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It is the object of the present investigation to include the thermal motion of the medium in the treatment
of neutron diffusion, under the simplifying assumption that the collisions are such as between hard elastic
spheres. The methods used are those previously established by the author in radiative and gas-kinetic
transfer. They only have to be adapted to the present purpose. This is done in Sec. I1. Boltzmann’s original
equation which is quadratic in the distribution functions is linearized by the assumption that the velocity
distribution of the molecules is Maxwellian. The treatment of the resultant transport equation is different
for “thermal’ and for “fast’” neutrons. Section III deals with thermal neutrons by the method of “moments.”
The distribution function is assumed to be of the form: Maxwellian factor times arbitrary function of
direction, the latter written as a series of general spherical harmonics. Thereby, and by the use of a theorem
due to Maxwell, the fundamental equation may be reduced to an infinite system of linear differential equa-
tions which have been previously treated. The case of arbitrary geometry is treated to second-order moments
(inclusive). For the case of cylindrical symmetry a recurrence relation for the moments, to any order, is
derived. In Sec. IV the case of fast neutrons is treated by the method of iterated integrations. In order to
make them straightforward the kernel of the integral equation is transformed into the standard form. This
is achieved by characterizing the collisions in a way which is different from that usually applied. A simple

1,

1952

example for the working of the method is given and the results are discussed.

I. INTRODUCTION

URING the last decade important progress has
been made in the theory of neutron diffusion by
a variety of methods.! As far as the author is aware,
however, all previous treatments are subject to an im-
portant restriction. They do not take into account the
thermal motion of the ambient medium, the “moder-
ator,” since they invariably assume that the molecules
of this medium are at rest when they are hit by the
neutrons. As long as this assumption is made, it is
evidently impossible to investigate the influence of
temperature on the diffusion process, or even to derive
in a rational way the simple fact that the neutrons are
not slowed down indefinitely but arrive ultimately at
“thermal velocities.” It is the object of the present
investigation to close this gap of the theory.

Methods for dealing with the problem have been
available for a good many years. As early as 1930 the
author? treated the fundamental Boltzmann equation in
a way which makes it directly applicable to the present
purpose. By considering what happens in a molecular
beam directed in a given direction, rather than dealing
with a certain neighborhood in the field, the author
transformed the Boltzmann equation to the form which
is now frequently called a transport equation..Further-
more, he treated this equation by two methods, the
method of “moments” and the method of “iteration,”
which he had developed still earlier in his theory of the
anisotropic radiation field.?

Neither the author’s work on gas-kinetic transfer,

* Work supported in part by the ONR.

! For a summary of the work done see R. E. Marshak, Revs.
Modern Phys. 19, 185-238 (1947).

2 G. Jaffé, Ann. Physik 6, 195-252 (1930). We refer to this paper
in the text with J. ]

3 G. Jaffé, (A) Ann. Physik 68, 583 (1922); (B) Physik. Z. 23,
500 (1922); (C) Ann. Physik 70, 457 (1923). We refer to these
papers in the text with the symbols A, B, and C.

nor the earlier work on radiative transfer, seem to have
been noticed by the later workers in the field, and some
work has been duplicated. Naturally, important results
which have been derived since then are not to be found
in those early papers. However, in some regards they go
considerably beyond what has been achieved since that
time, such as by not being restricted to specific geomet-
ric conditions,* by including time-dependent processes
(A, p. 624; B, p. 458; J, p. 249), and even the existence
of a given external force field (J, p. 248), which case
corresponds to an inhomogeneous medium in radiation
theory (B, p. 501; C, p. 470).

It is the object of the author in the present paper to
establish methods for dealing with the problem, not to
arrive at results of practical applicability.

II. THE FUNDAMENTAL EQUATION

If the thermal motion of the medium is to be included
in the theory, it becomes imperative to go back to the
original form of the Boltzmann equation which is
quadratic in the distribution functions and not to start
from a linear transport equation as occurs in the theory
of radiative transfer. We shall write the fundamental
equation in the form which was obtained in J, but for
the sake of simplicity we shall restrict ourselves to the
simple case of elastic collisions between spherically
shaped particles. Furthermore, we shall assume that
there is no external force field.

We refer the index 1 to the neutrons of mass m; and
the index 2 to the molecules of mass m. of the medium.
Let f(ry, ¢4, ), abbreviated by fi, be the distribution
function for the former, and F(r., ¢, £), abbreviated by
F,, the corresponding distribution function for the

4The linear problem was treated merely as an instance for
various aspects of the general theory (A, p. 608, 619; C, p. 465),
and the case of spherical symmetry was developed by a pupil of
the author in Leipzig: H. W. Becker, Ann. Physik 81, 1 (1926).
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molecules of the medium.® Furthermore, let ¢ be the
radius of the “sphere of action,” i.e., the sum of the
radii of m, and m., g the relative velocity of m, versus ma,
and 94, (0<3<7/2), the angle between g and the line
of centers z, drawn from m; to m,, at the moment of
collision. This line is to be contained within an in-
finitesimal solid angle €2, in order to make the collision
well defined. Finally, dw; and dw. are the “cells in
velocity space” containing the velocities ¢, and ¢, before
collision. Primes, wherever they appear, refer to vari-
ables after collision.

With all these conventions the rate of change of fi
along any straight line s of given direction may be
written in the form (see J, pp. 207-208, with the changes
appropriate to elastic collisions)

(1/e)afi/0t4-0f1/ds=T(fy, F>), ¢Y)

where the integral operator
](fh F2)= (1/Cl)f(fllF2,—f1F2) 0’2g Ccos z?szdwg (2)

represents in the well-known way the excess of gains
over losses by collisions between neutron and molecules.

In general, Eq. (1) should contain a second term re-
ferring to collisions between neutrons themselves [ Bo,
Eq. (25)]. However, at this point the first simplification
of the neutron problem as compared with the general
gas-kinetic problem, may. be introduced. Under ob-
servable conditions, the collisions between neutrons are
such rare events that the term referring to them may
be omitted.

Of equal importance is the second simplifying as-
sumption which we introduce, namely, that the distribu-
tion function of the molecules may be considered to be
given independently of their collisions with the neu-
trons. Again, the collisions of neutrons with molecules
occur at such relatively long intervals of time that after
each collision the molecule can restore its thermal equi-
librium before it is hit again. This means that we may
assume F, to be a given function, and no second equa-
tion for F, besides (1) is required.

It will depend on the physical circumstances which
form for F, is adequate. We shall assume that the tem-
perature is high enough to eliminate quantum effects
and that the influence of the binding of the molecules
in the lattice may be disregarded. The latter assump-
tion, implicit already in Eq. (2), is rather far reaching;®
however, it certainly represents a first approximation
in dealing with the thermal motion of the medium.

With these assumptions the velocity distribution of
the molecules may be considered to be Maxwellian, i.e.,
of the form

F.= A4, exp(—hacs?), 3)

5 Our notation follows as closely as feasible the one used in J
and in L. Boltzmann’s classical Vorlesungen diber Gastheorie (1.
Teil, Joh. Ambr. Barth, Leipzig, 1896). We refer to the latter with

the symbol Bo.
¢ See reference 1, p. 186.
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with
Ar=ns(hs/7)},  ha=my/(2kT), 4)

and, thereby, our fundamental Eq. (1) becomes linear
with regard to the unknown distribution function fi.

For some purposes it is desirable to generalize Eq. (1)
so as to include true absorption, characterized by a
coefficient of absorption aubs, and formation of new
neutrons, characterized by a source function S1(ry, ¢y, £),
which is not necessarily isotropic. Then the fundamental
equation takes the form

(1/c1)df1/ 04811/ s=J (f1, F2)— ansfi+S1. (5)

It was shown by the author that, in the theory of
anisotropic radiation, the treatment has to be different
according to whether absorption is “strong” or “weak,”
and in the treatment of Boltzmann’s original equation
the cases of “short” and “long” free path have to be
distinguished.” Correspondingly, in the present case the
treatment of the fundamental equations (1) or (5) be-
comes different for “thermal” and for “fast”” neutrons.
This distinction introduces in a most natural way the
two methods of moments and of iterated integrations.

III. THERMAL NEUTRONS

If the neutrons are supposed to be of thermal ve-
locities, but not by any means isotropically distributed,
it is reasonable to represent the distribution function as
the product of a Maxwellian distribution into a series
progressing with general spherical harmonics. In order
to simplify the writing we shall use the notation previ-
ously introduced (J, pp. 211-212).8

Thus, we assume for f; a representation of the form

. fa(ry, e)=exp(—rues®) f1*(r1, Ay, wa), (6)
with
w0 2m
f1*<r1; )‘h I"l)= Z Z Amﬂnmu()\l, ,ul); (7)
m=0 u=0
and
h1=m1/(2kT), ffldau: 7. (8)

This expresses that we have represented the vector
¢1 by polar coordinates, ¢, A1, p1, with regard to any
fixed system of coordinates in velocity space.

Limiting ourselves to the stationary case we assume
that the coefficients 4,.* depend on the position vector
r; only, and neither on time nor on the quantity ¢;. This
latter assumption is an important restriction as com-
pared with the more general treatment in J and will be
discussed later.

" Naturally it has to be defined accurately what is meant by
strong and weak absorption (A, pp. 601, 614) and by short and
long mean free path (J, p. 226).

8 The IT,* introduced by us are, except for the normalization,
essentially the same with the ¥, frequently used in wave me-
chanics (e.g., see: Leonard 1. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1949), pp. 72, 73. We were
forced to use the old notation and normalization in order to retain
agreement with the older papers.
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When the expressions (3) and (6) are substituted
into the integral operator (2) the sum of the kinetic
energies after collisions can be replaced by the corre-
sponding sum before collision, and the factor exp(— #1c:?)
can be drawn before the sign of integration. Thereby
Eq. (5), with 8/8t=0, reduces to

df*/ds=J1— (a(c1)+ aans) ¥+ S*. 9

Here we have introduced the following abbreviations:

Jl= (A 20‘2/(51)f exp(—hgcﬂ)

X (2 An*IL (N, u'))g cosddQ.dws,  (10)
m,p

alc)=(4 202/cl)f exp(— haca?)g cosddQ.dw,, (11)

and
S*=51(r1, ¢1)/ (exp(—hcs?)). (12)

It is our object to transform Eq. (9) into an infinite
system of partial differential equations for the coeffi-
cients 4,,*. In order to do that we have to develop the
left-hand side into-a series of general spherical harmonics
and to perform the integrations in (10) and (11) in such
a way that the corresponding terms in (9) also become
series of this type. Finally the coefficients of equal har-
monics on both sides of (9) have to be equated.

The integral in (11) is well known (Bo. p. 62), namely

a(61)= 1/)\(61)= (1120’2#%/22)

£
x| eexp(— g+ [ exp(—y2>dy}, (13)

with

EZ= h2612. (14)

Its reciprocal, A(c1), represents the mean free path of a
molecule m; of speed c¢; traveling through a gas of
molecules s, 75 in number per cc. The mean free path
so defined appears here without any ambiguity, and
its dependence on ¢; will prove to be of importance in
the later work. For (m,./mi)—o, or for T—0, alc;)
reduces to

(15)

which is larger than the Maxwellian value by the
factor 2%.°

The integral in (10) is not as simple, since it contains
the angles Ny, uy’ after collision. Fortunately, these can
be eliminated by the use of a theorem on spherical
harmonics due to Maxwell.

Since c; is to be kept constant for the integrations in
(10) we may fix ¢, in polar velocity coordinates, cs,
@, X, versus ¢y as polar axis. Thereby dw, becomes

=1/ A= n20%m,

dwe=c7? singdodxdcs. (16)

9 The function in (13) is tabulated in: J. Jeans, An Introduction
to the Kinetic Theory of Gases (The Macmillan Company, New
York, 1940), Appendix V.
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The direction of the line of centers, z, may be fixed
in the usual way by two angles, & and ¢, relatively to g,
with the result

dQ,=sindddde. an

Now we perform the integrations in the order dx, de,
d9, d¢, dce. The first of these integrations can be
achieved by the use of Maxwell’s theorem already
mentioned. In our notation it states (Bo. p. 171)

me”O\lly u1')dx=27IIn* (A1, p1) Pm(cose), (18)

where P,, is the Legendre polynomial of order . When
the integration with regard to dx is performed, those
with regard to de and d¢ become immediate and we
obtain

J1=(2mAs0%/c1) 3 AnPTI(Ny, 1)
m,p

0 +1
X f exp(— haco?)co¥dcs f P, (x)gdx. (19)
0 1

In order to integrate with regard to dx=sing¢d¢ we

develop the relative velocity
g=(c2+c2?— 2¢1cs cosg)? (20)

into a series progressing with Legendre polynomials

g=3 ba(cs, c2)Pulcoss),
(21)
+1
balor, e =[@n-+1)/2] f ¢(@) Pa(x)d.

If this development is substituted into (19) only the
term with 7 =m remains on account of the orthogonality
of the Legendre polynomials, and we obtain

Ji= Z and m“Hm”O‘h I‘l),

m,p

(22)

where we have set

Ay = l47" 02A2/((2”Z I 1)61)]
X ex —"hQCZZ me 2d€ . 23
j; P( ) 2 2 ( )

Thereby we have obtained our object of representing
the integral J, in form of a series like (7). It remains to
evaluate the coefficients b,, and a,,. This can be done by
quite straightforward procedures based on the defini-
tions (21) and (23).

The first coefficient, ap, is identical with «(c;) as
defined by (13). The subsequent ones become increas-
ingly more involved. Therefore, we shall be satisfied to
state the results for £ [see Eq. (14)] larger than about 3.
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Neglecting terms of the order exp(— ) we find

ar=ow(1+1/8), (24a)
ar=[a{4/QB7h)}/E][-1+1/(58)],  (24b)
ar=[ow/(108) J[—14-15/(148) ]. (24¢)

These results indicate that, with the exception of ay,
all a’s are negative and become rapidly smaller as &
increases. Now £ increases with ms and, in the limiting
case of (ma/m1)>1, ay becomes a, and all other a’s
vanish. In that case our results become identical with
those of our old radiation theory where the “emission,”
i.e., the term corresponding to the gain Jy, is treated as
isotropic.

This leads to an important remark regarding a
generalization of our theory. The factor g in (10) ex-
presses, by its dependence on ¢, how the gain in the
beam ¢, depends on the angle between the velocities ¢;
and ¢, of the two colliding particles. This dependence is,
of course, limited to the specific nature of the collisions,
i.e., elastic collisions in our case. If the nature of the
collision is changed the angular dependence may vary
and may be expressed by any other function of ¢, ¢,
and ¢, say one suggested by experimental results. This
would not invalidate our method as long as the function
in question shows cylindrical symmetry and, therefore,
may be written as a series like (21). This would change
only the values of the constants 4, and «,,. Thus any
kind of anisotropic scattering, in gas-kinetic as in radia-
tive transfer, may be treated by the same method, if
only the scattering is cylindrically symmetrical.

Following the program given above, we have now to
develop the left-hand side of Eq. (9) into a series of
harmonics. This has been carried through completely
in the author’s radiation theory [A, Egs. (24) to (26)],
and there is no need for reproducing the lengthy
formulas. Nor is it necessary to write down the differ-
ential equations which are obtained by the comparison
of the two sides of (9). They are identical with those
given in the old paper [A, Egs. (27), (42), (43)] with
only one exception. In the case of isotropic scattering
to which the older theory applies the absorption coeffi-
cient (there called «,) is the same in all orders. In the
present case the effective absorption coefficient, a.*,
which replaces «,, will be different for each group of
(2m+-1) equations of order m, namely,

(25)

Therefore also the treatment of the linear differential
equations remains exactly the same as exposed in 4,
and we shall only quote the generalized results. In first
approximation the series (7) is broken off after the four
first terms. This means restricting the representation to
the local density, #., and the (vector) flux, F,, both
referring to neutrons of specified velocity ¢;. These
physical quantities are related to the coefficients 4.,,* in
the following manner:

* __
Qm’ = Qabs+ g~ Ome

ne=4m exp(— hic1?)ci24,", (26)
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and
(Fe)i=(47/3) exp(—hici?)cP4y?, 27)

The differential equations of zero and first order lead
to the equation

i=0,1, 2.

VZ"C =3 al*(aabsnc_ 4mc 1251) (2 8)
for the density #.. The flux is given by
F.=—(c1/3a:*) gradsn.. (29)

The treatment can be carried through in a similar
way if the five moments of second order are added,®
which means taking into consideration the pressure
tensor (J, p. 221).

So far the treatment is entirely general concerning
the geometry of the field. Whenever a solution of Eq.
(28) can be found, Eq. (29) yields the flux. However,
the boundary conditions can be given only in a rather
restricted form, by prescribing either the density, or
the normal component of the flux at the boundaries.

A more general, and more rational way of giving the
boundary conditions is to prescribe the distribution
function itself at the boundaries in all directions leading
into the field (A, p. 592). In order to treat this more
comprehensive problem higher moments have to be
introduced. The more anisotropic the incoming radia-
tion is, the more terms have to be considered.

From here on we shall restrict ourselves to problems
of cylindrical symmetry, i.e., to cases where the dis-
tribution function reduces to a simple series of Legendre
polynomials. We shall prove a theorem which permits
of calculating all moments by a recurrence relation.

Since we are assuming cylindrical symmetry now
there will be a distinguished direction. This we choose
as x axis and measure the angles, Ay, u1, with respect to
the x axis as polar axis. Then Eq. (9) can be written in
the form

coshy df*/dx= f¢(62)fx*()\1', w')g

X cosddQ,dcodQ’ — af*+S*, (30)
where we have introduced the abbreviations
o(c2) = (A20%/c1) exp(—hacs?)c?, (31)
and
a= a(51)+aabs, (32)

and where dQ, signifies an infinitesimal solid angle
which contains the direction A/, u1’.
Now we multiply Eq. (30) by Pn(cosh;) and inte-
grate over
dQl - Sin)\ld)\ldul. (33)
This yields

d
g—fpm(COS)\l)fl*dQ1= Cm~ aKm+Smy (34)
X

10 See Appendix L.
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if the mth moment, K,,, is defined by
Kn= f [*PodOa= 47/ Cm+1))4.0,  (35)
and if the abbreviations

Cn= f @(¢2) Py cos9dQ.deadQy f gfi*dQy’,  (36)

and

Sp= f S*P,d0; 37)

are introduced. If S* is isotropic all S,,’s vanish with the
exception of So.

Transforming the left-hand side of (34) by the recur-
rence relation of the Legendre polynomials we obtain

((m+1)/2m+1))dK 11/ dz
= —(m/(2m~+1))dK n—1/dx— K p+CptSm.  (38)

Now we treat the integral C,, in exactly the same way
as we treated J; above introducing a series of form (7)
for f1*, making use of the Maxwell theorem (18), and
adding in the end one integration with regard to d;
(Eq. (33)). This yields

Con=anKm. (39)

If this is introduced into Eq. (38) and the integration
with regard to x performed we obtain the recurrence
relation

((m+1)/ 2m+1) K= — (m/ (2m~+1)) K ns
—ant f xK mdx+ f xSmdx—!— B, (40)

where a,* is defined by Eq. (25), and where B,.41 s a
constant of integration.

It should be remarked again that the recurrence rela-
tion remains valid if g(¢) is replaced by a different
function of ¢, provided this function has cylindrical
symmetry and can be developed into a series like (21).
Only the values of the constants b,, and a.,* are changed.

The recurrence relation (40) can serve to calculate
successively any number of moments, and thereby the
distribution function, provided the first two, K, and K
are known. These two can be obtained from the first-
order solution given above [Egs. (28) and (29) ]."* Since
each step introduces a new constant of integration,
sufficient constants may be obtained to satisfy the
boundary conditions to any desired degree of accuracy.

11 Tt has been shown by the author (A, pp. 609-610) that in the
plane problem which we are dealing with now 4= —a,C1x+Cb,
A,9=C,, (with C; and C; constants), is a rigorous solution of the
infinite set of differential equations in the case S1=0. It is easy
to generalize this solution for a nonvanishing source function,
and it may serve as a starting point for the application of (40).

Also the higher approximation for the first four moments (A,
pp- 610-613) may be used for this purpose.
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The procedure has been shown at length in the older
paper (A, pp. 607-612).

It is easy to extend the method of this section to the
more general case where the temperature of the medium
is a prescribed function of space. It becomes necessary
only to combine the coefficients 4.,* of Eq. (7) with the
exponential factor of Eq. (6) into new coefficients. All
transformations remain the same, and the system
of differential equations for the new coefficients is
unaltered.

The contents of this entire section are, however,
limited to neutrons which are already slowed down to
thermal velocities, though they may still exhibit ani-
sotropy to any amount.”? This restriction is due to our
assumption that the 4,,*’s are independent of ¢;. If this
assumption were dropped the development (6), (7)
could represent distribution functions which depart
much more strongly from the Maxwellian distribution
(as in J, p. 213). However, Maxwell’s theorem, which
proved to be essential for the treatment in this Section,
would not be applicable any more, since ¢,/ would be
dependent on x, and the first integration in J; or Cp
could not be performed by the aid of that theorem.
Therefore, another approach is indicated for ‘“fast”
neutrons.

IV. FAST NEUTRONS

The method which lends itself to the treatment of
this case, and even to the treatment of all velocities, is
that of iterated integrations (A, Sec. 2(b), p. 615 and J,
Sec. 4, p. 238). However, the Boltzmann equation in
its original form (1) makes the actual performance of
the necessary integrations very inconvenient, since in
the “gain term’ the integration is over dws, i.e., over
the velocities of m, before collision, whereas the distribu-
tion functions depend on the velocities affer collision.
Therefore, we shall first transform the gain term in such
a way that it corresponds to the standard form in the
theory of integral equations. This transformation will
prove to be the crucial step in this section.

We limit ourselves again to stationary problems, we
retain the assumption (3) for F. (with much better
justification now) and add a term for true absorption
and a source function, as in (5). Then the fundamental
equation takes the form

dfi/ds=J1— afi+Si,
where a is given by (32), and J; is now defined by

(41)

Jl= (A 20'2/61)f exp(—— hz(}z,z)f1,g COSI?szdwz, (42)

f1 being not expressed in any specific form.

Since the integral J; “collects” the gains out of all
directions and velocities we wish to represent it as an
integral with regard to dw,’. This, however, cannot be

2 A beam of thermal neutrons emerging from a reactor would
present such a behavior.
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achieved by transforming dw, into dw:’ by the use of the
collision equations: the Jacobian becomes zero.

This is readily understood by examination of the
well-known Maxwell vector diagram for an elastic
collision (Bo. Fig. 2). It is then seen that the definition
of the collision gets lost by the indicated transforma-
tion. A collision can be specified in a variety of ways.
The only one used until now is that underlying the
integral operator (2), i.e., the collision is characterized
by ¢, 3, and the direction of the line of centers, z, at
the moment of collision. This represents eight indepen-
dent parameters altogether. If, now, it is attempted to
replace ¢, by ¢’ the collision cannot be specified any
more by the direction of z, since this direction is given
already by that of ¢,/—ci. Therefore it becomes neces-
sary to specify the collision in a new way. This can be
done by giving, besides ¢; and ¢/, the direction of the
relative velocity g before collision. Then Maxwell’s
diagram can again be constructed in a unique way.

It follows from this consideration that dQ,, i.e., the
infinitesimal solid angle containing z, has to be replaced
by dQ,, i.e., an infinitesimal solid angle containing g.
Then the collision is again specified by eight indepen-
dent parameters. Consequently we have to calculate the
Jacobian in the equation

dQ.dws= AdQd w1’ (43)

This calculation is somewhat lengthy but straight-
forward and yields

A= (u/cosd)?, (44)
where

= (mytms)/(2ms), (45)

and ¢ is the angle between the relative velocity, g,
and the line of centers, z, as heretofore.!®

Furthermore, it follows from Maxwell’s diagram that
the relative velocity can be expressed in the new
variables by

g= uc11/cos?, (46)

where

(47)

In consequence of (44) and (46) the integral (42) can
be written in the form

1= IC1I—~01] .

Ti=(o*ut/cr) f fK(en e)derd,  (48)

where the kernel, K, has the desired representation and
is given by

K(cy, ¢ )=A4, f exp(— hace®)c11(sind/cos’d)dddy. (49)

Here ¢ and 7 are the polar angles for g with regard to
c;—cy’ as polar axis.

The kernel can be simplified by performance of the
two integrations. The integration with regard to n leads

13 See Appendix II.
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to the result!4

K(C1, 01*) =274 2C11 exp(— tho)
X [ Tulirg) exp(—greeas, (50)
0

with the abbreviations

Xo= per?— (1—p)%*+2u(1— p)cicy’ cosg, (51)

and
B*= hau’crs?, (52)

The angle &y is the one between ¢,/ and (¢if/—cy),
¢ is the angle between ¢; and ¢;’ as previously, and
Jo(iy) is the Bessel function of order zero and purely
imaginary argument.

The integration in (50) cannot be performed in
closed form, but two important limiting cases can be
obtained. If the velocity of the neutrons, c;, is of the
thermal order the factor v will be of the order 1 in the
domain where the integrand contributes essentially.
Therefore Jo(iy¢) may then be replaced by unity and
the remaining integration is immediate.

We are not interested in thermal neutrons at present.
On the other hand, if ¢4, and therefore also ¢;® are large
compared to the thermal velocity= (1/ks)}, v¢ will be
large in the important region'® and Jo(iy{) may be
replaced by its asymptotic value. Then the integration
can be performed again'® and leads to the final form of
the kernel for fast neutrons, namely

Y= 2}!2}161161’ sinz‘}l'.

K(cq, ¢)=n2(he/m)* exp(—hoX)/c11, (53)
where
X =X¢—c,"? sin?d,
=[pe’— (1= p)er*+(1—2p)crcr’ cosg P/er?.  (54)

Combining (53) with (48) and (41) we obtain the
fundamental equation in the form

dfr/ds=8 f K(ey, ei)fydo'—afi+S1,  (55)
with
K(cy, ¢i) =exp(—h:X)/c11, B=*uns(hs/m)¥/c1.  (56)

Since the kernel has the standard form now, Eq. (55)
can be solved by a Neumann series"”

f1=§ B0, 7)

14 See Appendix III.

16 Since, under our assumption, {exp(—p*¢?) has its steep
and narrow maximum at {max=(1/28%)?}, y¢max will have the
value (2/2)%c,’ sind,’.

18 We have neglected terms of the order (1/(kouZc11%)).

17 The singularity of the kernel, ¢1™), does not affect the applica-
bility of the theory of integral equations. Compare: D. Hilbert,
Grundziige einer allgemeinen Theorie der linearen Integralgleich-
ungen (B. G. Teubner, Leipzig und Berlin, 1912), pp. 267, 276.
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This leads to the zero approximation
H©=fiexp(—as)
exp(—as) [ exple)Sily)dy, (58)
50

along a straight line s of any direction in the field, if
f1is the given value of f at the point s, where the line
enters the field.

The subsequent approximations are given by

fi®@=exp(— as)f exp(ay—heX)c (f147V) dw, dy,
° i=1,2, -, (59)

The method can be extended to time-dependent
problems by taking the integrations in a “retarded”
way (C, Sec. 5, p. 458 ff.), and also the case of an ex-
ternal force field can be included (J, p. 248). It should
be pointed out, furthermore, that the solution (58), (59)
remains valid if the temperature is a prescribed function
of space. This generalization affects only the quadra-
tures to be performed.

Before the method is applied to a simple example it
may be of interest to point out two limiting cases to
which (55) leads. If m2>m,, the parameter pu becomes 3,
and ky—oo. The exponent X [Eq. (54)] reduces to

/’L2X= (hz/4) (61/2'— 612)2/6112, (60)

indicating that the integral will contribute only for
¢’=cy, as it should be. In performing the integration
we may treat ¢y as a constant for any fixed angle ¢ and
obtain

dfl/d8= (Olw/4:‘n')f<fl’)cl’=cld91’— Otf1+ S1. (61)

Thus the gain, i.e., the scattering into the direction
of s is isotropic and we have obtained one of the forms
of the fundamental equation of our old radiation theory
with the absorption coefficient o, = ote.

We shall treat m.=1, i.e., hydrogen, as the second
limiting case, and we shall, furthermore, assume that
the molecules are at rest when they collide. This means
w=1and T—0, or sy— . Then the exponent becomes

heX = hoci®(c1—c1’ cosd)?/cii®. (62)
Consequently the integral contributes only for
0<$</2,
as it should be. The integration yields

c1=cy cosg,

df1’/ds= (1/47!’) fo’*(fl’)c1'=c1/cos¢d91/— Olf1+S1, (63)

with o*/n,, the “differential cross section for gain,”
given by
0*/ny= 4o/ (1, cosy). (64)

18 Compare A, p. 618 Eq. (IId) combined with the subsequent
equation.
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The cross section just introduced has to be dis-
tinguished from the cross section for scattering which
is usually considered and which might be obtained by
the same procedure from the expression (11). The
difference is caused by the fact that, in the process of
scattering, it need not be considered what change the
speed undergoes, whereas for the gain the change in
speed has to be just such that the neutron is brought
into the velocity group ¢;. This is the essential circum-
stance which makes the gain term so much more difficult
to handle than the loss term, and it results in a different
angular dependence of the differential cross section for
gain as stated above. The result (63) can be verified by
direct derivation.

As a simple example for our method we treat the case
of a parallel, monochromatic beam of neutrons imping-
ing normally on the plane surface of a semi-infinite
scattering medium. The beam is to have equal density
over the entire surface.

We choose the normal to the surface, pointing in-
ward, as x axis with its origin in the surface. Directions
will be fixed by the polar angles, 6 and &, with the
x axis as polar axis. Thus s in the fundamental equation
(55) signifies a straight line forming an angle ® with
the x axis.

We describe the incident beam by a é-function

Jiles, ©1)=Cé(c1—c*, ©y), (65)

with

f&(&r— 6*, 01)612d61d91= 1 (cm/sec)‘*. (66)

Hence ¢;=c* is its speed and ;=0 its direction. We
disregard true absorption and formation processes
(aabs= 0, Sl= 0)
Then the zero solution becomes
1O =C exp(— a(c*)s)d(c1—c*, 61). (67)

Substituting this into (59) (with i=1), we obtain for
the first-order solution

0= K(ey, ¢) f 8(c — ¢*, 01 1O (x, ©y), (68)

where we have set

W1®(x, ©1) = exp(— a(c1)s)
st expl (a(c1)— a(c*) cosO1)yldy. (69)

The integral in (69) is easily performed though the
cases ©;=7/2 have to be distinguished. For 0:<=/2
the integration begins in the surface (s0=0), for
0,> /2 at infinity. This yields

W, W (x, cos0,) = [exp(— a(c*)x)
—exp(—a(c)x/cosO1) J/N,

0<6,<7/2, (70a)
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¥ W(x, cosO;) = [exp(— alc*)x]/N,
7/2<06;<m, (70b)
with the denominator
N=a(c;)— a(c*) cos0,.Y (70¢)

Now the final expression for the first-order solution
takes the form

[1®=Clexp(—hX*) /o J¥1V (%, 01),  (71)
with
X*=[pc?— (1— )+ (1—2u)crc* cosO1 B/crd, (72a)
and
c1?=c 2+ c*—2¢ic* cosO;. (72b)

It should be pointed out that the solution (71) has a
singularity. at ¢;=c* (ie., at ci;=c* 0:=0), but the
singularity is integrable if integrated over dw:.

The velocity distribution is given by the factor
K(cy, ¢4); the distribution of intensity in the scattered
beam, in its dependence on position, x, and direction,
6, by W@, It is easy to show that the latter factor
would reduce to exp(—a(c*)x) if an incident beam of
negligible cross section would be considered.

The first order solution represents conditions as they
result from the consideration of neutrons which have
undergone one collision (J, p. 252). Therefore it would
be valid if a slab of absorbent medium were to be
considered whose thickness is appreciably smaller than
the mean free path A*=1/a(c*).

We briefly discuss the two cases my>>m1, and ma=m;.
In the former case hy—o and the exponent is given
by (60). Hence the velocity spectrum in the scattered
beam contracts to a narrow line about ¢;=c* as ma/m1
increases indefinitely. Integrating over ¢ dc; we start
from Bf1® (which is the contribution to f1(”) and find

8 f [1%%dor=(C/4m) o V1M (x,01).  (73)

Therefore the angular distribution is determined by
¥ ® exclusively and becomes isotropic if a narrow inci-
dent beam is considered (see above). In the case mi=m,
the exponent is given by (62) and the velocity distribu-
tion is somewhat involved. We treat the two cases that
the velocity c; is either “thermal” (i.e., ci~1/(hs)?) or
“fast” (i.e., ci=c*). For thermal neutrons®® we have
ho=h1, hic®~1. Consequently the kernel boils down to

K*=exp(— hic:® cos?0y)/c*. (74)

19 It is in the expression for N where the distinction between
a(c1) and a(c*) becomes of importance. However, this fact makes
itself felt only in the calculation of the higher approximations,
i.e., for i>1. For i=1 the second term in (70a) prevents a singu-
larity at ©;=0 even if a(c1) =a(c*).

20 It might appear contradictory to apply our result to thermal
neutrons since we used a kernel limited to fast neutrons (see p.
606). It should be pointed out, however, that for the calculation
of the kernel in the first-order solution the value of ¢* is relevant,
as is shown by Eq. (68), and we still assume that ¢* is much larger
than 1/(k).
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Hence there will be a finite contribution of thermal
neutrons, even after the first collision. By integrating
over the velocity spectrum (for a given direction) we find

Bff1(1)012d51= (C/4m) 0

X1/ (hicsc* cos?01) ]W1 D (x,01).  (75)

In the case ci=c*, i.e., hici2>1, the kernel will be
different from zero only for

6:<7/2, (76)

and the velocity spectrum contracts for every direction
to a narrow line about the velocity (76). The total
number of neutrons in this beam is found to be

1=~ 61, COSOl,

,8ff1(1)612d61= (C/41r)4aw\111(1)(x, 61) (77)

relative to the contribution of f1(®. Hence the number
of fast neutrons is larger than that of the thermal ones
by a factor of the order ¢*/cinerm. There are no other
groups of velocity in the scattered beam except the two
discussed, since the exponent in K* makes all other
contributions negligible.

We shall not enter here into the calculation of higher
approximations. They are all performed easily in an
approximate way by treating the kernel in the preceding
solution as a é-function (on account of the denominator
¢11); then this kernel reproduces itself. Otherwise
lengthy calculations become necessary and it is difficult
to obtain the asymptotic solution for x—w by the
addition of the series (57). It can, however, be obtained
by a more direct procedure by assuming it to be of the
form

fi=exp(—ax)K(c;, ¢*)¥ (61), (78)

where the kernel for thermal neutrons has to be used
(see Eq. (49)).

The case of a point source in an infinitely extended
medium can be treated in a way very similar to the
linear problem.

Note added in proof:—The author is obliged to Dr. Richard K.
Osborn for pointing out to him that the integral (50) is known
in explicit form (see G. N. Watson, Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1944), Sec. 13.3, Eq.
(1), p. 393). If the correct formula is used the result is the same
as the one obtained by the author who used an asymptotic pro-

cedure. Hence the final form of the kernel, Eq. (56), is not limited
to “fast neutrons,” but holds for all values of the parameters.

APPENDIX I

If the series (7) is broken off after the second-order
terms, the problem can still be treated in a general way
if a potential function, ®, (called in 4 the “radiation
potential”) is introduced. By similar calculations as in
the old paper (A, pp. 605 to 607) it can be shown that
the differential equation for ® becomes

V%—afb—{—aﬁl =0, (79)
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with the abbreviations

a= 3a1*a2*aabs/ds, (803.)

112=47F613az*/03, (SOb)
and

az= a2*+ (4/5)aab5. (SOC)

When & is determined from this differential equation
the first four moments are obtained in the following way

ne=(3ar*az*/c1a3)®+ (16mc,%/5a3)S1, (81)
and
F.=—grad®. (82)

The five second-order moments A4.{(1=0, 1, 2, 3, 4)
can be expressed in terms of partial second differential
coefficients of ®. For ams=0, ar*=as*=a,, Eq. (81)
reduces to the result of the old paper [A, Eq. (46)].

APPENDIX II

In the calculation of the Jacobian in Eq. (43) the
following considerations should be taken into account.
It is customary to fix the direction of the line of centers,
z, relatively to the relative velocity, g. In a similar way
in our choice of collision parameters the direction of g
may be fixed relatively to (ci’—cy). This is perfectly
legitimate as long as integrations are to be performed
which keep ¢; and ¢; in the old system, or ¢; and ¢’ in
the new system, constant. However, if the five variables
¢s, €, (with e, a unit vector in the direction of z) are to
be transformed into ¢/, e, the unit vectors e, and e,
may not be fixed any longer relatively to g or (¢’ —c1),
since these vectors are varied themselves in the pro-
cedure. Consequently all five variables of either system
have to be defined in one and the same fixed coordinate
system.

Let the components of ¢; in this system be #;, v1, w1,
etc.; furthermore, let J,, n. be the polar angles for z,
and ¥, 7, the corresponding ones for g. Then the five
expressions relating the old set of variables with the new
set become

o =11+ uci® cosd,/V’, (83a)
ve= 01+ pc1® sind, cosn,/V’, (83b)
wo=w;+ ucy? sind, siny,/ 1V, (83c)
cosd, = (ur' —u1)/cu, (83d)
tann, = (w,’ —w1)/ (v —v1). (83e)
Here the abbreviations
en= (s — 1)+ (v// — v1)24 (w1’ —w1)?)}, (84a)
V'= (uy’ —u1) cosd,+ (v1'— 1) sind, cosn,
+ (wy’ —w;) sind, sinn,, (84b)
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have been introduced. The angle ¢ between g and z is
given by

cosd=V'/ci1. (85)

Now the calculation of A is straightforward (some
work may be shortened by introducing x.=cos®, and
x,=cosd, as new variables).

A further remark may not be out of place. We have
based our calculation of the gain term in (2) on Boltz-
mann’s original expression, which makes use of the con-
cept of “inverse collisions.” One might think that this
represents a detour and that the gain term could be
calculated in a more direct manner by first setting up
the usual expression for the number of direct collisions,
by then expressing g in terms of ¢y1 by Eq. (47), and
by finally integrating over dQ,dw,’. The last step of this
procedure would be erroneous because it would assume
arbitrarily A=1, in contradiction with the result in the
text. In replacing g by cu1 a change of variables is
implied which necessitates a corresponding Jacobian.
Therefore, the laborious calculation of the latter cannot
be avoided by starting from direct collisions.

APPENDIX III

In order to perform the integration with regard to »
in (50) we first have to obtain an expression for ¢’ in
our variables of integration. Now we have

Cz’=01,—gl, (86)

or, by the aid of (46),

c22=c1"*+ (c11p/cosd)?

—2¢1(c11u/cosd) cos(g’, ¢i').  (87)

For the integration with regard to ¢ and 9, ¢; and ¢/,
hence also ¢;;=c1'—c¢y are being kept constant. Conse-
quently we may fix the directions of g’ and ¢,/ with
regard to ¢j; as polar axis. Let the polar angles be &,
7', and &, 7/, respectively. Now the angle between g’
and (c;/—c;) is the same as the angle between g and
(ci—c¢1'), and the vectors g, ¢’ and (c;—c/’) are in the
same plane; consequently ¢, 7’ may be replaced by &, .
This leads to the final expression for (¢cs")?%, namely,

co"2=¢y"2+ (c111/cosF)?

— 2uci'cu[ cosdy’+tand sindy’ cos(n—n)].  (88)

If now tand=¢ is introduced as a new variable the
result (5) is obtained, since

f exp(v§ cos(n—n{))dn=2nTolivs).  (89)



