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DiiBaction in Time~

MARcos MosHINsKY

(Received June 6, 1952)

In a previous note a dynamical description of resonance scattering was given, and transient terms appeared
in the wave function describing the process. To understand the physical significance of these terms, the
transient effects that appear when a shutter is opened are discussed in this paper. For a nonrelativistic
beam of particles, the transient current has a close mathematical res mblance with the intensity of light
in the Fresnel diffraction by a straight edge. This is the reason for calling the transient phenomena by
the name of diffraction in time.

The shutter problem is discussed for particles whose wave functions satisfy the Schrodinger equation,
the ordinary wave equation, and the Klein-Gordon equation. Only for the Schrodinger time-dependent
equation do the transient wave functions resemble the solutions that appear in Sommerfeld's theory of
diffraction. The connection of transient phenomena with the time-energy uncertainty relation, and the
interpretation of the transient current in a scattering process, are briefly discussed. The relativistic wave
functions for the shutter problem may play an important role in the dynamical description of a relativistic
scattering process.

I. INTRODUCTION
"'X a previous paper' we analyzed the dynamical
~ ~ behavior of a resonance scattering process, when the
scatterer (represented by an appropriate bounds. ry
condition) was introduced into the beam of incident
particles at a de6nite time. As a result of the introduc-
tion of the scatterer, transient terms appeared in the
wave function representing the process, and with their
help we could make the transition from the initial state
(plane wave) to the final state (plane plus scattered
waves).

Transient terms are to be expected in a dynamical
description of resonance scattering, from the analogy
that this description has with the theory of resonant
electric circuits. As is well known, in circuit theory
the appearance of resonances in the stationary current
is closely related with the transients of the circuit, as
the same parameters (resonant frequencies and damping
factors) appear in both. '

The transient terms in a scattering process contain,
besides those that could be considered the analogous of
electric circuit theory, terms that are related to the
time-energy uncertainty relation, 4 as quantum me-
chanics is used in the description of the scattering.

To understand the physical meaning of the transient
terms in the resonance scattering process, it seemed of
interest to analyze first the transient effects that appear
when the propagation of a beam of particles is inter-
rupted. The more complicated phenomenon, where an
actual scatterer (represented by a potential or by
boundary conditions') is introduced into the beam of
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incident particles, will be discussed briefly at the
conclusion of this paper.

We deal here with the transient terms in the wave
function that appear when a shutter is opened. It will
be shown in the next section, that when the state of
the beam of particles is represented by a wave function
satisfying the time-dependent Schrodinger equation,
the transient current has a remarkable mathematical
similarity with the intensity of light in the Fresnel
diGraction by a straight edge. ' The transient phenomena
have therefore been given the name of diGraction in
tim, e.

The form of the transient terms of f that appea, r
when the shutter is opened, is strongly dependent on
the type of wave equation satisfied by P. In the present
paper we analyze the transient terms that appear when
the P's satisfy the Schrodinger equation, the ordinary
wave equation, and the Klein-Gordon equation. Only
for the Schrodinger equation is there an analogy with
the phenomena of optical diffraction, which has to do
with the resemblance that the solutions have with those
that appear in Sommerfeld's' theory of diffraction.

IL THE SHUTTER PROBLEM

The problem we shall discuss in this section is the
following: a monochromatic beam of particles of mass
ns, energy (flak'/2m), moving parallel to the x-axis, is
interrupted at @=0 by a shutter perpendicular to the
beam, as illustrated in Fig. 1. If at t=0 the shutter is
opened, what will be the transient particle current
observed at a distance x from, the shutter)

To set the mathematical problem, we must first give
the behavior of the shutter, i.e., if it acts as a perfect
absorber (no reflected wave), or a perfect reflector (an
infinite potential barrier), or something between the
two. For simplicity we will assume that the shutter

M. Born, Optik (Julius Springer, Berlin, 1933), pp. 192—5.
~ A. Sommerfeld, T/1eorie der Beugung, Chap. XX of the

Frank-v. Mises. Differential and lntegralrleichnngen-der Mechanic
und Phyrik (Fried. Vieweg and Sohn, Braunschweig, 1935), Vol.
II, pp. 808—871.
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properties of the error integral function when
~ y~ ~~,

summarized in appendix 2 of (A), we have:

0 if —(ir/2) (argy & (ir/2)
exp(y') erfc(y)~ (3)

2 exp(y') if (ir/2) &argy((3ir/2).

Pro. 1. The shutter problem.

P(x, 0) = exp(ikx) if x&0

if x&0.

The solution of (1, 2) can be nnmediately given with
the help of the functions x(x, k, t), introduced in (A),
and de6ned by:

x(x, k, t) =exp(imx'/2ht) exp(y') erfc(y), (3a)

where:

acts as a perfect absorber, though it can be easily shown
that for x&)X (where X is the wavelength X= (2ir/k)),
the transient current obtained below holds for any
type of shutter, so long as it acts as a device that, when
closed, keeps the beam of particles on only one side of it.

For nonrelativistic particles, the wave function
f(x, t) that represents the state of the beam of particles
for t&0, satis6es the time dependent Schrodinger
equation:

i(B&/Bt)—= (h/2m) (cPQ/Bx'),

and the initial conditions:

%e conclude from the above that:

P(x, t) = —,'x(x, k, t),

satisfies Eq. (1) and the initial condition (2).
When t +~—, ~y~

—+~ and argy=(3ir/4), so using
(5) again, we obtain:

P(x, t)~expzLkx —(hk'/2m) t], (7)

which would be the expected stationary form of the
wave function.

The transient current J(x, t) takes from (36) the
form:

J(x, t) = (h/2im) [$*(B$/Bx) P(B$*/B—x)]
= (i/4) [~ x(x, k, t) (

'+ (-,'irkvt) '* Im[expit (ir/4)
—(mx'/2ht)]x(x, k, t) [], (8)

where Im stands for the imaginary part of the curly
bracket. The expression (8) simplifies considerably if we
assume that x»X. As we shall show below,

~ x(x, k, t)
~

divers appreciably from zero only when i is of the order
or larger than the time of flight T= (x/v). For t&~ T we
have that (kit) *&~(kx) l is very small. Therefore, the
second term in (8) is ~0 for all t)0 if x&&X, and in
this case the current becomes:

J(x, t) = (i/4)
~
erfcL —(m/2t') lu] ~',

where:
u= (kx)**-(~t/T) '[(t/T) 1].— —(10)

From the asymptotic behavior (7) of P when t
we see that the stationary current is Jo——w. Using a
simple relation' between the error integral function and

S(u)

JL

erfc(y)=2ir & I exp( —y')dy,

y= exp( ix/4)(2ht—/m) &(x et), it= (h—k/m). (3c)

The function x(x, k, t) satisfies (1) as:

(h/2m) (B'x/Bx')+ (Bx/Bt)'
=—(4it) -' exp(nnx'/2ht) Ld'/dy'

—2yd/dy —2] exp(y') erfc(y), (4)

and from the definition (3b) of the error integral
function, we see that the right-hand side of (4) vanishes.
Furthermore, when t-+0, ~y~-+~ and argy is either
—(ir/4) if x)0 or (3ir/4) if x&0. From the asymptotic

FIG. 2. Cornu spiral.

8 K. Jahnke and P. Kmde) Tables of IilncIions (Dover Publi-
cations, New York, 1945), fourth edition, p. 36.



DIFF RACTI ON I N TI M E 627

the Fresnel integrals, the ratio of the transient to the
stationary current becomes:

J
Jo

where:

p 'tt
p

'tt

C(u) =
~~ cos(-,'su')du, S(u) = sin(-,'pru')du. (12)
0 J0

The right-hand side in (11) is identical to the expres-
sion' for the intensity of light in the Fresnel diffraction
by a straight edge. The variable u has though a different
meaning from the optical problem, as it is now the
function of time given by (10).

In the Cornu spiral diagram of Fig. 2, the right-hand
side of (11) is one-half of the square of the radius
vector from the point (——,', ——,') to the point on the
spiral whose distance from the origin, along the curve,
is u. From (10) we see that when 0& t &~0, then
—~ (m&0, while whenT~& t( ~ then 0~& u( ~. With
the help of the Cornu spiral we see that when t goes
from 0 to T, the ratio (J/Jp) increases monotonically
from 0 to p, while when t is larger than T, then (J/Jp)
behaves as a damped oscillation around the value
(J/Jp) =1, tending to this value when t~ pp. This be-
havior is illustrated in Fig. 3.

From the standpoint of classical mechanics, it is clear
that (J/Jp) =.0 if t is less that the time of flight 1, while
(J/Jp) =1 if t&~ T. This behavior is also illustrated in
Fig. 3 by the straight line.

A good measure of the "width" of this diffraction
effect in time, can be obtained from the difference v-

between the first two times at which (J/Jp) takes the
classical value, i.e., 7.=t2—t~, as shown in Fig. 3. The
times at which the curve of Fig. 3 intersects with the
straight line (J/Jp) =1, correspond to the values of u
obtained from the intersection of the Cornu spiral with
the circle of radius v2 and center (—-'„—-', ) . The values
Nj, u2 that correspond to t~, t2 are the lengths along the
Cornu spiral from the origin to the points 1, 2 in Fig. 2,
so that we have: N2 —n~=0.85. As x))X we see from
(10) that ti, t& are very close to T, so we may write:

r~(up ui) (7r/kx) tT =—0 85 (irxlt/mv') l . (13).
As an example (of possible interest in the operation of
neutron velocity selectors), we have that for 300'K
neutrons at a distance x=1 m, the diffraction width
would be:

x=0.27)&10 ' sec.

Borrowing from the terminology of optics, we could
say that in classical mechanics a shutter casts a sharp
shadow in time, i.e., the beam current jumps suddenly
from zero to the stationary value at t=T, while in
quantum mechanics there is a diffraction effect in time
as illustrated in Fig. 3.When we make Planck's constant
k tend to zero, we see from (13) that the diffraction
width v- tends also to zero, and the quantum-mechanical

T t1

FIG. 3. Diffraction in time.

current reduces to the classical current, as one should
expect.

The analogy between the transient current (11) and
the diffraction phenomena in optics, raises the question
of whether the transient currents for other types of
wave equations show this analogy. We shall see in the
following sections that this is not the case, and that
only when P obeys the Schrodinger equation, does it
resemble the wave functions that appear in Sommer-
feld's theory of diffraction. '

The transient current (11) increases monotonically
from the very moment in which we open the shutter,
and therefore, in principle, an observer at a distance x
from the shutter could detect particles before a time
(x/c), where c is the velocity of light. This would
imply that some of the particles travel with velocities
larger than c, and the error is due of course, to employ-
ing the nonrelativistic Schrodinger equation in the
analysis.

We shall discuss in the following sections the transient
wave functions associated with two relativistic equa-
tions, the ordinary wave equation and the Klein-
Gordon equation. It will be shown in this case, that at
a distance x from the shutter, the wave function f(x, t)
is zero for t&(x/c), thus safeguarding the relativity
principle. When in the solution for the Klein-Gordon
equation we make c—+~, it will reduce essentially to
(6), thus giving the transient current (11) in the
nonrelativistic approximation.

III. THE ORDINARY WAVE EQUATION

We shall now deal with the same problem, of the last
section, but assume that P satisfies the ordinary wave
equation

c'(8'1t /Bx') = (O'P/ittP).
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If initially P and its time derivative are given by:

P(x, 0) =F(x), (8P/Bt) (=o=G(x), (15)

then as is well known, ' f(x, t) has the form:

If initially P and its time derivative are given by:

P(x, 0)=F(x), (8P/Bt) (=0——G(x), (20)

then using the Fourier integral theorem, we obtain:

@+et 00

y(x, t)=-', F(x+ct)+F(x ct)+—c '
t G(x')dx' . (16) y(x, t)=(2x)-& [f(») cos(act)

For t&0 when the shutter was closed, we had on
the left side of the shutter:

f(x, t) =exp[ik(x —ct)j, for x&0.

This implies that at t= 0 we have:

F(x)=exp(ikx), G(x)= —ikcexp(ikx), if x&0, (17)

while F(x) =G(x) = 0 if x) 0.
Introducing these initial conditions in (16) we obtain:

+(cc) 'g(») sin(ect) j exp(i»x)d«, (21)

where f(»), g(») are the ordinary Fourier transforms of
F(x), G(x), and e = (»'+ p') l

For t &0, when the shutter was closed, we assume as
in the previous section, that:

P(x, t) =exp[i(kx —Ect)], for x&0,

where E is the energy in units of reciprocal length, i.e.,
E= {k+p )1. This lmplles that at t=0 we have:

0 if t & (x/c)
(18)

exp[ik(x ct)5—,'—if-t) (x/c)
F(x) =exp(ikx), G(x)= iEce—xp(ikx), for x&0, (22)P(x, t)=
while F(x) =G(x) =0 for x)0.

The Fourier transforms f{«),g{») become then:"

= (n/2) 1{8(»—k)+ i[~(»—k)]—'} (23)

The absolute value of the wave function jumps
suddenly to the value —,

' at t=(x/c), and it oscillates 0

periodically thereafter. This behavior has certainly no f(») —(2x) k I exp[i(k —»)x]dx —(2x)'$+(» —k)
resemblance to the diffraction in time effect obtained
in the previous section.

IV. THE RELATIVISTIC SHUTTER PROBLEM

If we wish to extend the discussion of the transient
eGects of Sec. II, to a beam of electrons at relativistic
energies, we would have, of course, to replace Eq. (1)
by Dirac's equation. A fundamental change creeps in

though by the fact that the wave function will involve
the negative, as weH as the positive energy eigen-
functions. A complete description of the phenomenon
wooM necessitate then the introduction of hole theory,
and the single particle picture would have to be aban-
doned.

As ouI' Inain interest CQIlcelns the transients associ-
ated with the different wave equations, we shall not
attempt to discuss here the problem when hole theory
is involved, but rather vill restrict ourselves to the
single particle picture in which states of both positive
and negative energy are available. Furthermore, the
features of spin and statistics are irrelevant to our
analysis, so that for simplicity, instead of Dirac s
equation we shall use the Klein-Gordon equation. We
shall briefly indicate though, at the end of this section,
the relation of the solution for the Dirac equation with
the solution to be obtained for the Klein-Gordon
equation.

The wave function P(x, t) satisfies now the equation:

(~V/»') =c "~V/~t')+t V, (19)

where p = (mc/1't).

A. G. Webster, Parka/ Digeremfial Equations of MathemaIical
Physics (G. E. Stechert and Company, New York, 1933},second
edition, p. 78.

g(») = iEcf(»)—
Introducing (23), (24) in (21) we obtain:

tt(x, t)=-,'exp[i(kx —Ect)]

—(47ri) 'P ~ (» k) '(e+—E)

Xexp[z(»x —e t)]c'dc»

Xexp[i(»x+ ~ )]ct~-'d» (25).

As usual, when 8+ functions are employed, the
integrals must be interpreted in the sense of Cauchy's
principal value" as indicated by the P. The initial
conditions at t= 0, can be obtained from (25) by closing
the contour in the ~-plane, from above if x& 0 and
from below if x&0. The first and second integrals in

(25) give the contribution from the positive and
negative energies, respectively.

To eliminate the branch points at «=&itI, in (25),
we introduce in the first integral the change of variable:

f'=w '(»+&), {26)

'0 W. Heisenberg, Z. Physik 120, 519 (1943}."E.T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, New York, 1943}, American edition,
p. 117.
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Xexp f —,'iti[(x —ct) f' —(x+ct) f' '])d f', (27)

where s=ti '(k+E).
The integrand of (27) has a pole at l =s and an

essential singularity at &=0, but the integral is con-
vergent, and in the appendix it is evaluated by a
suitable deformation of the contour.

From the analysis given in the appendix, it follows
that:

P(x, t) =0 if t((x/c),

f(x, t) =exp[i(kx —Ect)]+-',Js(~t)

(28a)

from which we have: e =
si ti(f' —l '), e = is y Q'+ f' ')

The limits of integration [—~, ~] for the x transform
into [0, ee] for the f .

In the second integral we introduce a t" corresponding
to negative energies, i.e., f =ti '(x—e). It is clear that
with this f', the integrand in the second integral becomes
the same function of f' that we have in the first inte-
grand. Furthermore, for this f the limits of integration
are [—ae, 0].

Combining the two integrals we obtain:

P(x, t) = —,
' exp[i(kx —Ect)]

solution (28) reduces in this case, to the solution (18)
of the ordinary wave equation, as we should expect.

We are now interested in the asymptotic values of
f(x, t) when t~(x/c) and when t~ ee. In the first case,
we see from (29) that rt

—+0 and we can replace the
Bessel functions by their asymptotic values:

J„(rt)-+(2"n!) 'it".

The series in (28b) becomes then:

(31a)

lim [P(x, t)]=-,'.
~(s/c)

(32)

The wave function f(x, t) jumps suddenly from zero
to the value —,

' at t=(x/c), just as in the case of the
ordinary wave equation, and it does not build up
continuously from t =0 as in the case of the Schrodinger
equation.

To obtain the asymptotic form of P(x, t) when t~ ~,
we notice first that in this case, $—+1 and
Replacing in the series of (28b) the J„(it) by their
asymptotic values:

= exp(pit/2iz) (.31b)

For t= (x/c) the series takes the value exp[i(k —E)x]
and the asymptotic form of f(x, t) is:"

where:

—P ($/is) "J„(it), if t) (x/c), (28b)
n=o we get:

J„(it)—+(—,
'

wit)
'* cos[it —si (2n+ 1)m.7, (33a)

(= [(ct+x)/(ct —x)]-', q = t.(c'ts x')-'*, —(29)

and the J„are the Bessel functions of order e.
The wave function P(x, t) of (28) satisfies the Klein-

Gordon equation, as can be easily seen when we express
this equation in termsof the , variables $, it of (29), so
that (19) takes the form:

( Bs 1 8 P 8' g 8

I
+ + l4(&&)= ( )

(Bits rt Bit its Bp it' 8$

As PJ (it) is a solution of (30) for any n, we see that
each term of the series in (28b) satisfies the Klein-
Gordon equation.

For n=0 the solution [Js( tit'c—x')'] of the Klein-
Gordon equation is well known in quantum electro-
dynamics. " For n&0 the solutions $"J„(rt) do not
seem to have had a wide use in quantum field theory,
possibly because they are not in themselves Lorentz-
invariant, but become so only after multiplication
by z

—n

When the rest mass of the particle vanishes, then
g~0 and s—+~, so that all the terms in the series of
(28b) vanish except Js(it) which becomes 1. The

' P. A. M. Dirac, Proc. Cambridge Phil. Soc. 30, 150 (1934);
I. Schwinger, Phys. Rev, 75, 678 (1949).

&&cos[it——,'(2n+1)w] &(-', wit) '*Q z ". (33b)
n=o

sct~tj, ct+ (It x'/2nt) t+ (35)

where all the other terms of the development vanish for
c—+~. A similar result holds for Ect. Furthermore,

"The asymptotic behavior of P(x, t) can also be derived, in a
simple and rigorous fashion, from the integral representation of
the wave function that is given in the appendix.

From its definition z=ti '(k+E)) 1 for any k) 0, so
that the series in (33b) converges, 'and therefore, when
it~ ~ the series in (28b) tends to zero. The asymptotic
value of f(x, t) when t~ ~, becomes then:

P(x, t)~exp[i(kx —Ect)7, (34)

which is the stationary form of the wave function that
we expect.

To pass from the relativistic wave function (28b) to
the nonrelativistic wave function (6), we have to take
c~~. A simple way to m,ake this transition is through
the expression (25) for f(x, t). When c~ ae we see that
set=4'+ti')*ct, tends to:
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when c~ ~ we see that (E/e) —+1, and therefore, the
negative energy part of (25) vanishes, while the rest
takes the form:

P(x, t)—+exp( —i@et) i~ expo[km —(kk'/2m)t]

=exp( —ipct)i2x(x, k, f) (3.6)

The last result follows from the evaluation of the
integral in (36), that was carried in appendix 1 of (A).

It follows from (36) that when c—+ ~, the transient
current obtained with the relativistic wave function
reduces precisely to (11).

Finally, we would like to remark that an analysis
similar to the one carried above, can be given for the
Dirac wave equation. Choosing a definite direction of

spin, the Dirac wave function reduces to two compo-
nents, each of which can be expressed, for t) (x/c), in
terms of linear combinations, of the wave function
(28b) and Jo(y).

V. ANALOGIES WITH SOMMERFELD'S
DIFFRACTION THEORY

In the previous sections, the shutter problem for
diferent types of wave equations was analyzed, and
we obtained the corresponding wave functions. Rather
than to compare the related transient currents with the
intensity of light in optical diffraction [as suggested by
the form of the nonrelativistic current (11)],we shall

look into the analogies between the wave functions
themselves, and a family of solutions in Somrnerfeld's

theory of di6raction.
For electromagnetic diffraction problems in the plane,

we need appropriate solutions of the two-dimensional
KirchhoG equation, which in polar coordinates has the
form:

(~'+k') 4 = (~'4/~»')+» '(~4/'~»)—
+» '(8'@/80')+k'@ 0(37=)

where k= (2~/X) and X is the wavelength of the radi-
ation.

The well-known family of solutions of (37) that is

obtained with the help of the Riemann surface" analysis
of Sommerfeld, can be written in the form:

x'(», 0, 00) = exp(ik») exp(y") erfc(y'), (38a)

where:

y'= —exp( —iver/4) (2k») ' sin[-,'(8—Hp)], (38b)

and 80 is a parameter.

'4B. B. Baker and E. T. Copson, The Mathematical Theory of
Huygens' Principle (Clarendon Press, Oxford, 1939), Chapter IV,
pp. 130, 132, 142.

A corresponding problem for the transient current
appears when the shutter is represented as a perfect
reflector, i.e., an infinite potential barrier. In this case,
we must replace in the initial condition (2), exp(ikx)
by exp(ikx) exp(—ikx)—, and with the help of (5) we

immediately obtain that:

P(x, t) =-,'[x(x, k, t) —q(x, —k, t)]. (41)

From (40), and assuming that »))X, we obtain the
characteristic Fresnel diGraction effect' for the intensity
of the electromagnetic wave in the vicinity of 0=0.
From (41), and assuming x))X, we obtain the transient
current (11), which also shows a Fresnel diffraction
eGect in the vicinity of t= T, where T is the time of
Right T= (x/~).

IV. CONCLUSION

It is well known that ordinary diffraction phenomena
for beams of particles are closely associated with the
position-momentum uncertainty relations. " The ap-
pearance of diGraction in time effects for the transient
current, when an obstacle is introduced or removed
from the incident beam, suggests that these eGects are
closely connected with the time-energy uncertainty
relation. This is shown to be the case by analyzing the
transient wave function when an impenetrable spherical
potential is introduced into the beam. 4 The ratio' of
the transient to the stationary scattered current has in

this case, also the form (11). If the wave function is

transformed to the energy-angular momentum repre-
sentation, 4 it shows that when a scattered particle is
detected at a time At after the introduction of the

"%V. Heisenberg, The Physical Principles of Quantum Theory
(Chicago University Press, Chicago, 1930), Chapter II,

The x' satisfy (37) as can be seen from the fact that:

[V +k ]&=k (2ik») ' exp(ik»)&([d /dy"
—2y'd/dy' —2] exp(y") erfc(y'), (39)

and as shown in (4), the right-hand side of (39) vanishes.
Despite the fact that the time dependent Schrodinger

equation is of the parabolic type, while the Kirchhoff
equation is of the elliptic type, they have solutions of
the form (3) and (38) which are remarkably similar.
No such similarity exists between the wave functions
(18) and (28) of the hyperbolic relativistic wave equa-
tions, and the family of solutions (38), so that we do
not expect in this case, a resemblance between the
transient current and optical diffraction effects.

%hen a semi-infinite perfectly reQecting plane is
introduced at 0= —(m./2), in the path of an electro-
magnetic wave polarized in the plane and propagating
in the direction 9=0, the wave function g(», 0) that
satisfies" the boundary conditions at 8= —(~/2), (37r/2)
and the asymptotic behavior at r—+ ~, becomes:

(40)
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scatterer, there is an indetermination hE in its energy,
such that:

AthE~h. (42)

The x-functions that are used in the nonrelativistic
shutter problem, appear also (in the form 7f(r, &k", t),
where r is the distance from the scatterer and k" the
momentum of the incident particles) in the dynamical
description of the scattering by an impenetrable
spherical potential, 4 and in the resonance scattering
processes. ' These functions account then for the
transient effects due to the time-energy uncertainty
relation. When a scatterer has a structure, such as in
the single level scattering process, ' there are other
terms in the transient wave functions that depend on
the poles of the scattering matrix. The transient effects
that these terms give rise to in the current, are then
no longer general quantum-mechanical effects, but are
related to the specific nature of the scatterer.

The important role that the y-functions play in the
dynamical description of nonrelativistic scattering
processes, suggests that their relativistic generalization,
given by the wave function P(x, t) of (28), may play a
similar role in any dynamical description of relativistic
scattering processes.

The author is indebted to Professors M. S. Vallarta
and J. Lifshitz for helpful discussions.

APPENDIX

In this appendix, we shall evaluate the integral in (27), so as
to determine the explicit form of the relativistic wave function.

Instead of taking the principal value of the integral in (27),
we shall make the integration along the contour C of Fig. 4,
where the singular points &=0, s of the integrand, are by-passed
from above by means of the semicircles C', C". From Fig. 4 we
obtain:

(43)

The integral around C" must be interpreted as the limiting
value when the radius of the semicircle tends to zero. As the
integrand has a simple pole at f=a, we obtain:

f vr—i Res(f==z) =xi exp[i(kx Fct)]. (—44)

From the form of the integrand in (27), we see that the first
two integrals on the right-hand side of (43) vanish when 6~0,
assuming that x, t&0. As the integrand has an essential singu-
larity at t =0, but is regular outside this point (except for the
pole at g=s), we conclude that the first two integrals of (43) add
to zero for any B&s.

From (27) and (43) we obtain then:

y(*, t) = —(2 ')-'f (f+ )Q.—)- (2f)-

«xp(i( /2) E(x ct)f (x+«—)L'3—)df (4S')

When x)ct we can close the contour from above, and as the
contribution from the dotted. semicircle is clearly zero, and the
integrand is analytic in that part of the f plane above C, we

Cz

FIG. 4. Integration contour for the relativistic wave function.

(" f')-' "-'~ (f'=/")-",
n-O

we obtain straightforwardly that:

(49b)

(2xi) 'f =Res(f'=0) = —Z (f/iz)"J (rt) —~&Jo(n). (50)
n=1

Introducing this result into (47), we obtain finally the explicit
form of P(x, t) for x&ct as given by (28b).

"See reference 11, p. 101.

conclude that:
P(x, t) =0, if x&ct. (46)

When x&ct we close the contour from below. Again the contri-
bution of the dotted semicircle is zero, but now we have the
singular points t =0, s inside the contour. As the singular points
are not branch points, we obtain that:

P(x, t)=(2xi) ' f +f, for x&ct, (47)
Cy C2

where the contours C~, C2 are now the closed circles surrounding
the points 0 and s, respectively.

The second integral in (47) is given by twice the value of (44).
For the first integral we introduce the variables $, p defined by
(29), and changing to the variable of integration given by

0) (48a)
we obtain:

(2 ')-'f, =(2 ')-'f, L(f'-")-'-(2f')-'3
&expL-'~(|-'-t-'-') j~|-', (48b)

where z'= ij 'z and —the radius of C~' is less than
~

z'~ = f ~z.

Using the well-known formula:"

expl l~(r'-r'-')]= ~ |-'"J-(~)+& (-1)"e'-"~ (~), (49a)
n=o n 1

as well as the fact that for
~

f'
~
& (z'( we have:


