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nucleus and the symmetrical mode. Nuclear tempera-
ture, defined by 1/7=d Inw(E)/dE, can be estimated
from the expression for nuclear level densities; w(E)
=Cexp[2(E/a)*]). For uranium C=10 and ¢=0.244
gives the observed 5 electron volt spacing of levels at
excitation energy of about 6 Mev. Under the assumption
that the energy level density in the distorted nucleus
varies in the same way, b becomes (0.244)~% and AE is
4.7 Mev. Figure 1 then indicates that the symmetrical

JONES,

AND PAEHLER

mode of fission requires the order of 4.7 Mev more
energy than the asymmetrical mode.*

The authors wish to express their thanks to Professor
John A. Wheeler of Princeton University for his very
valuable discussion and suggestions concerning the
theoretical interpretation.

4 Note added in proof —Professor V. F. Weisskopf (private
communication) uses C=0.005 and ¢=0.08 for the level densities
in uranium. With these constants, AE becomes 2.7 Mev.
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The method of Tamm and Dancoff, for the non-adiabatic treatment of the relativistic interaction of two
nucleons, is generalized in order to include nucleon pair creation and higher order effects in the exchange of
mesons. This generalized form of the Tamm-Dancoff method is shown to give results which are equivalent
to those obtained from the relativistic equation of Bethe and Salpeter. A detailed study is made of two
limiting cases: (a) no pair of nucleons is created in the intermediate states, but an arbitrary number of
mesons can be present at the same time; (b) the maximum number of mesons present at a given time is one,

but the number of pairs is unrestricted.

The two methods are applied to the calculation of the lowest order correction to the scalar meson inter-
action of two nucleons. It is shown that the exact correction, which is of the second order in the nucleon
velocities, can only be obtained through the inclusion of the fourth- and sixth-order interaction processes
involving, in the corresponding Feynman diagrams, the crossing of the meson lines.

1. INTRODUCTION

HE study of a system of two bound particles inter-
acting through a quantized field has usually been
done by means of the so-called “adiabatic”’ approxima-
tion, that is: an effective potential between the inter-
acting particles is calculated, neglecting their motion
during the exchange of field quanta; this potential is
then introduced into a wave equation, and the motion
of the interacting particles is worked out as a second
step. This method yields good results for nonrelativistic
potentials but fails in the case of intrinsically relativistic
interactions, such as that yielded by the pseudoscalar
meson theory. It has been shown, in this case,! that the
adiabatic approximation does not allow the system to
bind, even if a relativistic calculation is made to the
second order in the coupling constant. Furthermore, the
notion of effective potential becomes ambiguous when
higher order effects are considered.?

Since the physical evidence has focused the attention
on the pseudoscalar meson theory, it is important to
calculate the energy levels of a system of two bound
nucleons by means of a method which does not separate
the calculation of the interaction to a given order in the
coupling constant, from the derivation of the equations
of motion, valid to the same order. Such an approach

1 M. M. Lévy, Phys. Rev. 84, 441 (1951).
?Y. Nambu, Prog. Theor. Phys. 5, 614 (1950).

has first been made independently by Tamm?® and
Dancoff,* who derived an approximate second-order
equation for two particles interacting through a scalar
meson field. Another way to treat non-adiabatically a
bound system of two particles is provided by the co-
variant equation which has been proposed by Bethe
and Salpeter® and subsequently derived from field
theory by Gell-Mann and Low.*
It is the purpose of the present paper:

(a) to generalize the method of Tamm and Dancoff
(abbreviated as T.D. in the following) as to include
pair creation and higher order effects in the exchange of
mesons, in order to bring it into a suitable form for the
study of the pseudoscalar meson interaction between
nucleons;

(b) to compare this extended form of the T.D.
formalism, where the physical meaning of all quantities
is clear at all stages, with the results obtained from the
equation of Bethe and Salpeter (abbreviated as B.S.
in the following) ; it will be shown that both descriptions
are equivalent, although the way in which the inter-
action is expanded in powers of the coupling constant is
quite different ;

31. Tamm, J. Phys. (U.S.S.R.) 9, 449 (1945).

¢ S. M. Dancoff, Phys. Rev. 78, 382 (1950).

® E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
8 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
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() to illustrate this equivalence and to compare the
practical value of the two methods, by calculating the
lowest order non-adiabatic corrections to the scalar
meson interaction between two nucleons; it will be
shown that the ‘“ladder” approximation, in the B.S.
equation, as well as the second-order approximation in
the T.D. formalism, give rise to corrections of the first
order in nucleon velocities; however, when the fourth-
order effects in the exchange of mesons, especially those
which correspond to interaction diagrams involving
meson lines crossings, are taken into account, the non-
adiabatic corrections of the first order in »/c are can-
celled exactly, and the remaining corrections are of the
order of 12/¢2.

From the preceding study it will be concluded that it
is more convenient to use the T.D. method when only
convergent processes are taken into account; on the
other hand, when renormalizations of mass and charge
have to be carried out explicitly, it appears easier to use
the B.S. equation. The results of the present paper
provide a correspondence between the two methods,
and therefore make it possible to use them concurrently,
depending on the effects which have to be calculated.

The application of the general theory to the analysis
of the pseudoscalar meson interaction of two nucleons
and the calculation of the low energy properties of the
neutron-proton system will be considered in a subse-
quent paper.

2. EXTENSION OF THE TAMM-DANCOFF
FORMALISM

2.1. General Equations

Let us consider two nucleons (1) and (2), with wave
fields (1) and ¥(2) interacting through a neutral
meson’ field ¢. We write the Schrodinger equation for
the wave-functional ¥ of the system:®

—16¥/8i=(H+H)Y, (1)
in which H, is the free Hamiltonian
He= [ FOBSO+IQH
+Lr (Vo) u2o? ]} d%ndx,, (2)

where H, and H, are the free Hamiltonian operators of
particles (1) and (2), and = the field canonically con-
jugate to ¢. H' is an interaction Hamiltonian, the matrix
element of which describe the simultaneous creation (or
annihilation) of one meson and zero or one pair of
nucleons. Looking for stationary expressions of ¥, as a
function of the (common) time #, we expand it as a
series of the complete and orthonormal set of eigen-

7 The words “nucleon’” and “meson” are used, in this section,
as a matter of convenience. The formalism applies generally to
two Fermi-Dirac particles interacting through a Boson field.

8 A system of units in which #=c=1 is used throughout this
paper.
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functions of Hy:
W)= 2 armmytmmeiWe, (3)

Am,n

In this equation, W is the total energy of the system,
m the number of mesons present in the free state which
is considered, # the corresponding number of pairs of
nucleons; A is a variable which specifies the momenta,
spins, etc., --- of the particles of the systems and
ax™™ the quantized probability amplitude® of the
state (A, m, n). The solution of Eq. (1) leads to the fol-
lowing set of coupled integral equations:

[W_ Ex(m,n)Ja)\(m,n)

=Y S S OmulH b, a0, @)

g=n—1 p=m+l pu

where we have put:
O\ m, nH' |, p, )= @2, HYa™m).  (5)

One of the ways of solving the system of Egs. (4)
[other ways will be considered later] consists in elimi-
nating all the amplitudes except a (“®, by means of
successive substitutions. The resulting equation is of
the following form:

[W—E\©0]a, 00 =3 5 A@0 (A \)ar 9, (6)

p.a N
where A®9(\,\) is an interaction term which is
proportional to the 2pth power of the coupling constant
G, and which results from a series of virtual processes
such that the maximum numbers of mesons and nucleon
pairs in the intermediate states are, respectively, p and g.

The series on the right-hand side of (6) includes all
kinds of divergent processes, such as self-energy,
vacuum polarization, etc. In the framework of the
present formalism, it is not possible, even if the meson
interaction belongs to a renormalizable type,!° to sepa-
rate covariantly these divergences and to reinterpret
them as renormalization effects of mass and charge.!!
Tt is possible, however, to treat them separately, by
using the correspondence between the present formalism
and the covariant equation of Bethe and Salpeter, which
will be discussed in Sec. 3.

In the remaining paragraphs of this Section, we shall
only consider virtual .processes which, in quantum
electrodynamics and spinless meson theories, are es-
sentially convergent. We shall further limit ourselves
to two special cases:

9 These amplitudes have, of course, to be properly symmetrized.
The two originally interacting nucleons are treated separately
from the virtual pairs, since they cannot annihilate each other.

10 P, T. Matthews, Phil. Mag. 41, 185 (1950); A. Salam, Phys.
82, 217 (1951); 84, 426 (1951).

11 A covariant form of the configuration space treatment of the
two-body problem has recently been proposed by S. Schweber
and A. Wightman (to be published). Renormalization becomes
possible in their formalism, but meets with considerable difficul-
ties, mainly because of the vacuum fluctuations of which some
finite parts, depending on the total energy of the system, have to
be separated and re-interpreted. The simplest way to treat radia-

tive effects seems to be to use the equivalence between the T.D.
formalism and the B.S. equation (see Sec. 3).
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(a) No pair of nucleons can be produced, but an arbi-
trary number of mesons can simultaneously be present
in the system.

(b) The maximum number of mesons at any time is
one, but an arbitrary number of nucleon pairs can be
present at the same time.

2.2. Higher Order Effects in the Exchange
of Mesons (No Pairs Present)

For this problem we have to put n=¢=0 in (5).
The two special cases m< 1 and m <2 will first be dis-

LEVY

cussed in detail, as the results will be needed in Sec. 4,
for the calculation of the relativistic corrections to the
scalar interaction.

2.21. m<1

This simple case has been treated by Tamm? and
Dancoff.* The system (4) contains only two equations
connecting @, and ¢,*9. Eliminating the latter,
one obtains an equation like (6), with only one inter-
action term:

(P1, P2, 1, 2| H'| p1—x, pe, 51, $2)(D1—%, P2, 51, s2| H' [ pr—x, patx, 51, 52)

Ao(10 =
VV—Em —x—Epz‘—wx

which can be considered, in the momentum representa-
tion, as an ‘“‘equivalent potential,”” valid to the second
order in G. In this equation, p;, p. are the momenta of
the nucleons, M their mass, x the momentum of the
exchanged meson; sy, Ss, $1/, so’ represent the spin states
of the nucleons. We have set

E,= (M), o= (i)

2.22. m<2

The elimination of a,® and ¢,*® would already
lead, at this stage, to an Eq. (6) with an infinite series
of interaction terms. It is, however, possible to replace
this series by an interaction kernel obeying an integral
equation. By eliminating ¢,*9, one first gets an inhomo-
geneous integral equation for a9

[W—E0970,09 =3 (s, 1, 0| H'| N, 0, 0)an®
2

(4, 1,0/ H'|%,2,0)(»,2,0|H' |/, 1,0)
+ 0,1, (8)
v,u’ W_Ev(2,0)

Calculating the Neuman-Liouville series correspond-
ing to this equation, one finds that ¢,'® can be written

AP =

7
+a symmetrical term with respect to p; and ps,
in the form:
[W—E,40 0,00 =5 KaOay®,  (9)
=

where K, is a solution of the following equation :'?
K@= (u,1,0/H’|N,0,0)
(u,1,0|H"|v,2,0)(v, 2,0/ H'| ', 1,0)
g [(W—E,COW—E,Wo]

By substituting (9) in the first equation of (5), one
finally obtains the equation for a\(©:

[W——E)‘(O'O)]d)\(o'())
(A, 0,0[H'[u, 1,0)

=Y K v Way @0,
px W—E,00

The other amplitudes can then simply be expressed as
functions of @,©?.

It should be noted that, to this order (where only
terms up to the fourth order in the coupling constant
are correctly taken into account), it is entirely consistent
to replace KV by its first Born approximation. This
leads again to an equation like (6), with two interaction
terms: the first one is identical with A,, defined by (7);
the second can be split into two parts A4(® and A,®,
which can be written explicitly :

K. (10)

(1)

2(p1 P2, S1, S2|H,[p1_K; P, 51/7 s?)(l’l_": P2, sll) s2!Hl[p1_K_K/7 P2, 31”) Sg)

(W‘—Epl —-K—'Epz— wk)(W—Epl*K-—K'_Epg“"wx"“wx’)
(D1—x%—¥/, P2, 51", s2| H' | pr—x—¥/, patx, 517, 52)
X (pi—x—«/, potx, 51", s’ |H'|[p—x—¥, potx+¥, 51”7, 52")

X

A D=

(W — Ep1 —x—v'— Epy +x—wx’) (1)
2(p1, P, S1, 52| H' [pr—+/, po, sy $2) (01—, Ps, 51/, 2| H' | pr—x—¥/, Py, 51", 52)
(W — Epy —x'— Epg— we’) (W — Ep1 — ¢ —x'— Epy— wx— wx’)
(p1—x—x«, P2, 517, so| H'|pr—x—x’, patx, 51", 5')
X (Pr1—x—«', patx, 517, s’ | H' | pr—x—«/, potx+v/, 517, 537') (12b)

X

(W“‘ Epl —K —K'—Epz +x w«’)

2Tt is to be noted that, when the Neuman-Liouville expansion does not converge, Eq. (10) continues to have a meaning.
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plus the symmetrical terms with respect to p; and p..
These interaction terms correspond to virtual processes
which are illustrated®® in Fig. 1: A4 corresponds to
graphs (a) and (a"); As? to (b) and (b").

The process where meson «’ is absorbed by particle (1)
before x has been emitted has already been taken care
of in the first term of the right-hand side of (6). This
can be seen by iterating Eq. (6) an arbitrary number
of times. An important feature of the present formalism
is, consequently, that an infinite number of virtual
processes is already included in a single interaction
term. It is, therefore, suited to the treatment of bound
states problems, where the interaction between the
nucleons occurs during a long time.

2.23. m Arbitrary

We first suppose that the probability amplitudes of
the states where the number of mesons is higher than
N+1 (N being an arbitrary positive integer) are suffi-
ciently small and can be neglected. The system (5)
consists, in this case, in a set of N+4-2 coupled equations,
the mth of which connects a,*=1:9, ¢, and g,"+1.0,
By eliminating all the amplitudes except a9, one
gets for the latter amplitude an equation identical with
(9); but the kernel K ,»V, does not satisfy any longer
Eq. (10). Instead, one introduces a series of kernels

K, N+

sy Koawgnevr
defined by the following equations:
K™=\, m,0|H'|u, m—1,0)
(\, m, 0| H'|w', m+1, 0)
0 W — B L0 JLI — B m0]

K yn DK, )
(13)

with m=1, 2---N+1, and K,,¥*?=0. All the ampli-
tudes ax™® are then expressed as functions of a9,
through the kernels K@, --.) K™ by means of the
equation:

[W_E)\(m.o)]a)\(m.ﬂ)
K™ K piug™ -+ Ky 2O

= X ay

p1,e e pmet N [W_Eul(m-l.o)] . [W“Eum_l(l'o)]

0.0,

(14)

These equations are valid for any value of the coup-
ling constant G, if there exist a finite number of inter-
mediate states having higher probability amplitudes
than all the others. On the other hand, they are more
convenient than the system (5), because one has now to
solve a set of uncoupled equations, the kernel of each

8 1n the graphical description of the virtual exchange effects,
a conventional time ordering is used by which the emission and
absorption of mesons, the creation or annihilation of pairs, occur
in the same order as the corresponding matrix elements in
A®@D (X N'), counted from the right to the left.

one being defined by the solution of the preceding one.
The first N equations are inhomogeneous; the eigen-
value problem occurs only in the solution of the last
one [Eq. (9)], which is homogeneous. Furthermore,
the problem is now all set for an application of perturba-
tion theory: having solved the system of equations
corresponding to m< N1, it is possible, by doing only
some integrations, to calculate the correction to the
energy levels which is provided by the system corre-
sponding to m<N+-2.

When it is possible to expand the interaction in
powers of G2, one can replace Egs. (9) and (13) by
Eq. (6), with ¢=0 and

AP, X)
A\ 0,0[H' |1, 1,0)(u1, 1,0 H'| g, 2, 0)
[(W—Eu GO W —Eu®0]
(i1, 7521, O| H' | sy 75, 0)
[W—Eu]
X(#zp—m 2,0|H'| uap1, 1, 0)(2p1, 1, 0[ H'[ X, 0, 0)'
[W—Eusp 0]

wi (r4)

X IT

(15)
Vd 7
e N £ b,
7 N ~
2 oA
a a’ b b’

Fic. 1. Virtual processes involving two mesons
(and no pairs) in the intermediate states.

The summation of the right-hand side is extended on
all possible sets of 2p—4 numbers (r;), with =3, ---,
2p—2, which satisfy the following conditions: 7;<p,
7ip1=7;=£1, r2=79, 9=2. The formal expression (15)
might allow, in certain cases, the summation of the
interaction terms which appear on the right-hand side
of (6).

2.3. Lowest Order Pair Creation Effects

We consider the case where the maximum number of
mesons which can be present at a given time in the
intermediate states is one, the number of nucleon pairs
simultaneously present being unrestricted. This case
includes the lowest order exchange processes in which
virtual pair creation can affect the interaction of the
two particles of the system, and not merely their self-
energy. After a brief study of the general equations, we
shall derive in an explicit fashion the effective inter-
action resulting from the creation of two virtual pairs.

2.31. General Equations for m< 1, n Arbitrary

For each value of #, the system (4) includes two equa-
tions, defining the amplitudes a,*™ and a\*'™. The
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latter can be eliminated so that the transformed system
contains only the probability amplitudes of states where
no meson is present:

[W — Ep\©.m g, 0.»

n+4-2
= X 200"\ N)av®), (16)
oL =n~2 M
where we have set:
Q™A N)
w1 (N O0,n|H'|u, 1, p)(u, 1, p|H'[N,0,n)
= = (1)

p=n—1 4 [W—E, 7]
in which p and #»’ are restricted by the inequalities:
n—1<p<n+1, p—1<w'<p+1. Q" I(\, N) is a
“reduced” matrix element for the transitions between
two states where #’ and » nucleon pairs are present
respectively.

The form of Egs. (16) is such that it is possible to
apply to them the method of integral equations and
successive kernels developed in Sec. 2.23. The situation

-

--1" K F16. 2. A virtual process
involving two pairs, in the
intermediate states, but not
more than one meson at a

- given time.
—_
="K
(1 (2)

is, however, a little more complicated, since the summa-
tion of the right-hand side extends over five amplitudes,
instead of just two as in the case where no pairs are
present. Two series of kernels have to be defined, by
means of the equations:

[W — E\©.) g, (0.m
=W LD(\, N)an @D MO\, N )ay @2, (18)

M. LEVY

and these kernels are solutions of integral equations,
the kernels of which are functions of other kernels
corresponding to higher values of 7.

When it is possible to expand the interaction in
powers of G, one can replace Egs. (16) by Eq. (6) with
=1, where the interaction terms A®:? can be written
explicitly :

AGO(\, \)

5> QO w)

a=1,28=12(r) p W—E; 0

a2 QUaTH (g, piys)
X ————

=1 W—Em‘+1(0' ri-+1)

Q% (g1, ). (19)

The summation of the right-hand side extends over
all possible sets of ¢g—1 positive integers (r,), with
i=1,2, - .-, ¢g—1, which satisfy the conditions: 0<7;<g,
7'{—2_<_1’¢+1S1’i+2, Nn=a, re1= ﬁ

The generalization of Eqgs. (16) and (19) to the case
where more than one meson is present at one time is
straightforward, although the equations become com-
plicated. The only modification which has to be made
is in the form of Q" (X, N"), which becomes analogous
to A®O(\, \) of Eq. (15).

2.32. Effective Interaction Resulting from
the Creation of Two Virtual Pairs

This calculation, which illustrates the formal equa-
tions of the preceding paragraph, will also be used in
the next section for comparison with the results ob-
tained from the B.S. equation: it will then provide an
example of the analytical differences which occur be-
tween the two treatments when virtual nucleon pairs
are present in the intermediate states.

After inserting in the system (4) the conditions
m<1, n=0 or 2, we obtain for a,(>?, an equation like
(6), with two interaction terms on the right-hand side.
The first is identical with A, of (7) ; the second, which
results from the virtual process illustrated in Fig. 2
(plus those which are symmetrical with respect to
particles 1 and 2), has the following expression:

1 T1®(p1, —p1—%)T12® (P2, — P2t ) Ton® (—p1—«', prtx+x )1 ®(—potu’, po—x—x«')

A=

(20)

2172 w,(w,('[W“‘Em—Epg*Em —x’—Em —k =&’ wx]

X[W“Em—Em“Em +«'— Epy =’ — Ep1+x+«'— Eps —« —x’]

where we have used the notation
0, OIHIII"': L, D=[2Ve ] T (p,, —p-—«), (21)

for the matrix element describing the creation of one
meson and one nucleon pair; p. is the initial momentum

X[W“Em“‘Em +x'— Epy +x+«'— Eps —K—K'—O)x']

of nucleon (7), x the momentum of the emitted meson
and V the volume in which the nucleon wave functions
are normalized. We have set w.= («k*+u2)! Another
slightly more general definition of I';;”(p, p’) will be
given in 3.1.
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3. NON-ADIABATIC CORRECTIONS IN THE BETHE
AND SALPETER EQUATION

We write B.S. equation, in coordinate space, as
follows :14

X (%1, %2) = ‘ISF(”(% %1")Sp? (s, x,")

XG(xl’, x2’ , xl”, xg”)x(xl”, xz“)dxl’dxg'dxl"dxg”, (22)

where the indices (1) and (2) refer to the nucleons.
For the interaction kernel G, which is a covariant func-
tion of x/'—wy, 2"—x,”, Bethe and Salpeter have
proposed an expansion in powers of the coupling
constant:

G=GrtGit -

where G: is the Feynman expression corresponding to
the second-order diagram of the S-matrix:

(23)

’ ’ 7" ”
Gg(xl y X2 3 X1, X2 )

=G2AF(?)C1/—‘ xg’)é(xl’, xl”)é(xz’, xz”). (24)
The functions Sr and Ap, which appear in (22) and (24)
are defined according to Dyson.!® The replacement of
G by G, corresponds to the so-called “ladder approxima-
tion,” to which we shall restrict ourselves in the follow-
ing. The extension of our calculations to the other terms
of the interaction can be carried out in a straightforward
way.

3.1. Expression of Eq. (22) in the Momentum
Representation

The “wave function” x(x, x.) is expanded by means
of its Fourier coefficients, in the following way:

1
x(@1, %) =2 3 —Ay(py, p2)

4,7 P1,P2
X ui( by (pl)uj(‘l) (pz)ei(pwﬁpzzz), (25)

where the function #,”(p,) is the amplitude of the
Dirac spinor, obeying the following equation:

[t DA 1O Bt MIu(p)=0.  (26)
The indices 4, j can take the values 1, 2. We have set
Ei(p,)=—Es(p,)=Ep,. Substituting (25) into (22),
using the momentum representation of the Sy and Ap
functions and multiplying both sides on the right with

D (p1) B () (i, D, D+ M) (i, p, O+ M), the fol-

4 From Eq. (22) to Eq. (31) inclusive, light type is used for
4-dimensional quantities, heavy type for three-dimensional ones.
In the rest of the paper, light type is used for one-dimensional
quantities, unless otherwise stated.

15 F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).

lowing equation is obtained:
Aii(pr, p2)
— 262
2V[E®O—E(p1)+iem ] E®— E (p)+ie;n]
L PT 5P Aa(pr—k, pat-«)
XL 2 ,

PR k> u2—in

27)

~+symmetrical term with respect to particles (1) and (2),
where the following notations have been used:

E(r) — _,ip4(r)
and
T = (p) 74P 0P (prt- e.x),

0™ being an operator connected with the properties of
the meson field which is considered: 0 =1 for scalar,
15 for pseudoscalar, v, for vector fields, etc. We
have also e;=-1, ea=—1, 5 is a small positive quan-
tity which tends to zero after the summation over « on
the right hand side of (27) has been carried out.

We use in the following the center of gravity system,
defined as: pV+p@ = P(0,0,0, W), pO— p® = p(p, ipy).
By going to the limit of a continuous distribution of the
momenta, we obtain the equation:

1 5 —1G?
LAi(p) — poJLA (D) +po] k.t (2m)*
Xfri/c“)l'jlmz‘lkt(p—f-k, PotKo)dkdko

2

Az’i(p: ?0)—;

, (28)

w—Kko2—1n

where we have put:
A(p)=3W—E(p)+ien.

When the times of the two particles are equalled in
x(1, %) the corresponding amplitude is given by :

1 pte
aii(p)=— f Aii(p, po)dpo.

™

(29)

(30)

3.2. Adiabatic Approximation in the B.S. Equation

In order to obtain the adiabatic approximations to
Eq. (28), we neglect the motion of the nucleons while
the mesons are in flight. Mathematically, this corre-
sponds to replacing Ar, in Eq. (22), by its time integral,
multiplied by a é-function operating on the time co-
ordinate.

o0
Ar() () f Ar(x, z)d. (31)

As is well known, the integral of the right-hand side of
(31) is equal to the Yukawa potential. With the help of
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(30), Eq. (28) becomes:

Fi(p)
A9(p, po)= ) (32)
CA:(p) — poJLAi(P)+po]
where we have put:
TaOT 1P @@ (p+x)d*
o1 E [ 2 . (39)
k,l Wy

with A=G*(27)~% In this approximation, the ‘“odd”
components of a;; (corresponding to i3 7) vanish. The
“even’” components obey the equation:

[W—2E(p)Ja::”(p)
T OT 3P are @ (p+x)d«
P

(34)

Wy
This equation does not exactly correspond to the non-
relativistic limit of (28), because it still involves the
exact spin matrix elements and one small component

LEVY

of the amplitude. Its form is that of a two-particle
Dirac equation, where the “odd” components!'® of the
wave-function are equalled to zero.

3.3. Non-Adiabatic Corrections (Pairs Excluded)

The non-adiabatic corrections to Eq. (34) are calcu-
lated by inserting on the right-hand side the “adiabatic”
approximation and iterating the equation an arbitrary
number of times. When no pairs are created during the
interaction of the two nucleons, Eq. (28) is restricted to
the “large” components of the amplitude 4;;(i=j=1).
In this subsection, all the indices will be dropped; we
shall write, for example, Auu=4, an=a, Ai(p)=A,,
Ir'u®(p, p)=T%(p, p') etc.

In order to calculate the first non-adiabatic correc-
tion, we insert in the right-hand side of (28) the trial-
function A(p, po)=—2A,a(p)[A*—po*1™, which has
the same dependence on p, as the adiabatic solution,
and satisfies Eq. (30). Integrating over ko yields the
equation :

A(Dr P0)=
A

p2_p02

Inserting this expression into the right-hand side of (30)
leads to an equation for a(p) which can be written, with
the help of (29), as follows:

(W—2E,)a(p)
\ I'D(p, p+x)I®(—p, —p—x)a(p+x)dx
B f (W —Ep—Epra—w20) '

(36)

2N ijmp+ﬂNW—m—memW—mﬁ@+@ﬁx
wxl:(prLx_wx)L‘pOz] .

(35)

The interaction term is readily found to be identical
with (7) if the latter is written in the center-of-mass
system (p1=-p, po=—p). The second approximation
to Eq. (34) is obtained by inserting in the right-hand
side of (28) the expression (35) which has just been
calculated for A(p, po). By making use of (30), one
obtains the equation:

I'®O(p, p+x)I'®(—p, —p—x)a(p+x)d’

(W —2E,)a(p) = [ T ——

2

l [ TO(p, p+)T@(—p, —p—k) TV (prtx, p+eta! )T (—p—s, —p—x—)a(p-+r-+e)d%d"
e (W—Eppo—Epierw— @) (W—Ep— Epiiiw—x— w0 ) W—Ep— Epyo— o) .

37)

On the right-hand side, the kernel of the first term is again identical with (7); the kernel of the second term
is"equal to 3A4, defined by (12a), and corresponds to the virtual process where two mesons can be present
at the same time, without crossing of meson lines illustrated in Fig. 1(a).

The previous procedure can be continued to all orders in the coupling constant. The amplitude a(p) obeys the
following general equation, for which a recurrence proof can be given through lengthy but straightforward cal-

culations:
had AN\ D(n)(p, Ky 00y Kn)
(W—=2E,)alp)=2 Y (—) f a(ptwrt - - Fwn)dxy - - dPx, (38)
'th n=1 2 Wk1® *  Wkn
wi
n—1
IT [T@(ptwat - - Fxgmy, pHwat - Fx) TO(—p—w1— - - — %1, —P—¥1— " - —Kg)
=1
D = - (39)
IL DW= E(ptwt -+ an) = Blphrect -+ ) —wa— - —aeg]
=1
n—1
XL (W= Ey= E@tgsrt ) —ogn— -+ =]

=1
16 Namely, those which correspond to 77j.
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Equation (38) is identical with Eqgs. (6) and (15) for
ax®? if; in all the processes formally included in the
latter, only the exchange effects with no meson lines
crossing are taken into account. In the ladder approxi-
mation, when no pairs are present, one has therefore the
result:

a®%(p, —p)=a(p); (40)
the Fourier coefficient of the wave function correspond-
ing to equal times of the particles is identical with the
probability amplitude of the state where only two nu-
cleons, and no meson, are present.

3.4. Calculation of the First Non-Adiabatic
Approximation, Pair Creation Being Included

In this case, the whole set of components of A4,;; must
be considered. One inserts on the right-hand side of (28)
the adiabatic solution defined by (32). Making use of
(30) and (33), the equation for the amplitude corre-
sponding to equal times of the particles is obtained :

[W—E(p)— E;(p)Ja:;(p)

== | Tu®T;;PK,;*(p, p+x)an(p+x)di, (41)
k,l

where the kernel has the following expression:

—ile—e)(a—e)

K= ,
Wy

€u€,y

X X (42)
Y=k

k=1 e eubu(D)— 6o ().

By eliminating all the amplitudes except a;; by means
of successive substitution, one obtains an equation of
the general form:

(W—2E,)an(@) =% \» f Aup, D)an(@)d, (43)

where all the interaction kernels corresponding to vir-
tual processes which do not involve pair creation are
identical with those defined by Eq. (15). When nucleon
pairs are created in the intermediate states, the corre-
sponding kernels of Eq. (43) coincide with those defined
by Eq. (19) only in the nonrelativistic limit. For ex-
ample, the process illustrated by Fig. 2 leads to the
interaction term: ‘

I®(p, p)T1®(=p, —p")Tu® (", p)Tu®(—p", —p))d*p"

(44)

A2 (p, p’)=f e
w(p, p)w(p”, pYW2Ep ) (wp, prrtEptEpr)(wpr, prtEprt+Eprr)

which differs from the corresponding expression (20) in
the T.D. formalism by corrections proportional to
(2E,—W) or (2E,~—W). These differences tend to
zero in the nonrelativistic limit, since, in that case, the
amplitudes a;1(p) and a1:(p’) are mainly concentrated
in the region of low momenta.l”

4. RELATIVISTIC CORRECTIONS TO THE SCALAR
MESON INTERACTION OF TWO NUCLEONS

In this section we calculate the lowest order rela-
tivistic corrections to the scalar neutral meson interac-
tion of two nucleons. The purpose of this application is
to compare in practical calculations the two non-
adiabatic methods which have been discussed, in
general terms, in Secs. 2 and 3.

Before relativistic “corrections” can be calculated,
it is necessary to define briefly the nonrelativistic equa-
tion, wave function and coupling constant which have
to be corrected.

4.1. Nonrelativistic Schrodinger Equation

In the scalar (neutral) meson theory, the nonrela-
tivistic amplitude ao(p) is constituted by four “large”

17 These differences result from the fact that the “one-meson
part” of the “ladder” approximation includes a small fraction of
the contributions of the exchange effects where, in the intermediate
states, more than two pairs are present. It is to be noted that the
difference 2E, —W, where p” is the intermediate momentum
which appears in Eq. (44), cannot be considered as small, even in
the non-relativistic limit. Terms involving p” are in fact, identical
in both expressions (20) and (44).

components, all of them obeying the same equation
(there is no spin-separation between the stationary
states):

o(p+x)d?
[+ M |w]| Jao(p) = MM f a—(i——m,

w,?

(45)

where w is the binding energy: w=W—2M. The sim-
plest approximation to the solution of this equation?® is
provided by the “trial”-function of Wilson:!® ao(p)
~(p*+~?)~2 The eigenvalue corresponding to the
ground state is obtained by means of the variational
principle :2° §A\o=0, where A, is defined by:

fao*(p)wfzao(p—{—k)d%d"'x
—= . (46)
Jar@ e+ ol Jaway

The corresponding values of the constants are as follows:
v=140.25 Mev, (u/M=0.150), |w|=2.185 Mev,

18 For a general study of the solution of this equation in the
momentum representation, see: M. M. Lévy, Proc. Roy. Soc.
(London) A204, 145 (1950), and J. phys. et radium (to be pub-
lished).

19 A, H. Wilson, Proc. Cambridge Phil. Soc. 34, 365 (1938).

20 Tt is simpler, and more in accordance with the practical situa-
tion, where the binding energy is known, and the coupling con-
stant unknown, to vary X\ instead of |w]|.
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v=0.843u, G*/4w=2mN\o=2.453(u/M). The mean value
of the momentum is given by: {(p*/M?)=~*/M?. Con-
sequently, G*/4n, (p/M)=(v/c) and u/M are all of
the same order of magnitude.

4.2. Variational Principle in a Perturbation
Expansion

We need a formula which defines, through a varia-
tional principle, the corrections to A¢ introduced by a
relativistic correction to the potential. When only one
large amplitude a(p) is involved, it obeys an integral
equation which can be written in general:

T(p)a(p)=\ f K@, praptod.  (47)

We suppose that the kernel of this equation can be split

LEVY

into two parts:

KzKO(p) p+K)+K1(p) p+K)1 (48)

where Ko= w2, and K is a relativistic correction which
is supposed to be small. We write: a(p)=a(p)+a:1(p),
A=N\o+\1. Multiplying both sides of (47) with ao*(p),
and integrating over p, we obtain by taking into ac-
count the fact that ao(p) is solution of the variational
principle (46), the following expression :

f a* @) K1(p, D) a0(p+x)d*pd%
- 2= _ . (49
' f a6* () Ko(p, pH)ao(p-Ha)d*pdie

1

In the general case where the amplitude e(p) has “large”
and “‘small” components a;;(p), the generalizations of
Egs. (47) and (49) are as follows:

Tija:5(p)=X\ % LT P K% (p, p+x)an(ptx)d, (47g)
1 A ch . a:; V" (P)TaPT P K #(p, pHx)an® (p+x)d*pd«
1 ik,
S = (492)
0 0

2 | 2% (0)T:s(p)a: ¥ (p)d%

In this last formula, @;;( is the solution of the equation:
Tia:%(@) =22 | TaPT 1P 0 e (p+x)d%, (50)
&l

and I'y™ are the spin matrix elements defined by
Eq. (28).

4.3. Relativistic Corrections (Pair Formation
Neglected)

In this sub-section, the corrections which come from
the retardation of the meson field, and those contributed
by the relativistic part of the spin-matrix elements
connecting positive energy states, are estimated.

The spin matrix elements are easily calculated in the
scalar case. One gets, for example, for particle (1):

oo | E@TM A+ Eprta])
ik l 4E(p)Er(p+x)
X {1=Ri(p)- Re(p+x)+io® - [Ri(p) X Ri(p+x) ]},

(51)

with Ry (p)=[M+E.p)]-p. The relativistic part
of the matrix elements which connect positive energy
states only (i=j=k=I=1) contributes corrections
which are clearly of the order of #*/¢% or higher. The
separation singlet-triplet is also of the same order.

4.31. Lowest Order Correction in the B.S. Equation

It is convenient, in order to calculate the relativistic
corrections included in the B.S. equation, to use
Eq. (38), which involves only the amplitude a(p). The
two first terms of the expansion of the right-hand side
are written more explicitly in Eq. (37). On the right-
hand side of this equation, the first term includes the
Yukawa potential, plus an interaction term which is
of the order of v/c, since:

(EBptEprs—W)/wi)~ (p*/ Mu)~ (u/M).

The contribution of the second term is also a correction
of the order of /¢, since A, is itself of the order of u/M.
In this last term, all the differences between W and the
sum of two free energies of the interacting particles can
be dropped in the denominator of the kernel. The higher
order terms, in the expansion of the right of (55), are
proportional to (A/2)"?, with 2> 3. They are, therefore,
of the order #%/¢% or higher. The equation which, in
the “ladder” approximation of the B.S. equation, in-
cludes all the corrections of the first order in 2/c is,
consequently, of the form (47) with:

W_E _E +K
Ki(p, p¥)=———

Wy
o d*’
+_

2 wx’2wx—-x’2(wx+ wx—-x’)

(52)
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If this expression is introduced into (49), the resulting
value of Ni/A is obviously of the order of u/M. In-
cidentally, the equation which was derived by Tamm?
and Dancoff* for the scalar meson theory included, as
a non-adiabatic correction, only the first term of the
right-hand side of (52). The second one, which is proper
to the ‘“ladder” approximation of the B.S. equation,
corresponds to the exchange process illustrated in
graph (1a). Both terms are of the same order of mag-
nitude.*!

4.32. Calculation of the Exact Correction
(In the Absence of Pair Formation)

In the calculation of the preceding sub-section, three
contributions to the relativistic corrections of the order
of v/¢ have been neglected: these come from the ex-
change processes illustrated by diagrams (1a’), (1b),
(1b”), which involve meson lines crossings. They can be
taken into account if one considers instead of Eq. (38)
the general Eq. (6) obtained, in the T.D. formalism,
for ax®9. The interaction terms of that equation are
written up to the fourth order in Egs. (7), (12a), and
(12b). Adding these terms, and keeping only the parts
which are of the order of u/M, the following equation
is obtained:

p*+M|w|
————a(p)
1 E4Ep c—W
=>\f—(1—————————p il )a(p+k)d3K
o, W,
a(p+x+x')d3kd*c’
e f . (53)
03wy

The second term of the right-hand side includes, in the
limit where all the differences between W and the sum
of two free energies are equalled to zero, the contribu-
tions of the kernels A4s®) A,® of Eq. (12). Since we are
using perturbation theory, we can replace a(p+x-+x)
by ao(p+x+«’). After integrating over x’, with the
help of (45), Eq. (53) becomes of the form (47), with:

2 Another way to obtain the correction Ai/Ao from the B.S.
equation would be to solve directly Eq. (28), by means of a varia-
tional principle. It is clear, however, that as far as the scalar
interaction is concerned, the method would give results identical
with those obtained above: firstly because, when pair formation
is not considered, Eqs. (28) and (38) are equivalent; secondly,
because, to obtain the expression (52) of Ki(p, p+«), only terms
of the order of 12/c? or higher have been neglected. Furthermore, a
direct solution of Eq. (28) by means of a variational principle is
not only unnecessary in the present case, but also hazardous,
since any “trial” function is likely to become a bad approximation
in the immediate neighborhood of the poles of 4 (p, po). A large
number of variation-iterations are necessary, in order to test the
accuracy of the value of N\ which is obtained. Otherwise, the errors
introduced by the variational principle might well be of the same
order as (if not bigger than) the “correction” which one wants to
calculate.

Ki(p, p+x)=[p+x)*—p’]/2Mw.®. Introducing this ex-
pression into (49), we get, because of the symmetry of
the integrations over p and p+x: \;=0. We see there-
fore that the contributions of the order of v/¢ coming
from all the exchange processes which do not involve
pair formation cancel each other, leaving a correction
of the order of */¢? only.

This result is valid for neutral and symmetrically
charged scalar meson theories.?? It is not valid for a
purely charged theory, since the diagrams involving
meson lines crossings are, in this case, excluded by
charge conservation. In the present state of the physical
evidence, however, it is not easy to justify a purely
charged meson theory.

4.4. Corrections Arising from Pair Formation

We finally want to prove that, for the scalar meson
interaction, pair formation contributes only corrections
of the order of (v/c)* to the corrective ratio N1/Ao. The
most convenient way is, in this case, to use Eq. (41),
which belongs to the general type (47g), and to calcu-
late A1/Ap from Eq. (49g).

The introduction of the small components of a;;(p)
produces a singlet-triplet separation. It is, however,
easy to see that the corrections to the coupling constant
are of the same order for both kinds of states. It is,
therefore, sufficient and simpler to consider singlet
states only. In this case, the nonvanishing components
of the zero-order amplitude defined by (45) are:
a11® = —a;;%¥ =qy(p). The amplitude a;;(p) however,
which satisfies Eq. (50), possesses, in addition, the
components:%

120 = —anV=u;(p), a1?=—a21®=us(p),

012D =—an®=uz(p), a12¥=—axuP=u4p),

with the following definition :

U= M4*= ﬁ(zf I p+KI [SK(I) - in(Q)]Md:;K’
wJd oM W
. » [P+ M|w|]
Ug= —Uy¥ = ——— ———a,(p
M MW
o plodr e e o s
wJ 2 Lip|-|ptxl I o,

where S,=[pX(p+x)]-[|p|:|p+x| ]! Using Eq.

2 It holds for quantum electrodynamics and neutral vector
meson theory, because the spin matrix elements give also, in these
cases, corrections of the order of #2/c2.

% The amplitude a;; possesses, for every value of ¢ and 7, 4 spin-
components a;;, r=1, 2, 3, 4. The components as; have been
dropped everywhere, since they are of a still higher order in v/c.
See reference 1.
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(49g), the following value of A;/\¢ is obtained:
M

f ad* @+ M || Jao(p)d%p

MY/ 2MW

*( +x+x’
Xj%ow%@ )HMWWH+WWV&’

— [p+x|72[|p+x|>+p- (p+x) [ | p+x|®

+ () (prtr Tdpdid®’y.  (55)

The right-hand side of this equation is of the order of
(u/M)*~(v/c)*. Since pair formation does not con-
tribute to the corrections of the order of #%/c? these
can be obtained exactly by considering:

(a) the exchange processes, including those which
involve meson lines crossings, represented by A,
Afe® and Ae, in Egs. (7), (12a), (12b), (15).

(b) the relativistic part of the spin matrix elements
connected positive energy states, in the expression of
A, only. This contribution produces the lowest order
singlet-triplet separation, which is, therefore, of the
order of v2/c%

5. SUMMARY AND CONCLUSION

The results of the investigation described in this
paper can be summarized as follows:

(1) The T.D. formalism can be used for the non-
adiabatic treatment of the relativistic two-body prob-
lem, even if it is physically necessary to take into ac-
count virtual pair formation and higher order exchange
effects. It has been shown that the T.D. formalism
provides, through the natural play of the equations
of motion, an iteration of the exchange processes in-
cluded in these equations; so that, to any order in the

M. LEVY

coupling constant, it describes an infinite series of
exchange effects. This makes it suitable to the descrip-
tion of bound systems, in which the interaction operates
during a long time.

(2) The B.S. equation has been found to give, within
the limits of the “ladder’”” approximation, results which
are equivalent to those which can be obtained, with the
same approximation, from the T.D. formalism. While,
in the absence of pair creation, these results are iden-
tical in both methods, there exist, when pair formation
is taken into account, some small analytical differences,
which, however, tend to zero in the nonrelativistic
limit.

(3) A detailed study of the relativistic corrections to
the scalar meson interaction of two nucleons shows
that the “ladder’” approximation of the B.S. equation
leads to wrong results, because it neglects the processes
involving meson lines crossings, which are thus physi-
cally important.

The general methods developed in this paper will be
used subsequently for the treatment of the neutron-
proton system in the case of the symmetrical pseudo-
scalar meson interaction. While most of the interaction
processes will be investigated in the framework of the
T.D. formalism, the equivalence between this formalism
and the B.S. equation will be used in order to calculate
the radiative corrections to the interaction, where an
explicit renormalization of mass and charge has to be
carried out.
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