the N component and the properties of the neutral meson.

The author, in conclusion expresses his gratitude to Professor K. I. Greisen for his suggestion of this problem, and for his extensive help during the course of its

PHYSICAL REVIEW

investigation. Professor R. P. Feynman and Dr. G. Cocconi and Dr. V. Cocconi Tongiorgi contributed helpful advice. Further acknowledgment is due Dr. Iona and Dr. Cohn of Denver University and the Inter-University High Altitude Laboratory.

VOLUME 88, NUMBER 4

NOVEMBER 15, 1952

Six-Millimeter Spectra of OCS and N_2O^{\dagger}

S. J. TETENBAUM* Sloane Physics Laboratory, Yale University, New Haven, Connecticut (Received July 25, 1952)

The $J=3\rightarrow 4$ pure rotational transition of OCS and the $J=1\rightarrow 2$ transition of N₂O have been investigated. The molecules were in their normal isotopic abundances. The results are compared with those of previous investigators. Quadrupole hyperfine structure, *l*-type doubling, and Fermi resonance effects are analyzed.

5.2 17.8

4.7

1.0

1.8

47.462.40±0.05ª

I. INTRODUCTION

BOTH the $J = 3 \rightarrow 4$ pure rotational transition of the linear molecula OCC linear molecule OCS and the $J = 1 \rightarrow 2$ rotational transition of the linear molecule N₂O occur in the wavelength region around 6 mm. These spectra have been measured using the apparatus previously described.1

II. CARBON OXYSULFIDE

The OCS molecule has been extensively investigated at wavelengths longer than 6 mm, and some work has been done at shorter wavelengths. The OCS was prepared by the action of NH₄SCN on H₂SO₄ in water.² All OCS isotopic species were observed in their normal

olecule	Vibrational state and F transition	Experimental frequency in Mc/sec	Previously determined frequency in Mc/sec	Calculated intensity ^b at 300°K in 10 ⁻⁶ cm ⁻¹
6C12S32	000	$48,651.40 \pm 0.10$ 48,506.24	48,651.64±0.05ª	436

48,710.80 48,761.55

48,801.08

47.462.20

48.494.76

48,038.19

48.039.13

TABLE I. $J = 3 \rightarrow 4$ rotational spectrum of OCS.

* Strandberg, Wentink, and Kyhl, Phys. Rev. **75**, 270 (1948). • Calculated using intensity relation of P. Kisliuk and C. H. Townes, J. Research Natl. Bur. Standards **44**, 611 (1950), $\Delta \nu = 6$ Mc/sec, and the dipole moments given in R. G. Shulman and C. H. Townes, Phys. Rev. **77**, 500 (1950). Those moments not measured were taken equal to 0.7085 debug. debye.

† Assisted by the ONR.

м

01

O16C12S34 O16C13S32

Ŏ16Č12Š3

* This paper, together with reference 1, is part of a dissertation submitted to the Faculty of the Graduate School of Yale University for the Ph.D. degree. ¹ S. J. Tetenbaum, Phys. Rev. 86, 440 (1952).

² Stock, Siecke, and Pohland, Ber. deut. chem. Ges. 57, 719 (1924).

abundances. Ground-state lines were measured at $T = 195^{\circ}$ K, and excited vibrational state lines were measured at room temperature. The pressure was kept at about 2×10^{-3} mm Hg. Line positions were measured to an accuracy of ± 0.1 Mc/sec.

Table I presents the experimental results obtained. No attempt was made to measure intensities, the relative intensities only being used as an aid in identifying the lines.

Only two quadrupole hyperfine components due to the O¹⁶C¹²S³³ molecule were found. Using the value of the coupling constant $(eqQ) = -29.07 \pm 0.01$ Mc/sec obtained by Eshbach, Hillger, and Strandberg,³ and the center of gravity $\nu_0 = 48,038.86$ Mc/sec, the calculated line positions agree almost exactly with those observed.

The calculated rotational constants and *l*-type doubling constant are shown in Table II. A value of 1.28 ± 0.05 kc/sec for D_0 , the centrifugal distortion coefficient in the ground vibrational state of O¹⁶C¹²S³², was used in the calculation. This value is obtained from the data of Johnson, Trambarulo, and Gordy.⁴ Strandberg, Wentink, and Kyhl⁵ obtained a value of D_0 in $O^{16}C^{12}S^{32}$ of 1.60 ± 0.05 kc/sec. The first value agrees very closely with the theoretically determined value. D_v in excited vibrational states and in all isotopes was taken equal to D_0 in O¹⁶C¹²S³². The values of α_1 and α_2 were obtained from the excited state data, corrections being made for Fermi resonance (see below). The value of α_3 was obtained from an analysis of the frequency shifts for isotopic changes of the masses of each of the three atoms of OCS. Townes, Holden, and Merritt obtained the relationship⁶

$\alpha_1 + 2\alpha_2 + \alpha_3 = 0.00856B_0$

772

 ³ Eshbach, Hillger, and Strandberg, Phys. Rev. 85, 532 (1952).
 ⁴ Johnson, Trambarulo, and Gordy, Phys. Rev. 84, 1178 (1951).
 ⁵ Strandberg, Wentink, and Kyhl, Phys. Rev. 75, 270 (1949).
 ⁶ Townes, Holden, and Merritt, Phys. Rev. 74, 1113 (1948).

Molecule	B_0	α_1	α2	α_3	qı
O ¹⁶ C ¹² S ³²	6081.466 ± 0.013	20.56 ± 0.04 ^a	$\{-10.594 \pm 0.022\}^{b}$ -10.533 + 0.009	52.6ª	$6.344 \pm 0.01\overline{8}$
$O^{16}C^{12}S^{33}$	6004.899 ± 0.007		(10000±0000)		
O ¹⁶ C ¹³ S ³²	6061.886 ± 0.013				

TABLE II. Rotational constants of OCS (all quantities in Mc/sec).

* Calculated using $\alpha_2 = -10.563 \pm 0.02$ Mc/sec. b Upper value computed from (0 0 0) and (0 1¹0) vibrational states. Lower value computed from (0 0 0) and (0 2²0) vibrational states.

from which α_3 can be computed. The *l*-type doubling constant q_l agrees well with the theoretical value of 6.34 Mc/sec obtained by Nielsen.⁷

Fermi resonance perturbation effects have previously been detected in OCS⁸, and discussed in greater detail in the molecule BrCN.¹ The $J=3\rightarrow 4$ transition has been analyzed,⁹ and the results are shown in Table III. The two levels which perturb each other are the $(1\ 0^{\circ}0)$ and (0 2°0) levels. The energy separation between these levels in their unperturbed states (δ) can be obtained from the experimental infrared data of Bartunek and Barker.¹⁰ (The 2₀ and 2₂ levels should be interchanged from the positions of Bartunek and Barker because Fermi resonance would push the 20 level up and the level corresponding to ω_1 down. This also necessitates a change in their value of X_{ll} .) Using their data, we get $\delta = 163.6$ cm⁻¹. The values of α_2 obtained using different pairs of unperturbed vibrational state lines are unequal. This is due to the use of a first-order approximation formula relating the B's and the α 's. In the calculation of α_1 an average value of $\alpha_2 = -10.563 \pm 0.02$ Mc/sec was used. The computed value of the interaction energy W_{12} is 43.2 cm⁻¹. The correction to the rotational frequency due to Fermi resonance perturbations is given by $2(J+1)(B-B^0)$. For the interacting levels bracketed together in Table III the correction is 19.33 Mc/sec.

III. NITROUS OXIDE

The molecule N₂O has a relatively small electric dipole moment, resulting in a rotational spectrum of small absolute intensity. Thus far, pure rotational transitions have been observed only in the ground vibrational state. This has precluded the observation of Fermi resonance and *l*-type doubling effects in the microwave data of N₂O, although an appreciable Fermi resonance effect has been found in the infrared spectrum.¹¹

The microwave spectrum of N₂O was first observed by Coles, Elyash, and Gorman.¹² They studied the molecules N¹⁴N¹⁴O¹⁶ and N¹⁵N¹⁴O¹⁶ in the $J=0\rightarrow 1$ pure

¹⁰ P. F. Bartunek and E. F. Barker, Phys. Rev. 48, 516 (1935).

rotational transition. They also observed and analyzed the hyperfine structure due to the electric quadrupole moment of the N¹⁴ nucleus. Since the two-quadrupole theory of Bardeen and Townes13 had not yet been developed, they could only estimate the quadrupole coupling constant of the N^{14} nucleus in the end position. The coupling constant for the central nitrogen was computed from the hyperfine structure of $N^{15}N^{14}O^{16}$.

The quadrupole hyperfine structure of N14N14O16 in the $J=0\rightarrow 1$ transition has also been investigated by Smith, Ring, Smith, and Gordy.¹⁴ Using the previously determined value of (eqQ) for central N¹⁴, they determined the value of the end N¹⁴ coupling constant so as to give the best fit with the two-quadrupole theory.¹³ In their theoretical plot of this spectrum, the authors have left out a third line which belongs with the central group of the pattern.

The $J = 3 \rightarrow 4$ and $J = 4 \rightarrow 5$ spectra have been observed in N¹⁴N¹⁴O¹⁶.⁴ No hyperfine structure is mentioned in this paper.

The author has observed and analyzed the $J = 1 \rightarrow 2$ rotational transition of N¹⁴N¹⁴O¹⁶ in its ground state. Because there is quadrupole splitting of the J = 2 level as well as of the J=1 level (as compared to only the J=1 level being split in the $J=0\rightarrow 1$ transition), and also because the relative separation of the hyperfine components is only about one-half that in the lowest rotational transition, it is considerably more difficult to obtain accurate values of the quadrupole coupling constants.

At low pressures the absorption line was seen to consist of three separate components. The large central line was measured with the marker system. The relative positions and amplitudes of the three components were

TABLE III. Fermi resonance perturbations in the $J=3\rightarrow 4$ transition of O¹⁶C¹²S³².

Vibrational state	Experimental <i>B</i> value in Mc/sec ^a	Unperturbed <i>B</i> value in Mc/sec ^b
000	6081.466 ± 0.013	
0 110	6092.060 ± 0.018	
0 220	6102.521 ± 0.013	· · · · · · · · · · · · · · · · · · ·
1 000	6063.321 ± 0.013	6060.906
0 2⁰0 <i>}</i>	$6100.176 {\pm} 0.013$	6102.592

^a Center of gravity used when *l*-type doubling present. B_{ν} calculated using $D_{\nu} = 1.28 \pm 0.05$ kc/sec for all vibrational states. ^b Calculated using $\alpha_1 = 20.56$ Mc/sec and $\alpha_2 = -10.563$ Mc/sec.

¹³ J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948). ¹⁴ Smith, Ring, Smith, and Gordy, Phys. Rev. 73, 633 (1948).

⁷ H. H. Nielsen, Phys. Rev. 78, 296 (1950).
⁸ W. Low and C. H. Townes, Phys. Rev. 79, 244 (1950).
⁹ I should like to thank Professor C. H. Townes for making the set of the set available an unpublished analysis of Fermi resonance in linear triatomic molecules.

 ¹¹ G. Herzberg and L. Herzberg, J. Chem. Phys. 18, 1551 (1950).
 ¹² Coles, Elyash, and Gorman, Phys. Rev. 72, 973 (1947).

TABLE IV. The $J = 1 \rightarrow 2$ transition of N¹⁴N¹⁴O¹⁶.

Transition $(F_{1i}, F_i \rightarrow F_{1f}, F_f)^{a}$	Ob- served rela- tive inten- sity	Calcu- lated rela- tive inten- sity ^b
$\overbrace{(2,1\rightarrow2,2), (2,3\rightarrow2,2), (2,1\rightarrow2,1), (2,3\rightarrow2,3), (2,2\rightarrow2,2), (0,1\rightarrow1,1), (2,2\rightarrow2,3), (0,1\rightarrow1,2), (2,2\rightarrow2,1), (0,1\rightarrow1,0)}^{(2,1\rightarrow2,2), (2,3\rightarrow2,2), (2,3\rightarrow2,2), (2,3\rightarrow2,1), (2,3\rightarrow2,2), (2,3,3\rightarrow2,2), (2,3,3,2), (2,3$	2	2
$\begin{array}{c} (1,1\!$	8	8.2
$\begin{array}{c} (2,1 \rightarrow 1,0), (2,2 \rightarrow 1,1), (2,2 \rightarrow 1,2) \\ (1,1 \rightarrow 1,1), (1,2 \rightarrow 1,1), (1,1 \rightarrow 1,2), \\ (1,2 \rightarrow 1,2), (1,0 \rightarrow 1,1), (1,1 \rightarrow 1,0) \end{array} $	1	1

^a Notation used is that of J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948).
^b Calculated assuming |(eqQ)end|≫|(eqQ)center|.

TABLE V. Rotational constants of N¹⁴N¹⁴O¹⁶.

Spectrum	Center of gravity	B_0 in Mc/sec	D_0 in kc/sec
$J = 0 \rightarrow 1^{a}$ $J = 1 \rightarrow 2^{o}$ $J = 3 \rightarrow 4^{d}$ $J = 4 \rightarrow 5^{d}$ Vibrational bands from 0.8 to 1.2 \mu^{o} Vibrational bands near 4.5 \mu^{g}	$\begin{array}{c} 25,123.25\\ 50,246.01\pm0.10\\ 100,491.76\pm0.25\\ 125,613.68\pm0.30 \end{array}$	$\begin{array}{c} 12,561.64^{\rm b} \\ 12,561.55 \pm 0.025^{\rm b} \\ 12,561.65 \pm 0.025^{\rm b} \\ 12,561.65 \pm 0.025^{\rm b} \\ 12,564.5^{\rm f} \\ 12,565.3 \ \pm 4.5 \end{array}$	5.67 ±0.05 5.79

Coles, Elyash, and Gorman, Phys. Rev. 72, 973 (1947).
 Computed using Da = 5.67 he local

Computed using $D_0 = 5.67$ kc/sec.

^b Computed using $D_0 = 5.67$ kC/sec. ^c Present work. ^d Johnson, Trambarulo, and Gordy, Phys. Rev. **84**, 1178 (1951). ^e G. Herzberg and L. Herzberg, J. Chem. Phys. **18**, 1551 (1950). ^f $B_1 = 12.634._2$ MC/sec. ^g H. W. Thompson and R. L. Williams, Proc. Roy. Soc. (London) **A208**, 326 (1951).

interpolated from an enlarged photograph of the face of the cathode-ray oscilloscope. Frequency modulation sidebands were placed on the 3.5-cm klystron carrier,¹ and their frequency and amplitude were adjusted so

TABLE VI. Quadrupole coupling constant of the end N^{14} in $N^{14}N^{16}O^{16}$.

	Transition	(eqQ) in Mc/sec	Reference
,	$J=0\rightarrow 1$	-0.78ª	b
	$J = 0 \rightarrow 1$	-1.03 ± 0.10	c
	$J = 1 \rightarrow 2$	-1.05 ± 0.20	

^a Calculated using the line frequencies of reference b and the two-quadrupole theory of J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948).
 ^b Coles, Elyash, and Gorman, Phys. Rev. 72, 973 (1947).
 ^s Smith, Ring, Smith, and Gordy, Phys. Rev. 73, 633 (1948).

that the main marker and one sideband straddled the pattern on the scope. Table IV shows the results obtained. The total spread is 0.9 ± 0.1 Mc/sec, and the relative spacing from the low frequency component to the high frequency one is 0.4 ± 0.05 Mc/sec and 0.5 ± 0.05 Mc/sec.

The observed frequencies and calculated rotational constants for the $J = 1 \rightarrow 2$ transition and previously investigated rotational transitions are shown in Table V. The results of recent infrared investigations are also included. It is seen that our B_0 value is somewhat smaller than that obtained in other microwave transitions.

Table VI shows the calculated quadrupole coupling constant for the end N¹⁴ nucleus and compares it with previously determined values. In all cases, the coupling of the central N¹⁴ nucleus was taken equal to -0.27Mc/sec, the value obtained by Coles, Elyash, and Gorman.¹¹ The coupling constant for the $J = 1 \rightarrow 2$ transition has a much larger probable error than that calculated from the $J = 0 \rightarrow 1$ transition, but it seems to be closer to the value given in footnote b.

I wish to thank Professor Robert Beringer for his helpful advice and criticism throughout the course of this work.