—p)']

277$ QQO

p m(x+d)$n+1—e
—ym(*+&) P

l( +$) l

X )FgL2; —,')o+2; —(po —p„)(x+d)].

Some idea of the convergence can be gained from the
fact that in the Pb problem it took about 15 terms to
give an accurate answer for a penetration of 180 mean
free paths. This is not so much work as it seems, because
the alternate terms of the sum can be readily derived
from each other. Using the formulas connecting the
various ~F~'s we made tabulations and graphs of the
first 16 of these functions.

This expansion into a sum of &F&'s has physical
significance. Since the constant P in the exponent
contains, asymptotically, the factor k(X, )),)= C,' this is
actually a sort of expansion in orders of scattering.
Thus, the fact that 15 terms suffice at 180 mean free
paths means that as few as 15 orders of scattering are
important at this penetration t


