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A detailed analysis is made of the neutron-proton interaction yielded by the symmetrical pseudoscalar
meson theory, with pseudoscalar coupling, using the Tamm-Dancoff nonadiabatic method which has been
extended to include nucleon pair creation and higher order e8ects in the exchange of mesons. It is found
that, in the nonrelativistic region, the second- and fourth-order terms provide the main contribution to the
interaction, the remaining part of the potential giving only a small correction. In the relativistic region, little
can be said about the convergence of the interaction, but there are indications that it becomes strongly
repulsive at distances comparable with the nucleon Compton wavelength (I'z/Nc). The radiative corrections
to the potential are calculated in the nonrelativistic limit, using the equation of Bethe and Salpeter, which
has been transformed into a one-time equation by means of a method which has been given previously. It
is shown that the corrections arising from vertex parts and closed loops in the Feynman diagrams are at
most of the order of (G'/47i-)(p/235)' times the term which they correct. There exists, however, a class of
finite self-energy terms which give a contribution to the interaction having the same analytical form as the
fourth-order potential, times a numerical factor which can be expressed as a power series in G'/47'.

The low energy properties of the neutron-proton system are discussed, using the nonrelativistic potential
which is calculated in this paper, and replacing the interaction in the relativistic region by a boundary con-
dition prescribing that the wave function tends to zero at a finite distance r, . It is found that a good agree-
ment with experiment can be achieved by choosing G /471. =9.7&1.3 and r, =(0.38&0.03)(k/pc). Finally,
an investigation of the neutron-proton scattering at 40 Mev shows that the same potential leads to a satis-
factory description of the available experimental data.

I. INTRODUCTION

~ 'HE pseudoscalar meson field' theory has not yet
progressed very far in the quantitative descrip-

tion of nuclear forces, mainly because of the two fol-
lowing difficulties:

(1) The calculation of the nucleon-nucleon interaction,
to the second order in the coupling constant' 6, leads
to a static approximation which is too strongly singular
near the origin to permit the existence of stationary
states. It is clear, however, that this singularity has no
physical meaning, since the static interaction is no
longer valid for distances of the order of the nucleon
Compton wavelength (1/M).

(2) The high value of G'/4~r which is obtained by
fitting the simplest low energy properties of the neutron-
proton system casts strong doubts on the validity of any

*A preliminary report on the results of this paper has appeared
in Phys. Rev. 86, 806 (1952); 87, 1143 (1952).

'Only the pseudoscalar coupling will be considered in this
paper, since it is only in this case that the intrinsic field theoretical
infinities can be separated and re-interpreted consistently. See
J. C. Ward, Phys. Rev. 84, 897 (1951);A. Salam, Phys. Rev. 84,
426 (1951);86, 731 (1952).' The physical evidence having considerably reduced in recent
years the possibilities of different types of m-meson fields and
couplings, it seems useful to replace the conventional nomen-
clature )see for example, L. Rosenfeld, Nuclear Forces (North
Holland Publishing Company, Amsterdam, 1948), p. 322j by a
simplified system of notations. We denote by G the pseudoscalar
coupling constant of a pseudoscalar field (suggesting by this
choice that this constant is expected to be big!) and by g the
quantity G(IJ/23f), which can be considered as an equivalent
pseudovector coupling constant in the cases where the equivalence
theorem is valid I see, E. C. Nelson, Phys. Rev. 60, 830 (1941);
F. J. Dyson, Phys. Rev. 73, 929 (1948); K. M. Case, Phys. Rev.
76, 14 (1949)j. Both G'/4~ and g'/47r are expressed in the same
units as the fine structure constant in electrodynamics. A system
of units where A=c=1 is used in this paper.

perturbation expansion of the interaction. Unfor-
tunately, it appears very dificult to treat the pseudo-
scalar meson field by other methods ("strong" or
"intermediate" coupling), since the nucleons cannot be
replaced, in this case, by infinitely massive extended
sources, because of the importance of nucleons pair
creation. 3

It should be noted, however, that few serious
attempts have been made so far to determine to what
extent these difhculties are real. 4 The nonstatic effects
might, for example, lower the singularity of the inter-
action, or even change its sign at very small distances.
On the other hand, the creation of virtual nucleon pairs
might improve, at least in some region, the convergence
of the perturbation expansion, the effective expansion
parameter being, in that region, much smaller than
G'/4m-.

It is the purpose of the present paper to investigate
critically the above diAiculties by means of a term by
term analysis of the interaction expansion yielded by a
weak coupling treatment of the symmetrical pseudo-
scalar meson theory, with pseudoscalar coupling. This
analysis includes not only the finite parts of the inter-
action, but also the radiative corrections in which the

It is an essential feature of the ys coupling that the matrix
elements which simply create or annihilate a meson are, in the
nonrelativistic limit, much smaller than those which, in addition,
create or annihilate a pair of nucleons.

4 The fourth-order interaction and its inQuence on nuclear forces
have been discussed by several authors, for example: H. A. Bethe,
Phys. Rev. 76, 191 (1949);K. M. Watson and J. V. Lepore, Phys.
Rev. 76, 1157 (1949); Y. Nambu, Frog. Theor. Phys. 5, 614
(1950); G. Wentzel, Phys. Rev. 86, 802 (1952); etc. Nobody has,
however, investigated seriously the behavior of the remaining
parts of the static interaction and the eGect of the nonstatic
corrections.
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mass and coupling constant have to be renormalized
explicitly. In order to carry out this program, use has
been made of the nonadiabatic treatment of Tamm'
and DancoG' which, in a previous paper, ~ has been
extended to include the creation of virtual nucleon pairs
and the exchange of an arbitrary number of mesons. In
the framework of this formalism, it is necessary to give
first the definition of an interaction operator having a
general validity. This operator, which is defined in Sec.
II, is similar to the "velocity dependent potential"
introduced by Wheeler, ' but has the added feature that
it depends explicitly on the total energy of the system.

In Sec. III, the part of the interaction which contains
no contribution arising from radiative processes will be
analyzed term by term. It will be shown that, in the
nonrelativistic region, ' even if G'/4s is of the order of
10, there exists a finite number of terms (namely, the
second-order and the largest part of the fourth-order
potential) which can be used as the starting basis of a
perturbation treatment, all the remaining portions of
the interaction being considered as small corrections.
In the relativistic region, the effective expansion
parameter is G'/4s. , and little can be said about the con-
vergence of the interaction. There are, however, some
indications that it becomes repulsive at short distances,
the lowest order terms of the potential being dominated
by the so-called "contact" terms, which actually have
a range of order jt/Mc. On the other hand, the pseudo-
scalar meson theory should not be expected to give too
reliable results in that region, on account of the existence
of heavier mesons than m-mesons, isobaric states of
nucleons, etc. . . .

The contributions to the interaction arising from the
radiative processes will be calculated in Sec. IV, starting
from the equation of Bethe and Salpeter' and trans-
forming it into a one-time equation by means of a
method which has been given previously. ~ It will be
found that the correction contributed by vertex parts
and closed loops in the irreducible Feynman diagrams
are at most of the order of (G'/4s. )(p/2M)' times the
interaction term which they correct (p and M are
respectively the meson and nucleon masses). There
exists, however, a class of finite self-energy terms,
which give a contribution to the interaction which is
not negligible. In the nonrelativistic region this con-
tribution has the same analytical form as the fourth-
order potential, times a numerical factor which can be
expressed as a power series in G'/4s. .

' I. Tamm, J. Phys. (USSR) 9, 449 (1945).
6 S. M. Dancoff, Phys. Rev. 78, 382 (1950).
7 M. Levy, Phys. Rev. 88, 72 (1952). This paper will be

referred to as (A) in the following.
J. A. Wheeler, Phys. Rev. 50, 643 (1936).
By "nonrelativistic region" is meant the part of the momentum

distribution in which the nuclear recoils can be neglected
(~ p~ &&Ml. In coordinate space, this part of the interaction coin-
cides with the static potential which still depends, however, on
the total energy of the system.

E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).This equa-
tion will sometimes be referred to as (B.S.) in the following.

The preceding features of the pseudoscalar inter-
action permit a semiquantitative description of the
neutron-proton system at low and intermediate ener-
gies. In the nonrelativistic region the exact potential
calculated in this paper can be used, the relativistic
part of the interaction being arbitrarily replaced by a
boundary condition, prescribing that the wave function
tends to zero at a finite distance r,. Considering the
relatively large value of the ratio (p/M), the separation

'of a nonrelativistic region where the potential can be
calculated exactly is, to a certain extent, arbitrary. It
can therefore be expected that the corresponding semi-
quantitative treatment becomes less and less satis-
factory as the energy of the system increases. It will be
shown, in Sec. V, that a good agreement with the
low energy properties of the neutron-proton system
can be achieved by choosing CP/4s. ="9 7&1 3. and.
r, =(0.38&0.03)(k/irc). The same constants lead to a
good description of the available experimental data on
the neutron-proton scattering at 40 Mev.

II. DEFINITION AND GENERAL PROPERTIES
OF THE INTERACTION

In the nonadiabatic treatment of the two-body
problem, ~ the state vector of the system is defined by
means of a set of probability amplitudes a&~ "' of the
free states where m mesons and n nucleon pairs are
present; the two initially interacting nucleons are
treated separately, and ) is a variable which specifies
the momenta, spins, isotopic spins, etc. , of the particular
free state which is considered.

The set Luzt "&j satisfies a system of simultaneous
integral equations which has been discussed in detail
in (A). If, in particular, one eliminates all the ampli-
tudes except a&(' ~ '& by means of successive substi-
tutions, one obtains the general equation (A, 6) which
we now write in the center-of-mass system as follows:

(W—».)a""(p, —p)

=(2 ) J +(»p iW)rr ' (p p)rfp (1)

in which W is the total energy of the system and
Z~=(ps+Ms)& The kernel IC. (p, p'; W) is expressed as
a power series of 8'.

IC(p, p'; W=g„G'"ICs.(p, p'; W). (2)

Multiplying both sides of (1) by (W+2M) '(W+2E„)
and def'ming e = W—2M as the binding energy (or, for
an unbound state, the total nonrelativistic energy in the
center-of-mass system), we obtain the equation

—e )ut''&(p)
(&'

(Mp )
t L(2E,+W)(2E~+W)]&= —(2x)-s

4Mp

X&(p, O', W)~" "(p')&p' (3)
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it U(r, r', W)&&&&&"&(r')dr'

(4)

- 4W
o""(y -p).PI""(p)=

2E„+W
&t &"&(0)

& (2Ey+W) &

~ E(p, 0; W)e'i"dp. (9)
(2ir)' ~ 4 4Mp

Transforming Eq. (3) into coordinate space, we get

where we have set p=i+e/4M and introduced the fore be expressed as follows:
amplitude"

4&&"&(r)= (2s.) 'Jt I""(p)e*&'dp (6)

is the Fourier transform of I&' '&(p) and U(r, r', W)
the interaction operator

U(r, r', W) =g G'"U2„(r, r'; W)

G'"
t

[(2E„+W)(2E~+W)]&

(2n.)' ~ 4Mp

XEg„(p p' W)e' &'-'i'"'dydy'. (7)

Equation (5) is an ordinary Schrodinger equation for
a particle of reduced mass Mp and energy e, and, there-
fore, the interaction operator of the right hand side is
unambiguously defined. By writing, on the right-hand
side of (7), pr —p'r =-', [(y+p')(r —r')+ (p —y')(r+ r')],
one sees easily that, for a given value of ~r+r'~,
U(r, r', W) is a function of ~r—r'~ of the Gaussian

type, the width of which becomes more and more
narrow when ~r+r'~ increases. We have in fact, for

( r+ r'( »(I/M):
(r—r') (I r+ r'I )U,„(r, r'; W)~|

( )
V&

2 j E 2

Consequently, when r or r' is large compared with
the nucleon Compton wavelength, the interaction
operator reduces to a usual potential.

For small values of r, the analysis of the interaction
becomes a relatively complicated problem, " since its
value at a given point r cannot be separated from that
of the wave function in a certain volume around r. It is
clear, however, that the main contribution to the
right-hand side of (5) arises, in this case, from the part
of the right-hand side of (3) in which both the mo-
mentum ~p~ and the momentum transfer ~p

—p'( are
large compared with the meson mass p. In the case
where &t

&0 0& (r) is finite at (and does not vary too rapidly
in the neighborhood of) the origin, the extreme relati-
vistic behavior of the right-hand side of (7) can there-

"This new amplitude is introduced in order to preserve the
symmetry of the interaction operator with respects to the variables
r and r'.

~ Except in the particular case where the kernel K(p, p', W)
can be broken into a product of two functions of p and p', respec-
tively.

(&'
+e ~tt

&' '&(r) = t U(r, r'; W)&t &"&(r')dr', (5)
EMp

where

In the case where &t
&' '&(r) is not finite at the origin (in

particular, when it tends to zero on account of a strong
repulsion at short distances), Eq. (9) still corresponds to
a good approximation, if 4&0'&(0) is replaced by a
suitable constant of the form J'F (p')I&' o& (p')dp',
provided that the wave function is mainly concentrated
in the nonrelativistic region, which it is likely to be in
this particular case.

III. ANALYSIS OF THE INTERACTION (WITHOUT
RADIATIVE CORRECTIONS)

In this section, a detailed study of the interaction
will first be made in the nonrelativistic region (with the
exception of the radiative corrections which will be
considered in the next section). A discussion of the
behavior of the interaction in the relativistic region will

follow.

A. Nonrelativistic Region

As was seen in the preceding section, the interaction
reduces in this case, to an ordinary potential V(r),
which is obtained" by setting, in the expression of
E(p, p'; W), as well as on the right-hand side of (7):
E„=E„'=M.Consequently, u&'"(p) and a&' "(p, —p)
are, in this case, identical, and 4&' '&(r) is simply the
Fourier transform of &i" "(p, —p). Furthermore, the
total energy of the system 8' wil be equaled to 2M,
since only the low energy properties of the nucleon-
nucleon system are considered in this paper. A remark
will however be made at the end of this section on the
inRuence of the energy dependence of the interaction
on the high energy nucleon-nucleon scattering.

1. Second order potential-

The first term in the expansion (2) can be written
[see Eq. (A, 7)]:

(M+E„)(M+E„.)
E2(p, p', W)= —G'(~& ~g)

(&ri R)(&r2 R)x, (»)
~(y y')[~(y p')+E.+E'—W]

"In the calculation of the different terms of the kernel
K (p, p'; 8') there will occur integrations over some intermediate
momenta, such as p". In principle, these integrations must be
carried out exactly; it can easily be shown, however, that, by
setting also in those terms L&„"=35, only corrections of order
(p/M)' are neglected, except when the corresponding integral
becomes divergent if this approximation is made. In this case, the
terms involving p" must evidently be left untouched.
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virtual processes involving the presence of two nucleon
pairs in the intermediate states. Another feature of the
fourth-order potential, which is, however, purely acci-
dental, is that the contribution from the processes
involving one nucleon pair in the intermediate states
vanishes in the nonrelativistic region, in the case of the
symmetrical theory. "Finally, the part of the potential
which is contributed by the processes involving an
ordinary two-mesons exchange (and no pairs) is of the
order of (g2/42r)2=(G2/42r)2(f2/2M)4 and can be ne-
glected. The part of the interaction which contains all
the contributions up to the order of (G2/42y)2(f2/2M)2

has the following expression:

(G2)2( p, )2 1
«()=-3I —

I I

(42r) &2M' f2r2

2 2 2

X K 1(2f2r)+ — —Kt(f3r), (14)
2M x

FIG. 1. The virtual processes which give the main contribution
to the fourth-order interaction, and which involve the creation of
two nucleon pairs in the intermediate states.

where use has been made of the notation:

= I: I p —p'I'+f"]',
and

R =p'/(M+E„') p/(M+X—~). (11)

For distances which are large compared with (1/M),
one obtains, using (7) and (8):

G' ~, ~2 (42, k)(42, k)
V (r)=- —e'~2dk (12)

(22y) 2 (2M)' ~ 4d22

which gives the well-known expression:

G'jy f3 )'
I'2(r) = l(~t ~2)—I

42y &2M&

3 3 ]e""
X (o1 422)+S,2 1+—+, (13)

f2r (pr)2 I r

where S22 ——3(421 r) (422 r)/r' —(421 422). On the right-hand
side of (13) we have omitted the so-called "contact"
term: 3(421 422)(~1 ~2)(2M) '5(r), which gives no con-
tribution in the region under consideration. %e shall
return to this term in paragraph (8) of this section.

2. Folrth-Order E'oteetiut

Because of the special properties of the matrix ele-

ment of y2 (see footnote 3), the main contribution to a
given order of the interaction arises, in the nonrela-
tivistic region, from the virtual processes which involve

the creation and annihilation of the maximum number

of pairs possible to that order. The main part of the
fourth order potential will therefore be provided by the

I

where K„(x) is the eth-order Hankel function of
imaginary argument. "

a. Tao-Pair terms. —These terms are provided by the virtual
processes illustrated in diagrams a1, a2, b1, b2 of Fig. 1 (plus those
which are symmetrical with respect to particles 1 and 2). Diagrams
a1 and a2, which involve a maximum number of two mesons but
only one pair at a given time, give the main contribution

V (a)— G4 r), (')r (')(v-), (2)v. (2)+~ (2)r), (2)jIft IJ
V

(2m)2

XfexpI —i(k1+k2) r7
1 2dk dk

+symmetrical term in (1) and (2), (15)

and consequently V4(~) = —3(G2/47I-) (2M)~J&(r), where J&(r) is
a function calculated in the Appendix )Eq. (10a)]. Diagrams
b1 and b2, where a maximum number of two pairs is present at a
given time, give a contribution which is smaller by a factor (p/2M):

G' . 7),("v„(')L~),&'), 7.„(')g+ p expC —i(k1+k2)rj
(27I-)' (2~) 3 ~ 4~1~2

and, therefore, Iy4& & = —3(G2/41y)'(2M) (2/Ir) [I2(y)] I where

I,(r) is defined by Eq. (Sa) of the Appendix. In Eqs. (15) and (16)
we have set co;=(ks2+p2)&. Adding the expressions of V4( ) and
V4( ) gives Eq. (14).

b. One-pair terms. —These processes (plus those which are sym-
metrical with respect to (1) and (2)) are illustrated in Fig. 2.
Diagrams (2a1) and (2a2) give

G4
V4(~') = (2M) 3 (7.),(1)r (1)L r), (2) r (2)j (0'1 ~ k1)(e2 k2)

(27I-) ' p s P +

(2)7~(2)t 7.) (1) ~~(1)$ (g2'kl)(g2'k2) }
expL —i(k1+k2)rj

k
4'& 602

3G4, k1 k2 exp) —i(k1+k2)rj
dk, dk2.

(27I-) ' (u12~22

'4 This result is only true in the symmetrical theory. The neutral
theory, for example, gives the repulsive potential: (G2/4'. )2

X (34/2 3)f') 3(44y2) 1Lt + (44y) 1)22 2 I'II
"For the properties of these functions, see G. N. Watson,

Theory of Bessel Functions (Cambridge University Press, Cam-
bridge, 1922).
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The contribution of (2bi) and (2b~) is, on the other hand,

V g, & (2~)— expL i( ~+k') ~ki'k'dk
dk ($8)

(221-)' coPco2(coi+cu2)

and that of diagrams (2ci) and (2c~):

V4&"&= — (23') ' dkidk . (19)
(2-) COIG02 (COI+ C02)

It can easily be verified that V4( '&+ V4"'&+ V4("&=0.
c.¹pair terms. —These are the customary two meson exchange

terms (with or without crossing of the meson lines) which have
been discussed in detail in (A, Sec. 2.22). In the case of the pseudo-
scalar interaction, they can easily be brought, in the nonrelativistic
region, into the following form:

G4 (~i. ~2)'

(2m) ' (2M) 4

X
(a, k,)(e,.k,)(g, k,)(e,.k,) exp[ —i(k,+k,)r

COI 602

3G f 4rl' LklXk2$4r2' fklXk2j
(2 )

2
)& —+—expr —i(ki+ k2) r)dkidk2, (20)

COi M

This part of the fourth-order potential is of the order (G'/427)~

&((tt4/2M)4 and can be neglected for the time being. It contains,
however, a "contact" term which will be discussed in paragraph
(B) of this section.

We conclude this para, graph by a few remarks on the
potential of Eq. (14), which is spin and isotopic spin
independent and attractive in all states. The first term
of the right-hand side is G /44r t'imes bigger than Vs(r),
which, if G'/44r is of the order of 10, is of the same order
as the second term of (14). However, V4(r) has a range
(1/2t4), since, the asymptotic value of K„(x) being
(4r/2x)&e *, its behavior for large distances is defined by
the following expression:

(G'l't' t' ) 1

E44r) &2M) tir'

p
1+ (stir) *' (4—rtir) ''e &' (21-).

M

For small values of x, K'i(x) is roughly equal to 1/x, and
therefore, the two terms of Eq. (14) behave respec-
tively like r ' and r ' at short distances.

It is hnally not without interest to note the connection
of the results of this paragraph with the remarks made
by Lepore" and Wentzel, ' who have shown that, by
means of the canonical transformation used by Dyson, "
the pseudoscalar interaction term of the nucleon-meson
Hamiltonian can be brought into the following form:

iG4VsrA4-~ si—(G/M)4'«4'o &—4
s(G'/M)47'4e', —(22)

where only terms of order (G/2M)' have been neglected.
A weak coupling calculation of the nucleon-nucleon

'6 J. V. Lepore, Phys. Rev. 87, 209 (1952).
~7 G. Wentzel, Phys. Rev. 86, 802 (1952)."F.J. Dyson, Phys. Rev. 73, 929 (1948),

/

er
/

/
I

6, C C~
FIG. 2. The virtual processes which involve the creation of one

virtual pair in the intermediate states, the contributions of which
cancel each other in the nonrelativistic region, in the case of the
symmetrical theory.

potential corresponding to each of the two terms of the
right-hand side of (22) yields, in first approximation,
Vs(r) and the first part of V4(r), respectively.

3. Higher Order Terms-of the Potential

These terms have the following general properties:
a. Strength. —The interaction is characterized, in the

non-relativistic region, by two expansion parameters:
ai = (G'/4x) (t4/2M)', which corresponds to the exchange
of one meson without pair creation;

ns = (G'/4s. )'(t4/2M)',

which corresponds to a double mesonic exchange with
the creation of two pairs. To the order of G4", the leading
term of the nonrelativistic potential is proportional to
n2", whereas to the order of G4"+', it is proportional to
as"ni, and therefore much smaller. If G'/44r is of the
order of 10, the expansion parameters have the following
numerical values: ni 0.06 and o.2 0.6.

b. Barge.—A term of order G'" corresponds to a po-
tential of range (1/nt4). Since the nonstatic effects be-
come predominant at a distance of order (2/M) (1/3t4),
the reduction due to the range becomes eGective, in the
nonrelativistic region, for the terms of the sixth order
in G; for the eighth and higher order terms, it inAuences
the convergence of the interaction expansion in a more
important way than the reduction due to the strength.

c. Siegllarity. —If it were possible to approximate at
short distances the Hankel functions by the erst term
of their expansion in powers of the argument, the
singularity of the potential would increase rapidly with
the order of the terms, and the expansion parameters
should rather be taken as ni' ——(G'/44r)(2Mr) ' and
ns' = (G'/4s)'(2Mr) '. However, since the function
K (ntir) can be replaced by si(m —1)!(2nt4r) m only for
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that V3(r) can be approximated by

g' ' „exp[—f(k~+ks+k3+k4)r]
~l234 (1+ 2) (3+ ~4)

= —12(G'/2M) 4(271.) 6J1(r)J2(r). (25)

Using the definitions of the functions J~(r), calculated in the
Appendix (see Eqs. (10a) and (12a)j, one obtains easily:

G'4 p 42' 1 +co
Vs(r)~ 12 ———— —Eq(2pr) [Es(x)]sxdx. (26)

471- 2M 71- P,3r4 a

This potential is plotted as a dotted line in Fig. 5 for G'/421-=9. 7
(value which will be obtained in Sec. V, from the low energy
properties of the neutron-proton system). One sees that its in-
fluence is only sensible very near the edge of the relativistic region.
Its inclusion in the central part of the total interaction has been
found to modify the value of the singlet neutron-proton scattering
length at zero energy by about 1 percent.

FIG. 3. Two typical diagrams of the virtual processes which
give the leading contributions to the sixth- and eighth-order
potential, respectively (in the nonrelativistic region).

r«(m —1)&(2m@) ' (for m) 1) and r«(1/mg) (for
m=0, 1), the range in which this approximation is
possible is rapidly displaced into the relativistic region,
where the static approximation is no longer vali'. "

The above properties will be illustrated by estimating
the leading terms of the sixth- and eighth-order poten-
tials. The magnitude of the latter will, in particular,
provide an essential test for the convergence of the
interaction expansion, since its strength involves e2

only, and its "apparent" singularity (in the sense ex-

plained in paragraph (c) above) is r '.
Sixth-order potential. —The leading term, which is proportional

to cx2al, arises from virtual processes which can be illustrated by
joining the nucleon lines of the diagrams (al) and (a2) of Fig. 2
by means of a single meson line in the region where there are
already two mesons (and no nucleon pair) present t an example is
given in Fig. 3(a)]. By adding the contributions of all possible
graphs, the following expression is obtained:

(~l ' ~2) vl ' k3 exp C
—i(kl+ k2+k3) rjv,(.) =——

47t- (2M)' 2~1~2~3(1+2) (~1+2+3)
~ ~

~

30'2 k3 0'2'kl
X + dkldk2dkg

CO1+~2 Cu2+~3

+symmetrical term with respect to (1) and (2). (23)

Eighth-order potential. —The main contribution to this poten-
tial comes from processes involving the exchange of four mesons

and the creation of four nucleon pairs (not more than one being
present at a given time). One of them is illustrated in Fig. 3(b).
All the others can be obtained by allowing the meson lines to
cross each other in all possible ways, and by interchanging the
role of particles (1) and (2). The resulting expression is given by

G' '
~ exp[ f (ki+—k +k3s+k4)r]

V.(r) = —3 —(2 )-~
2M o)lco2Co3cy4((pl+(g2)

3 1
X + dkl ~ dk4. (24)

(1+ 2) (3+ ~4) (~1+3) (2+ &4)

In order to estimate the inhuence of this potential, we remark
that the second term between brackets, on the right-hand side,
gives roughly one-third of the contribution of the first term, so

"For a process involving the exchange of m mesons, the static
interaction itself becomes less singular at distances of order
(m/2M), since the quantity mao& cannot then be neglected in com-
parison with 2M.

1. Second-Order Relativistic Interaction

We first separate out of the kernel defined by Eq.
(10) the part which corresponds, in the nonrelativistic
region, to the "contact" term which has been omitted
in Eq. (13). For this purpose, we write If.s(p, p', W)
as follows:

( 1 (rrt 'Irs)
its(p p'' W)= —G'(xt ~s)—

l3 4E+„
f"+(E, E, )'+ (E.+E—„W)—

X ~—
( +E„+E„W)—

(~+E„)(~+E„)(et R)(os.R)

4E~E„.

1
(+t'+s) 1 . (27)

3 (a(u)+E„+Ex. W)—R'

The term of the third and fourth lines, on the'right-hand
side, is the relativistic generalization of the tensor force.
The first term of the first and second lines gives the

B. Relativistic Region

An examination of the expansion of the kernel
E(p, p'; W) shows that, for high values of

~ p~ and

~ p —p'~ (and G'/47r =1), all its terms are of the same
order of magnitude and that the effective expansion
parameter is therefore G'/4~. Under these circumstances,
no definite conclusion can be drawn from a term by
term analysis of this kernel. However, even if its mag-
nitude cannot be determined with any certainty in this
region, its sign is of crucial importance, because a
repulsive interaction, no matter how strong and singular,
would still insure the existence of stationary states,
since the potential in the nonrelativistic region is suf-
ficiently attractive. What we would like to do here is
to show, by means of a rapid discussion of the second-
and fourth-order terms of the expansion of K(p, p'; W),
that there are some indications that this interaction
becomes repulsive for distances of order (1/M).
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"contact" interaction, which has the following form
in co-ordinate space (see Eq. (Sa) of the Appendix]:

Q2 M'
U, & i(r, r')= ——(si sq)(oi &r2) Ki(Mr)Ki(Mr' ). (28)

3 rr'

Assuming that the integral P =J'r' 'Ki(Mr') &&0 Oi

X(r')dr' has a finite value, one sees therefore that the
interaction (28) is equivalent to a potential which
behaves like r ' at short distances and like (r te ~")
for large values of r (compared with 1/M). This inter-
actions acts only if the wave function is spherically
symmetrical (S states) and is repulsive in singlet and
triplet spin states.

We now investigate the complete behavior of the
second-order interaction for small values of r, in order
to see if the repulsive operator (28) is not compensated

by the contribution arising from the attractive part of
(27). Using Eq. (9), we may write, for r«1/p,

~"Ur(r, r'; W)P&' '&(r')dr'

(~i p)(~~ p)~*"dpP—(~i ~2) (29)
(2ir) ' ~ 2E„(M+E„)(a(co+E~ M)—

which can also be written

)G'q (~i ~i)

~
U, (r, r', W)P&"&(r')dr' MP) —

)

&4~) 3

2F'(Mr)
X (&r, &r,) F"(Mr)+

Mr

F'(Mr)
t+S„F"(Mr)— (30)

Mr

where only terms of order (p/M)' have been neglected
and where

1
&
"( p qsinprdp

F(Mr)= ~

~

1—
~

. (31)
2irr & p 0 M+E„l pE„

By expanding F(Mr) as a power series in the neigh-
borhood of the origin, it is not dificult to verify that the
central force is still repulsive and that the singularity
of both the central and the tensor forces is now
r ' log(Mr). Since the effective coupling constant in the
relativistic region is G'/4ir, the distance at which this
repulsion takes place can roughly be estimated as of
the order of (Mp) &.

2. Fourth-Order Relativistic Interaction

The kernel K4(p, p', W) being very complicated in
the relativistic region, we shall only show that the
fourth-order potential contains a repulsive 6-function
and give its actual expression at short distances.

In the nonrelativistic fourth-order potential which
has been calculated in paragraph (A2) of this section,
the only term which contains a "contact" interaction
is V4" given by Eq. (20), where the 6rst term of the
right-hand side can be written as

G' ( p ) '(~i ~i)
V4""'=

2ir' &.2M) 3

+Si2K&(pr) ) Vi(r); (32)

consequently, the contact term has the form

(G'/4s )'(4/3') (&ri &r2)'(~i ~2)'(2Mr) —'[b(r)/4M'];

it is always repulsive but acts only in 5 states. Its actual
expression, in the relativistic region, is proportional to
(G'/4w)2(Mr') 'Ki(Mr)e ~" It behaves like r ' at very
short distances and its range is (1/2M).

Remark on the energy dependence of the interaction. —In the case
of high energy nucleon-nucleon scattering, the dependence of the
potential on 8' tends to increase the range of the interaction, as
can be seen by considering the second-order potential (which is
predominant at large distances):

(33}

where ~=K'—2N and

j. p exp(iver)dk 1 p exp(iver)dk e

27/ J ~,.((g~,) 27/ 3 k~+p~

The 6rst term of the right-hand side is a Yukawa potential of
range x '=(p,'—e') &. The second term, which is more com-
plicated, behaves roughly like r &e x'" with g'~(g'p)&. This
increase of the potential range with the energy might be useful
in interpreting the experimental neutron-proton scattering data,
since the customary static potentials have a tendency to predict
too small D-phase shifts. When e&p (which, in the laboratory
system, corresponds to a neutron energy of about 280 Mev), the
potential (33) begins to oscillate at large distances. For such
energies, however, the static approximation should not be con-
sidered too seriously.

IV. RADIATIVE CORRECTIONS

In order to calculate the contribution of the radiative
corrections to the e8ective pseudoscalar interaction, it
is first necessary to separate covariantly the infinite
renormalization eGects of mass and coupling constant.
For this purpose, we start from the equation of Bethe
and Salpeter, " transformed into a one-time equation
by means of the method which has been discussed in
detail in (A). It has been shown that the expression of
the effective interaction which is obtained in this way is,
in the nonrelativistic region, identical term by term
with the expression (2) which results from the Tamm-
DancoB treatment.

In the following, we shall further restrict ourselves to
the "ladder" approximation, "since analogous results
can be obtained in a straightforward manner by ap-
plying the same method to the other terms of the
kernel expansion of the B.S. equation. In this approxi-
mation, the amplitude A,;(p, po) (i, j=1, 2) which is
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defined by Eq. (A.25) obeys, in the center-of-mass We shall first calculate the functions Az and r&, up to
system, the following equation: the second order in G.

1 gG2

~'i(p, Po) =
[A'(P) -Po][A (P)+Po] "(2 )'

A. Calculation of A~'

This calculation has been made by Watson and
Lepore, 22 with the following result,

QP2+ u2

r' "'(P P')r "'(P p')~ (O' Po')dP'dPo'
X)l . , (35) AF'(x) =— ei kxg4$ — Q2

1— U(k'), (37)
(2v) 4 ~ k'+&i' 2v-'

where we have set Ap'= ioi(p, p') —(po —po')' and

r, g&"& = u;&"&(p)pius~"&(p'),

u;&"&(p) being the amplitude of the Dirac spinor defined

by (A, 26). The quantities A, (p) are defined by (A, 29).
The radiative corrections are taken into account:

(1) By substituting to 6& (x) [the Fourier transform of
which appears in the kernel of Eq. (35)] the function
6& '(x), which has been defined by Dyson" and which
accounts for all closed loop insertions in the meson lines
of the irreducible diagrams of the S matrix; (2) by
replacing &5, in the matrix elements of Eq. (36), by
the operator I'5, which embodies the contributions
arising from the vertex parts of those irreducible dia-
grams; (3) by introducing in the kernel of the integral
equation the remaining contributions of the (finite)
irreducible graphs which include self-energy eGects."

in which terms of order (&i/M)' have been neglected and
the following definition introduced:

k'x(1 2x—)dx
U(k') =

~0 k'x(1 —x)+M'
(3g)

the poles of this function being defined as usual by
introducing a small negative imaginary part in M.

B. Calculation of I'& (P, p')
This calculation will be made without assuming that

the nucleons are free in the initial and final states of
momenta p and p'. To the second order in G, we write

r, (p, p') = v (1—G'[C, (p, p')+C, (p, p')]}, (39)

where, after some elementary transformation, the func-
tions C; are found to have the following expressions:

c(p, p')=- 2z

(2v-)' ~ [(p+k)'+M'][(p'+ k)'+M'](k'+ &i')
(4o)

C2(p, p')=—
(2~)4 ~

2i i [ iyk(imp'+—M)+( ivP+M) j—yk+( iyP+M)(i—yP'+M)]d'k

[(p+k) 2+M2][(p~+ k) 2+M2](k2+ u2)
(41)

C2(p, p ) is a finite integral which vanishes if the initial and final states are free, Ci(p, p ), which is a logarithmi-

cally divergent integral can be written as

2i p d4k 2i p,2d4k

Ci(p, p')=- + +Ci'(p, p').
(2x)4 3 (ki+M2)2 (2v)4 J [(p+.k)iyM2][(p'yk)2/Mi](k2/&ii)

(42)

2i t' t hp'x(1 —x) [2(k'+M')+Ap'x(1 —x)]d4kdx 1

(27r)' "o " (k'+M')'[k'+M'+Ap'x(1 —x)]i
C'=—1 U(AP').

4m2
(43)

The first term on the right corresponds to a coupling constant renormalization; the second term will be incor-
porated to C2(p, p'); finally, by using Feynman integral representation of product denominators, Ci'(p, p') is
found equal to

In the same way, after some calculations, C2(p, p')
is found such that

1 I" I"ududvIC(p, p'; u, v)
v~C2(p p') =. . . (44)

4x'&0 ~o a'(p, p';u, v)

where the second term of Ci(p, p') has been incor-

"F.J. Dyson, Phys. Rev. 75, 486 (1949).
"The corrections to the interaction due to self-energy effects

included in the Sz'(x) function (see reference 20) are very small
in the nonrelativistic region, since they vanish when the initial
and final states of the nucleons are supposed to be free.

porated and the following definitions introduced:

E(p, p'; u, v) = (1 u) (iyp+M) yi—(imp'+M)
+Mu[yi(imp'+M)+(i7p+M) ys]

—uy, [(1—v) (p"+M')+v(p'+M')] —&i'yi, (45)

a'(p p' u, v) =u'[v(1 —v) Ap'+M']+ &i'(1—u)
+u(1—u) [(p'+M')v+ (p"+M') (1—v)]. (46)

If the expression (39) of I'5 is substituted to y~ in Eq.
~ K. M. Watson and J. V. Lepore, Phys. Rev. 76, 1157 (1949).
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(36), the matrix elements I';k'"' are transformed into

I',~1b') —I'. (~)
Q2 G' ' I'ududv

~(~p')+
4or' 4or' ~o ~o

62
X&;kt"&(P, P'; u, v) —P;k& &

4m2

N2dldV

Mpgp +E„(p') E,(p)] (4. 7)
~o "o

o„being defined by ok=+1, o& ———1. g;k&"& is the ma-
trix element of —p2&"' =y5&"'y4'"), namely

P kir) u, (r)(p)p (r)p (riu (r)(p') (50)

C. Corrections to the Interaction Arising from
Vertex Parts and Closed Loops

In order to avoid an excessive use of algebra, we shall
only give here some details on the main contribution to
the interaction arising from these radiative eGects,
namely the corrections to the terms V4' ' and V4'~' of
the potential, defined by Eqs. (15) and (16).

After substituting expressions (37) and (47) into
(35), one obtains a three-dimensional equation for the
amplitude corresponding to equal times of the two
nucleons:

where F;&&"& and 6„' are, respectively, equal to

I" '"'(P, P', u, v)

= (1—v) I:po
—"A'(p)]LPo' —"Ak(p')]+ u'

+u f (1—v) (P"+M' —Po')+ v(P'+M' —Poo)
—(W'/4)+ Wo L(1 v) po'+ vpo] j (48)

6„'=u'I Mo+ v(1 —v) Ap']+ (1—u) ti'

+u(1—v){v(& '—Po')+(1—)% '—Po")
+Wo,[vpo+ (1—v)po'] —(W'/4), (49)

I'o, which involve only U(hp' ). This function is such
that, apart from unimportant terms in (ti/M)', the
corresponding corrections do not modify the analytical
form of the kernel of Eq. (35), but substitute an
apparent mass MLx(1 —x)] & to the meson mass tk.

The correction to order G' to the interaction V4&'& is
found to be

(G &'& t &'b(r)
~v, ' = —4gI —

I I

&4or) E 2M) ti'r

+8L(G'/4v)'(ti/2M)'], (53)

whereas the correction to V4& ) is given by

t'G'p o tt' tk ) '8(r) 2
~V4"= —32I —

I I I
-&i(ur)

(4or) (2M) tk'r or

+BL(G'/4or) '(ti/2M) ']. (54)

The leading terms, in both expressions, vanish in the
nonrelativistic region. This result might appear a little
surprising, especially for the F&-correction, since the
corresponding vertex part has been inserted in a transi-
tion from positive to negative energy states, where the
four-dimensional Ap is of the order of M. It can however
be interpreted as meaning that the pairs which are
created in the intermediate states are moving rather
slowly and that the three-dimensional momentum
transfer Ap is small compared to the corresponding
transfer of energy.

(b) The leading term of the corrections to V4t'i
arising from G'Co(P, P') in I'o can be found, after
elaborate calculations, to be equal to

64t G'y '( tk y
o ( P q 1 2

~V4"'=+—
I

—
I I I iogI I

-& (2tr).
9 (4or) &2M) (2M) tkr' or

(55)

The correction to V4"' has an analogous form.

a'(1)= . ~'(p, Po)dPo
27ri

(51)

by following exactly the method given in A: First, one
introduces on the right of (35) the function A kt

"&(p, po),
in which the dependence on po corresponds to taking
only into account the diagrams where the maximum
number of mesons present at a given time is one (one
of them gives V4"'):

akk(P)
& kt"'(p, po) = —2okAk(p)

Ak' —po'
(52)

Then, one iterates Eq. (35) another time, in order to
include also the diagrams where the maximum number
of mesons is two (one of them leads to V4").

(a) It is 'easier to calculate in the first place the cor-
rections arising from Ap' and the GoCi(p, p') term in

D. Finite Self-Energy Terms"

These terms are contributed by a series of irreducible
diagrams, the first one of which is illustrated in Fig. 4.
(All the others can be obtained by allowing an arbitrary
number of mesons to be emitted by one nucleon before
k& and k2, and to be reabsorbed by the same nucleon
after ki and ko have been emitted. ) In order to calculate
the contribution of these diagrams, it is convenient to
suppose that the initial and finite states of the inter-
acting nucleons are free. This assumption leads actually
to a correct value of the interaction in the nonrelativistic

~ We are very indebted to Professor N. Kroll for directing our
attention to these terms, and for an interesting discussion. We also
gratefully acknowledge helpful discussions with Dr. Lepore and Dr.
Ruderman on this point. The finite self-energy terms can alterna-
tively be calculated by means of the noncovariant Tamm-Danco8
method; the result is, however, rather ambiguous, since the
separation of renormalization parts in the self-energy efI'ects by
means of this method is not unique.
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region. After some elementary transformations, where terms of order (p/M)' have been neglected, the contri-
bution of the diagram of Fig. 4 is found to have the following expression:

&P» UP+ o 'r,'/ok. d'k
gG (~)

[(&I—k)'+M'][k'+ p'][(k —hp)'+ p']

with hp =p' —p, U being defined by

k„'kg'(p&, + k&,)
U= y„» k„+k„'—2

d4k'

[(p+ I&.p k') '+—M'][(p+ k k') '+—M'][(p k') '+—M']

The integration over k' yields the expression nonrelativistic region, this leads to the expression

U = w'[iy„k„A+MB], (58) Go

where the following definitions have been introduced:
(4&r J 8&ro I,

A = i

,

xdxdyds
1+x—xy xy

+ X[g,"'(k&, ko)II„."'(k&, ko) —iMII„&'& (k&, ko)]

»'y(1 —y) Q& (p&,+k&,)+
Dl4

1 xy
B= xdxdyds ——+

Jo Jo ~o D2 D~2

2xy(1 —xys) Q&,(p&+ k&,)

D/4

(59)

Xexp[—i(k&+ko)r]dk&dko, (61)

O', D" and Qz being, respectively, given by

D'= M'+x'y(1 —y) (k—hp) '

+xy(1—x)6p'+ x(1—x) (1—y) k',

D"=M'(1 —xys) '+ x'ys(1 —y) [(p+k) '+M']

+x'y(1 —y) (1—s) (k—hp)'

+xy(1—y) (1—s)SPo+ x(1—y) (1—x)ko,

Q&= (1—xys)p+xy(1 —s)b,p+x(1—y)k.

(60)

FIG. 4. The lowest order virtual process in which the self-energy
of one of the nucleons gives a finite contribution to the interaction
in the nonrelativistic region.

The expression for EG4&'&, given by (56) and (58), is
now introduced in the equation of Bethe and Salpeter,
and the corrections to the interaction are obtained in
the same way as in the preceding subsection. In the

where the following definitions have been introduced:

g„&'&(k&, ko) = u&&"&(Q)y, ~'&u&&"&(k&+ko), (62)

. ( ')' t'" (p' p.)(p' p) o-po po' p-o"
H„„&')=hm

(2s i) — [G)1 (Po Po) ][o&2 (Po Po') '](Po'+ ")(Po"'+")(Po' —i.) (Po' —2M)

(2ie)' ~+" (P' P.)BodPod Po'dPo"—
H &"=lim——

~'"' (2~i)' "-- [~&'—(Po' —Po)'][~o'—(Po"—Po')'](Po'+o')(Po"'+")(Po' —'o)(po' —2M)
(64)

Ao aIid 80 being obtained from A and L& by replacing,
in D aIld D

&p' by —&po' ———(po"—po')',

k' by —ko' = —(po' —po)',

(~p-k)'by (p" p.')'= (».-k.)',---
and by putting (P+k)'+Mo= —(Po'+it)(Po'+2M)
The indices p, and v take the values j., 2, 3, 4 with
p' —p =k& and p&' —p4 ——i(po' —po).

The first term of the right-hand side of (61) yields
very small corrections to the iteration of the second
order potential, and to the fourth-order potential cal-
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culated in Sec. III, 2. The second term of (61) gives,
for v =1, 2, 3, small corrections to the "one-pair terms"
of the fourth-order interaction. The main correction
comes actually from H4(", which can be written

(b) It can be expected that the low energy properties
of the neutron-proton system are not very sensitive to
the shape of this short range repulsive interaction,
provided that it is sufficiently strong.

JI4(2)—
dpp

4~M' " (p "—~ ')(p "—~ ')

41M My(d2(coy+(02)
(65)

A. The Experimental Data

The latest values of the low energy experimental
data on the neutron-proton system, as quoted or cal-
culated by Salpeter, "are as follows:

Binding energy in the triplet ground state (deuteron):

The main part of V4(' is therefore proportional to the
potential V4(r) of Eq. (14), the numerical coeKcient
being of order (G'/4~). The whole series of diagrams
analogous to Fig. 4 will similarly contribute corrections
proportional to V4(r), the entire coeKcient being ex-
pressed as a power series in G'/4~. The practical effect
of these corrections will be therefore to modify the
strength of the fourth-order potential in an unknown
fashion. This can be accounted for by replacing 6, in
Eq. (14), by a new coupling constant G&, to be deter-
mined from experiment.

V. LOW ENERGY PROPERTIES OF THE
NEUTRON-PROTON SYSTEM

In order to discuss the low energy properties of the
neutron-proton system, it is possible to use, in the
nonrelativistic region, the potential which has been
ca,lculated in Section (IIIA). At very short distances,
it is not advisable to take the second- and fourth-order
relativistic interactions which have been discussed in
Sec. (IIIB), since the higher order terms of the ex-
pansion (as well as the contribution from heavier
mesons, isobaric states of nucleons, etc.) would prob-
ably modify them seriously. We shall however retain
the qualitative features of these interaction terms, which
are repulsive and strongly singular, in prescribing that
the "wave function" p&' &(r), defined in Sec. II, must
satisfy the boundary condition: g&' '&(r,) =0, r, being
some finite distance of order (Mp)

—
&. This boundary

condition, which is equivalent to assuming that the
central force includes an infinitely repulsive core of
radius r„ introduces certainly an over-simplification in
the actual behavior of the wave function; it can, how-
ever, be justified further by means of the two following
arguments.

(a) If the pseudoscalar potential is used in the non-
relativistic region, the only type of relativistic inter-
action which leaves any possibility of agreement with
the low energy experimental data must be strongly
repulsive. This argument, which has already been
pointed out by Brueckner and Low, '4 is based on the
fact that the static pseudoscalar potential, being very
singular, leads to a much too small neutron-proton
(singlet or triplet) effective range, unless the wave
function tends rapidly to zero in the neighborhood of
the nucleon Compton wavelength.

'4 K. Brueckner and F. Low, Phys. Rev. 83, 461 (19S1).

e = (—2.227&0.003) Mev.

Zero energy singlet scattering length:

a, = (—23.68&0.06)10 "cm = (—16.91&0.38)(1/p).

Singlet effective range:

'ro = (2.7&0.5)10 "cm =(1.93&0.41)(1/p).

Triplet effective range:

'ro = (1.704&0.030)10 "cm = (1.217&0.047) (1/p).

Electric quadrupole moment:

Q = (2.738&0.016)10 "cm'

Proportion of D state 2'

0.02 &pn &0.06.

B. The Potential

2 p 2
—Ei(2x)+ —Ei(x), (67)
7r 2M ~ I

G ( p ) ( 3 3)e *

V,(x)=—
I I I

1+-+—
I

4m (2M) ( x x'2 x
(68)

"E.Salpeter, Phys. Rev. 82, 60 (1951).
"The nonrelativistic expression of the deuteron magnetic

moment pD= @~+A—z(p~+Ijp —y)pg) leads to pz)=0.04. The
relativistic corrections are, however, usually estimated as about
2 percent.

"We neglect, for the time being, the inQuence of the radiative
corrections, discussed in Sec. IV, S, which modify the strength of
the fourth order part of the central force, by introducing {in this
part of the potential only) a new coupling constant G1, which is
an unknown function of G. Since a good agreement with experi-
ment is obtained by putting GI=G, it is to be expected that a
direct determination of G& by comparison with experiment would
lead to a numerical value very close to that of G.

Taking only the main terms of the nonrelativistic
interaction calculated in Sec. III, and putting x=pr,
the potential for x&x, =pr, has the following ex-
pression 2'

V(x) =PI Vc(x)+S»V,(x)], (66)

where the central and tensor forces are respectively
defined by

G'( p l'e * (G')'( H l ' 1—3I —
I I

4m. (2M) x L4vri (2M& x'
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P, Q 0.8 1.8 ?.+ L.S

I I

(b) For the ('S+'D) state, the wave function may be
written"

p&' "(r)= (1/r)LN(x)+(1/8&)Si2w(x)gg, (70)

—O.OOL

where p is the spin function with magnetic quantum
number m, N(x) and w(x) being solutions of the fol-
lowing system of equations:

—O.oi

—O.f

d'u M M= iI'+—V.(x) N(x)+2I—V, (x)w(x),
dx p p

M 2' 6= iI'+—V,(x)— V,(x)+—w(x)
dx p p x'

M
+2I—V, (x)u(x),

(71)

with the secondary condition

N(x, ) =w(x, ) =0, (72)

10 (
p/c

FIG. 5. Plot of the potential corresponding to the constants of
Eq. (74) as a function of the distance r. Curve I represents the
total central force, defined by (67) and curve II the tensor force,
defined by (68). The dotted curve (Ia) represents the central force
when the eighth-order corrections are taken into account. Curves
III, IV, V represent the respective contributions of the second-,
fourth-, and eighth-order central parts of the potential.

C. Determination of G'/4~ and x,

The two constants which define the interaction have
been calculated by fitting exactly the binding energy of
the deuteron and the singlet scattering length, in the
following way:

(a) For the 'S state of zero energy, the radial function
obeys the equations

8(x,) =0,
d'i/dx'= (M/p) V.(x)s(x) for x~&x,.

These equations have been integrated numerically~
for several values of G'/4x, starting from the asymptotic
form e(x) 1+x(pa,) ' and determining in each case
the value of x at which the wave function goes to zero.
The initial integrating point was 4.5 and the diGerence
interval Ax =0.1. This procedure permits to draw point
by point the curve x,= fi(G'/47r) which results from an
exact fitting of the zero energy scattering length.

"The integration method which has been used allows the cal-
culation of the solution at one point from its value at the two
preceding ones. The error at a point x is equal to (1/120)(b,x)'
XI&6)(x). We are indebted to Dr. R. Christian for valuable advice
in the numerical calculations.

rI2 being equal to —Me/Ii. The system of equations (71)
has similarly been integrated numerically for several
values of G'/4x, starting from the asymptotic form

33
u(x) e

—&* w(x) pe
—&* 1+—+, (73)

iIx (iIx)'.

where p is adjusted by repeated integrations so that
both N(x) and w(x) go to zero at the same point. This
procedure yields a curve x, =f2(G'/4n), resulting f.rom
an exact fitting of the deuteron binding energy.

(c) The required values of x, and G'/4n are deter-
mined by the relations x, =fi(G'/4m)= f2(G'/4m. ), .
which gives"

~, =x./Ii = (0.38a0.03)(1/p) G'/4s. =9.7a1.3. (74)

The corresponding potential functions are drawn in
Fig. 5, together with the eighth-order correction to the
central force, which is defined by Eq. (26). When this
correction is incorporated into V,(x), it has been found
that the value of x, which results from an exact fitting
of the zero energy scattering length is modified by
about 1 percent.

D. Calculation of the Derived Quantities

Using the numerically integrated function u(x) cor-
responding to the constants (74), the singlet effective
range is calculated as follows:

Similarly, the numerically integrated functions u(x)
and w(x) corresponding to the same constants yield a

"H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951).
"The value of r, is in agreement with our estimate of the

distance at which the interaction (30) becomes important.

2 t" ( x )~
'ro ———

~ I
1+

I

—~'(x) dx= 1 78(1/Ii) .(75).
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triplet e6'ective range Born approximation is given by the equation

2 r~
3f '

g 2$g~

p~o

Q X K X M
dx=1.185(1/p), (76) tan 'bq, r, =——t [gr+., ($) p—(x )g ~I+i~($)j'

1+p

an electric quadrupole moment X'Vz, r ($)dP —(—1)'p(x.), (80)

with k' = ,'ME (E-is the neutron energy in the laboratory
system),

00 00

Q= I x~Luw —8—Iw'i]dx t (u~+w2)dx
10@ ~p

g„(x)= (-,'~kx) J„(x), and p(x,) =gr+I(x, )/g (r,~;)(x,).
=2.08X10 "cm' (77)

and a proportion of D state:

po —— w'(x)dx
0

(u'+ w') dx = 0.051. (78)
0

A quantity of physical interest is the mean value of the
square of the momentum in the ground state

) d' i t
d' 6 i

ui —)u+wi ——iw dx
P' J 0 (dx') (dx' x')

p
2

(u'+w')dx

= 1.76,

(79)

which corresponds to a mean value of the kinetic
energy of 18.5 Mev per nucleon. This result indicates
that the momentum distribution is mainly concentrated
around p, and is therefore not too sensitive to the shape
of the interaction at distances of order (1/M).

The preceding results are in good agreement with
experiment, except the quadruple moment, which is
too small by about 20 percent. This quantity is, how-

ever, sensitive to an increase of the tensor force, and
can probably be improved by including the remaining
portion of the fourth-order interaction, V4"(r) defined

by (20), and the sixth-order potential LEq. (23)].

The calculated value of the total cross section is
equal to a&=216 millibarns. The corresponding mean
value of the two experimentally measured cross sec-
tions" is 0& ——194+20 millibarns. The agreement is
therefore satisfactory.

The angular distribution of the cross section in the
center-of-mass system, represented in Fig. 6, shows very
little asymmetry around 90 degrees. This is due to the
fact that, for odd states, the weak long range second
order potential (13) becomes repulsive, whereas the
strong short-range fourth-order potential (14) remains
attractive. The phase shifts corresponding to odd states

Z2-

II II
II II

E. Neutron-Proton Scattering at 40 Mev

The neutron-proton scattering cross section for a
neutron energy of 40 Mev in the laboratory system has
been calculated, using the potential V(r) = V2(r)+ V4(r)
defined by (13) and (14) for r) r., a repulsive core of
radius r„and the constants (74). For the ('S) and
('S+'D) scattering states, the wave equation has been
integrated numerically, starting at the point x=x, (in
the case of the 'S+'D state, two numerical integrations
were necessary, for the S and D dominant modes, re-
spectively). The phase shifts corresponding to P and D
singlet and triplet states were calculated by means of
the Born approximation, the coupling (due to the
tensor force) with states corresponding to L) 2 being
neglected. Due to the presence of the repulsive core,
the phase shift corresponding to a state (J, L, s) in the

6—

0 60 gp f2,0 . (SO

Fro. 6. Angular distribution of the differential cross section
(in millibarns per steradian) in the center-of-mass system for
scattering of 40-Mev neutrons by protons. The experimental
points are those of Hadley et al. (reference 31), normalized in
order to make the total cross section agree with the mean experi-
mental value. An arbitrary experimental error of 10 percent has
been assumed at each point.

"Hadley, Kelly, Leith, Segre, Wiegand, and York, Phys. Rev.
75, 351 (1949); R, H, Hi]¹bg@pd and C. E. Leith, Phys. Rev.
SQ, 842.(1950),
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are therefore greatly reduced. In the particular case of
the 40-Mev I—p scattering, there is the additional
helpful fact that the singlet and triplet P-phase shifts
turn out to have opposite signs. The main defect of the
theoretical angular distribution curve is that the D
phase shifts are somewhat too small, the curve being
consequently too Oat by about 20 percent. This can be
greatly improved, however, by taking into account the
energy dependence of the potential which, as was shown
at the end of Sec. III, increases the range of the inter-
action. For a neutron energy of 40 Mev, the e6ect
would be of the order of 15 percent.

VI. CONCLUDING REMARKS

The fact that the pseudoscalar interaction calculated
in this paper leads to a good agreement with the low
energy experimental data on the neutron-proton system,
might perhaps appear not too surprising, if one remarks
that this interaction contains a certain number of
features which were actually qualitatively predicted on
the basis of other investigations:

(a) A phenomenological treatment of the nuclear
forces" has led to the conclusion that the central force
should be more singular and have a shorter range than
the tensor force.

(b) A detailed analysis of nucleon-nucleon scattering
at intermediate energies" shows that, in the case of a
phenomenological Yukawa potential, a better agree-
ment with experiment is obtained by choosing a range
of the central force corresponding to a higher mass than
that of the x-meson.

(c) Discussions of the nucleons' magnetic moments"
and of multiple meson production in high energy
nucleon-nucleon collisions'4 suggest that the prob-
ability of the presence of two mesons in the field around
the nucleons is much higher than that of one meson.
A more severe test for the validity of the theory will
probably be provided by the analysis of high energy
nucleon-nucleon and meson-nucleon scattering. In the
case of neutron-proton scattering, the potential which
has been obtained here contains an added feature
which will probably be helpful in interpreting the ex-
perimental data: For odd states, the weak long range
second order potential becomes repulsive, whereas the
strong short-range fourth-order force remains attractive;
as was shown at the end of Sec. V, this reduces the
E-phase-shifts and leads to angular distributions in the
center-of-mass system which are nearly symmetrical
around 90 degrees. However, it is the opinion of the
writer that it would not be very consistent to use the
same potential at very high energies, " because the
shape of the repulsive interaction would then become a

~ G. Breit, Phys. Rev. 84, 1053 (1951)."R. G. Sachs, Phys. Rev. 87, 1100 (1952}.
'4 H. W. Lewis (private communication).
'5 An estimate of the order of energy at which the potential is

still valid is provided by the mean value of the kinetic energy in
the deuteron ground state, calculated in Sec. V. In the laboratory
system, it corresponds to about 37 Mev.

significant factor. Moreover, the dependence of the
potential on the total energy W should then carefully
be taken into account.

In the case of meson-nucleon scattering, a weak
coupling treatment of the interaction Hamiltonian
(22) would probably lead to a serious disagreement (see
reference 17) with recent experimental data. ' It is,
however, not unreasonable to think that the role of the
radiative corrections is much more important in this
case than in the nucleon-nucleon interaction.

The author would like to express his gratitude to
Professor Oppenheimer for his kind hospitality at the
Institute for Advanced Study. This work could not
have been concluded without his continued encourage-
ment and his stimulating criticisms and suggestions.
The author is also very indebted to Professors Pais and
Peierls, and to Dr. F. Low, for numerous and valuable
discussions. , His thanks are finally due Professors Bethe
and Weisskopf, for two illuminating conversations.

APPENDIX

1. The functions I„(r) We hav. e

e""' (2~ '* 1 ~" sinkrkdk
I„(r)=(2~)-& ~' dk=

~

—(—
~ »+& (~) r J (k2+~&)~+I

(1a)

By using the integral representation of the Hankel
functions of imaginary argument (see reference 15, p.
172):

/2py" r" coskrdk
E (pr)=m lI'(e+-', )~

—
( (2a)

& r ) Jo (k'+p')"+&

I„(r) can easily be put into the form

)2q&1d- ~'* )rq"
(~) r dr I'(n+ i2) (2y,)-

Taking into account the relations (reference 15, p. 79)

—2E„'(x)=K„,(x)+E„+,(x),

—2 (nix) It „(x)=X„ i(x)—E„+i(x),

one finally obtains

(2~ & 2"e! pr q
"-'

Es 3 (26)!4p)

2. The functions J„(r). These functions are defined

by
g
—i (f1+k~) r

J„(r)=(2m) ', ' dkgdk2
~i~2(&i+ ~2)"

2 I" ~" sinkir sinker
ki4dkidk2. (6a)

+ 0 ~ 0 &1&2(~1+&2)

'6H. L. Anderson et a/. , Phys. Rev. 85, 936 (1952); 86, 793
(1952).
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Ii(r) =
2

I t
"( 1 1 ~ sinkir sinkprkikp

dkidk p.
prr' "p ~p &pip pii) ki' —kp'

By exchanging the integrations over kl and k2 in the
second part of the right-hand side, we obtain

4 r "sink2r
Ji(r) = Fi(kp, r)kpdkp,

%f a P (d2
2 j (Sa)

(a) pp=l: We multiply the numerator and the de-
nominator of the integrand by (p» —pip):

It follows, therefore, that

1 p" sin2k2r p
Ji(r) =—

~l kpdkp= —Ei(2pr), (10a)
r'

where use has been made of the definition of Ip(r) in the
previous paragraph.
(b) rp=Z: We differentiate Jp(pr) with respect to y:

8 &
—t', (lri+Irg) r

J,(pr)—= —
~I

— dkidkp
Bp (2pr)P piiPpipP

2p= —p[Ii(r)]'= ——[Ep(yr)7'. (11a)

where the function FI is defined by Since Jp(pr) —&0 for p~pp, it follows therefore that

r "sink&rk&
Fi(kp, r) = dki ———coskpr for r) 0. (9a)

p kiP —kpP 2

F00

J,(pr) = [ICp(x)]'xdx.
mr2 ~pr

(12a)
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C"(p,pn) C" Cross Section from Threshold to 340 Mev*
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The excitation function for the reaction C"(P,pn)C" has been measured from threshold to 340 Mev
using the Berkeley 40-ft linear accelerator and 184-in. cyclotron. Absolute cross-section measurements
were made at various energies, using a Faraday cup and calibrated beta-counter. The threshold occurs at
18.5&0.3 Mev. The cross section has a broad maximum of 100 millibarns near 45 Mev and decreases to
43 millibarns at 340 Mev.

I. INTRODUCTION

'HE formation of radioactive C" from C" by high
energy particles (protons, neutrons, deuterons,

and alpha-particles) has been widely used at this
laboratory as a monitor and detector. ' ' These reactions
have thresholds near 20 Mev and therefore discriminate
against low energy background. The positron activity
of C"(0.97 Mev, 20.5 min)' is convenient for short
activation and counting periods. Carbon targets are
readily available in the form of graphite or polystyrene.

*This work was sponsored by the AEC.
f Now at Los Alamos Scientific Laboratory, Los Alamos,

New Mexico,
f Now at California Institute of Technology, Pasadena,

California.
' Helmholz, McMillan, and Sewell, Phys. Rev. 72, 1003 (1947).' Chupp, Gardner, and Taylor, Phys. Rev. 73, 742 (1948).
'Cook, McMillan, Peterson, and Sewell, Phys. Rev. 75, 7

(1949).
4Bratenahl, Fernbach, Hildebrand, Leith, and Moyer, Phys.

Rev. 77, 597 (1950).
~ S. B. Jones and R. S. White, Phys. Rev. 78, 12 (1950).' W. J. Knox, Phys. Rev. 81, 687 (1951).
7 E. Siegbahn and E. Born, Arkiv Mat. Astron. Fysik 30B,

No. 3 (1944).

Knowledge of the variation of cross section with
energy and the absolute value of the cross section is
important to the extensive use of such reactions. The
C"(p,pn)C" reaction is of particular interest because
of the number of existing proton accelerators. A
considerable amount of work, both experimental and
theoretical, has already been done at the Radiation
Laboratory on this reaction. Before the 184-in. cyclotron
was converted from deuteron to proton acceleration,
Chupp and McMillan' measured the relative excitation
curve up to 140 Mev using protons "stripped" from
190-Mev deuterons inside the cyclotron vacuum tank.
By using this proton source, McMillan and Miller'
determined the absolute cross section at 62 Mev.
More recently Panofsky and Phillips, " working with
the Berkeley 32-Mev proton linear accelerator, estab-
lished the excitation curve up to 27 Mev. In particular
they studied the region just above the threshold in

W. W. Chupp and E. M. McMillan, Phys. Rev. 72, 873 (1947).' E. M. McMillan and R. D. Miller, Phys. Rev. 73, 80 (1948).
"W. K. H. Panofsky and R. Phillips, Phys. Rev. 74, 1732

(1948).


