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conduction band. This naive model neglects, of course,
such possibly important influences as electronic work
functions and other surface properties at the inter-
faces. Nevertheless, it is useful in correlating some of the
main features of the 61m behavior.

The linear variation of photocurrent with voltage
below the forming potential is of interest, particularly
since the leakage current is very nonlinear. The situa-

tion appears somewhat similar to that in thin semi-
conductor 61ms in vacuum. 4

We wish to thank J. K. Bragg, M. H. Hebb, J. P.
Howe, D. Turnbull, and D. A. Vermilyea for valuable
conversations.

4 P. K. Weimer and A. D. Cope, RCA Rev. 12, 326 (September,
1951);Forgue, Goodrich, and Cope, RCA Rev. 12, 338 (Septem-
ber, 1951).
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Measurements have been made of the multiple Coulomb scattering of protons with energies of 337~1Mev
and 218~2 Mev in Ilford G-5 emulsions. A total of 261 tracks with a combined length of 130.4 cm were
analyzed by the determination of the lateral multiple scattering deAections according to the "coordinate
method. "The results are summarized in terms of the customary scattering factors which, for a given, cell
length, indicate the proportionality of the average multiple scattering deflection to the quantity "charge/
momentum&(velocity" of the scattered particle. Scattering factors are given for cell lengths of 250, 500, 750,
and 1000 microns. These results are compared with the predictions of various theories of multiple scattering,
including those of Moliere, Snyder, and Scott, as well as a proposed extension of the theory of Goudsmit and
Saunderson, which has the advantage of being directly and conveniently applicable to the analysis of lateral
multiple scattering deflections. The predicted theoretical scattering factors are in fair agreement with the
experimental values, but slightly larger; the discrepancies are either within, or just outside of, the limits
of the experimental error (3-6 percent).

I. INTRODUCTION

HE energy of charged particles can be determined

by the measurement of the deQections of their
tracks in photographic plates caused by multiple
scattering, i.e., frequent and predominantly small-
angle Coulomb scattering. This method has been de-
veloped by various investigators in the course of cosmic
ray research' ' and has more recently been applied to
fast electrons from nuclear reactions and from accelera-
tors. ' ' lt was the purpose of this investigation to
determine the multiple scattering of artificially ac-
celerated high energy protons. A preliminary account of
some of the results of the experiment has been presented
in a previous communication. ' Measurements of the

*This work was supported by the joint program of the ONR
and AEC.

f Based on a doctoral dissertation submitted to the University
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versity of Chicago, Chicago, Illinois.

'Goldschmidt-Clermont, King, Muirhead, and Ritson, Proc.
Phys. Soc. (London) 61, 183 (1948).

~ S. Lattimore, Nature 161, 518 (1948).' Y. Goldschmidt-Clermont, Nuovo cimento 7, 331 (1950).' P. H. Fowler, Phil. Mag. 41, 169, 413 (1950).' R. L. Setti, Nuovo cimento 8, 96 (1951).' D. R. Corson, Phys. Rev. 84, 605 (1951).
'L. Voyvodic and E. Pickup, Phys. Rev. 81, 471, 890 (1951);

85, 91 (1952).
8 Berger, Lord, and Schein, Phys. Rev. 83, 850 (1951).

multiple scattering of fast protons under controlled
conditions have also been reported by Gottstein et al. '

The evidence presented here is based on the analysis
of the lateral multiple scattering deQections that oc-
curred in 130.4 cm of track of protons with energies of
337&1 Mev and 218&2 Mev in Ilford G-S emulsions
that had been exposed to the external beam of the 184-in.
Berkeley cyclotron. "Since the energy of this beam is
known with an accuracy of 0.3 percent, the multiple
scattering calibration was thus freed of the error
introduced by the uncertainty of the particle energy
that occurs with cosmic-ray particles whose energies
must be determined by grain counts or range measure-
ments, or with fast electrons which may suffer con-
siderable radiative energy loss.

II. ANALYSIS OF THE TRACKS

The method of determining the multiple scattering
from the deAections of the tracks is illustrated by Fig. 1.
The heavy winding curve represents a track of a particle
passing successively through points P&, P2, and P3, as
projected onto a plane parallel to the surface of the
emulsion. Point P'2 divides the portion of track shown

' Gottstein, Menon, Mulvey, O'Ceallaigh, and Rochat, Phil.
Mag. 42, 708 (1951).' The plate exposures were obtained through the courtesy of
Professors E. O. Lawrence and W. Barkas of the Radiation
Laboratory of the University of California.
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FIG. 1. Geeometrical anala ysis o a track.
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curacy of the multiple scattering measurements in
photographic emulsions is such, however, that it be-
comes necessary to use the more detailed theories such
as those of Williams, ' Moliere, ' and Snyder and
Scott,""which also take into account the single
scattering tail. In these theories the increased accuracy
had to be obtained at the expense of increased com-
plexity, their results being given to a large extent in
numerical rather than analytical form. All of the treat-
ments mentioned so far give the distribution of the
angular multiple scattering deflection; the distribution
of the lateral deflections is only given by the theories
of Fermi, and of Snyder and Scott (who have not worked
it out in quite the same numerical detail as the angular
distribution, however). In order to make the exact
angular distributions applicable to the method of
track analysis in terms of second coordinate differences
or chord-angles as described in the previous section,
one may use the relation between the mean square
angular and lateral projected multiple scattering de-
flections

s'QP) =3(x') (4)

predicted by the theory of Fermi and generally valid in
the small angle approximation. In Fig. 1, the projected
angular deflections corresponding to the lateral deflec-
tions —xj and x2 are designated —pI and p~. It follows
readily from (1) and (4) that (n')'=(2/3)&(P')&. The
same factor of proportionality (2/3)& has in previous
multiple scattering determinations using photographic
plates also been assumed to hold for the mean angular
and lateral deflections (both with and without a cutoff).
This is an accurate approximation justified by the
theory of Snyder and Scott.

B. An Extension of the General Theory of
Goudsmit and Saunderson

Both the theories of Moliere, and of Snyder and Scott,
have been shown to be special cases (small angle ap-
proximation) of the more general theory of Goudsmit
and Saunderson. ~' This theory, which gives the angular
multiple scattering distribution, has the following ad-
vantages: (1) The theory can be used in conjunction
with an arbitrary underlying single scattering law,
which makes it easy to take into account —to any de-
sired degree of approximation —the modifications intro-
duced into the Coulomb scattering of charged particles
by atoms as the result of screening of the nuclear charge
by the atomic electrons, and of the interference eGects
caused by the flnite size of the nucleus; (2) Goudsmit
and Saunderson's theory can readily be extended to
provide simple expressions for the average lateral mul-

' E. J. Williams, Proc. Roy. Soc. (London) A169, 531 (1939);
Phys. Rev. 58, 292 (1940)."G.Moliere, Z. Naturforsch. 3a, 78 (1948).' H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949);
78, 223 (1950).

"W. T. Scott, Phys. Rev. 85, 245 (1952)."S.Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940);
58, 36 (1940).

tiple scattering deflection, and thus can be made ap-
plicable to the coordinate method of analyzing tracks
in photographic emulsions.

Consider a particle traversing a path length s in a
scattering medium, and let x be the lateral multiple
scattering deflection as projected on a plane containing
the direction of incidence (direction of motion at s= 0).
It is shown in the Appendix Lsee Eq. (A26)] that the
following expression holds for the average deflection as
function of the path length s, provided that the particle
is scattered in a thin layer of matter and predominantly
in the forward direction (as is the case for fast charged
particles undergoing multiple Coulomb scattering in
photographic emulsions):

&e

(x'~ s)=k ~' (s—s')"—'(sin "8 cos"p~ s')ds'.
0

(5)

where I'„ is the nth Legendre polynomial, E is the
number of scattering centers per unit volume, and I(8)
is the underlying single scattering law.

In the Appendix, a more complicated expression is
also derived for (x"~s) which holds without any ap-
proximation. It can be used when one is dealing with
slow particles in photographic emulsions, while it
reduces to the simpler expression (5) for fast particles.

C. Application to Multiple Coulomb Scattering
In applying the foregoing results to multiple Coulomb

scattering we shall follow Williams' in assuming for
the interaction between charged particles and atoms a
potential

ZZ'e'
s—r/a(1 s 2r/b)—V(r) =

which can be shown to give, in the Born approximation,
a single scattering cross section,

2+Z'Z"e'
I(8)=

pov2

1 1 2

x~.„,,—.„.. . (~)
l sin'-,'8+ ~~o/o' sin'-', 8+-', o/o'(1+2o&o/o&o)'

In Eq. (5) (sin"8 coso oo
~
s) is an average angular multiple

scattering deflection; it can be found from the theory
of Goudsmit and Saunderson, according to which the
probability F(8,p,'s) sin8d8dp that a particle moving
initially (at s=0) in the s direction, will be deflected
by multiple scattering into direction (8,8+d8), and

(p, p+dp), is given by

2m+1
F(8, oops) sin8d8dy= P P„(cos8)

~0
e

)&exp —X ds' ~ sin8'd8'I(8')
o ~o

&&(1—P„(cos8')] sin8d8dv/, (6)
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where n= n4.cVa' (ZsZc/137 )'pdenotes the average
number of individual collisions which the particle
makes in traversing a distance s. This result is the same
as that predicted by the theory of Fermi, except for
the correction factor (2/e)(1+2~p/co&) ' in the loga-
rithm. But the distribution of the lateral multiple
scattering deQections will in general not be Gaussian,
unless the particle traverses a very large thickness of
material, even though the finite size of the nucleus
provides a cutoff A&2 for the size of the individual angular
single scattering deAections. This can easily be seen by
considering the ratio M=(x'~s)/(x'~s)' which for a
Gaussian distribution has the numerical value 3. We
find from (5), (6), and (8) that

2.7 ~o'i 2 (pip)
log —

I
1+2—

I

—
/

—
I
+18

pip ( pool e (pio)

2' G. Moliere, Z. Naturforsch. 2a, 133 (1947).

Notations: Z' and A: atomic number and weight of the
scattering atom; Z, p, V and 2prlt, : charge number,
momentum, velocity, and de Broglie wavelength of the
scattered pa, rticle; e and m: charge and mass of the
electron; A: Planck's constant; c: velocity of light;
a a,nd b: maximum and minimum impact parameters.

pop
——)|./a and pip X/——b

In the potential (7) the factor exp( —r/a) takes into
account the screening of the nucleus by the atomic
electrons, which sharply reduces the scattering cross
section for angles less than cop, the factor [1—e '""],
derived on the assumption that the electric charge of
the nucleus is distributed uniformly over a sphere of
radius b, takes into account the interference effects
resulting from the finite size of the nucleus which cut
down the scattering for angles larger than co2. We shall
set the maximum impact parameter

a=0.881aoL1.13+3.76(ZZ'c/137p)'] l, (9)

where ap ——(k'/me')(Z') & is the first Bohr radius of the
atom Mol. iere" has shown that in the case b=0 (nu-
clear point charge) the use of an impact parameter of
this form will assure the validity of the scattering law

(8), even if the condition for the applicability of the
Born approximation (ZZ'c/137p«1) is not strictly
fulfilled, a circumstance that may easily arise with
photographic emulsions in which most of the scattering
is due to silver (Z'= 47) and bromine (Z'= 35). It seems
plausible that for the case b/0 the impact parameter a
given by (9) is also adequate. Finally, we set the nu-
clear radius b=1.4&10 "A'.

Substituting (8) into (6), computing from (6) the
value of (sin"icos"1p~s) and substituting it into (5),
one finds by a, straightforward calculation that

cop t' coop ' 2
(x'(s)=-', nc p's' log —

( 1+2—(~E +2 e'

Numerical example: 340-Mev protons in Ilford G-5 emulsion.

Density in emulsion
n=number of collisions in

path length of s microns
N2/G) p

M(s)
3f(2000 microns)

Silver
1.85 g/cm'
2.60s

Bromine
1.36 g/cm'
2.22s

1324 1834
1.8+3.85X 104/s 1.8+7.88X 104/s

21.0 41.2

estimated from k observed deRections xI, x2, xl„has a
stands, rd deviation equal to (x')[(M—1)/k]1. Thus if
M is large the statistical fluctuations are also large.
As has already been mentioned, this situation is reme-
died and 3E reduced by the use of a weighted average
in vrhich multiple scattering deRections larger in abso-
lute value than some chosen limit (say, four times the
root mean square deflection)" are given weight zero.
We proceed to derive a theoretical expression for a mean
square deflection with such a cutoff.

According to (8), the magnitudes of the angular
single scattering deQections are essentially confined to
the range (~p, coo); we note that (do/(up= a/b))1. Let us
choose an angle co, such that orp((MI((c02. Then the
probability po that a particle traversing a distance s in a
scattering medium will be deflected exactly k times
through angles 8&e, is given by the Poisson law:

1- (,l' o . (~ )'-
p„=- n] —

f
exp n] —-~,

k .- (Cdirt - 4(gi)

where e is the average number of all deQections. Let
fo(x) be the distribution of lateral multiple scattering
deAections corresponding to this contingency. Then the
general lateral multiple scattering distribution may be
written:

If we furthermore require that n(poo/pii)'«1,

f(x)=-[& n(~o/~i)'jfo(x—)+n(uo/~i)'fi(x) (12).
If the multiple scattering deQections are small, it is a
good approximation to set

) x'fi(x)dx=) x'fp(x)dx+) x'h(x)dx, (13)

where h(x) is the lateral single scattering distribution

~ Vnder the conditions of the present experiment, on the order
of 1 percent of the data were lost by such a cutoff. A smaller cut-
off would have resulted in a slight further reduction of M, which
would have been more than counterbalanced, however, by the
increased loss of data.

D. Mean Square Lateral Defiection with Cutoff

The mean square lateral multiple scattering de-
Qection,
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d8—dqdt,
gr(1 —(rpi/rpg)g) 8' (18)

g(8, y, t)d8dydt=

(x')= x'f(x)Cx= x'fp(x)dx
co2&~ 0~& mq, $~& f~& 0, ~~&p~& —~.

corresponding to one Coulomb collision resulting in an density of 9, p, and t is, approximately,
angular deflection in the range (rpr, rpg). Thus, according
to (12) and (13),

2mZ"Z'e4
t(8) =

pgvg (sing-,'8+-,'«g)g

I(8)=0 if 8)rpi,

if 0&8&erg,
(15)

one finds

(«l' I'
+u( —

)
x h(x)dx. (14)

E rpi)

This separation of the mean square deflection into a
true multiple scattering component (x')p= J'xgfp(x)dx
and a single scattering component (x')i= gr(rpp/rpi)

)& Jxgh(x)dx has the advantage that a properly chosen
cutoG may be applied, which —as we shall se" will
affect the single sca, ttering component (x')i only.

The moments of fp(x) can be calculated by means of
the general multiple scattering theory. The only differ-
ences compared to the previous calculation leading to
formulas (10) and (11) is the use of a sharp cutoff rpi for
the individual angular deflections instead of the more
gradual cuto8 at ~2. With the use of the single scatter-
ing law

f'rpi) ' t' x )
i(~,) E~gs]

if ~x~ &rpis,

1 dx gr trrpis)

3gr(1 —((pi/rpg)') rpis 2 E x )
t'~il

~,s&lxl«, s, (19)
Erdg) irpgs)

=0 if ixi & rugs,

By transforming (18) into a joint probability density
for x, q, and t, and integrating over t and y, with due
regard for the inequalities for the variables in (18), one

finds

( x 18(8, rrp, t)
h(x)dx=dx) Ct)~ dpgg~, q, t

~

Et cosset ) 8(x, gp, t)

1 dx ~xy
a]

3gr(1 (rpl/rpg) j rdls (rpls~

and

3Ep ——(x'[ s)p/(x'[s) p'

( (xs)p ', nrdp's——'D—og(rpr/rpp) ,']——(16) where
1+(1—x') &

P(x) = log +-'g (sin-'x —x(1—x') &].
1—(1—x') &

2.7

carpi

t

, , I

—
I
+1.g (»)

ggaog(rpi/rpg) ——g']g ( rpp)

The numerical value of Mo is of interest. I.et us assume,
for the sake of concreteness, that co~ is chosen so that
ggppp/rdi=1/20. This means that the probability of th:
occurrence of two or more collisions in the path length s,
resulting in deflections larger than co&, is equal to
1—exp( —1/20) —(1/20) )& exp( —1/20) =0.12 percent.
Corresponding to v=10', 10', or 10' collisions one finds
that &0=3.04, 2.48, and 2.23, respectively. Now for a
normal distribution (M=3) a cutoff at four times the
standard deviation will reduce the second moment by
only 0.11 percent. But fp(x) has a dispersion (as indi-
cated by Mp) less than a normal distribution for u) 100;
hence (x')p will practically not be affected by the intro-
duction of such a cutoR.

It remains to determine h(x). Employing now the
small angle approximation, we consider a particle
traveling in the direction of the z axis, which while
traversing a layer of matter of thickness s makes one
collision with a resulting angular deflection in the range
(a», rpg) at a random point in the layer, after it has
traveled a distance s—t. The lateral deflection resulting
from such a collision is x= Ht cosy. The joint probability

According to (19),
rpggsg t'2u ) ' 1

x'h(x)dx= log~
6 ESNE) 3

(20)

provided that u&~co&s. The final result, obtained by
combining (14), (13), and (20), is

( 2N 2)
(xg [ s, u) = x'f(x)dx= «gsggg( log ———[. (21)

3 E $070 3 i

In accordance with experimental practice, I is then
chosen so as to satisfy the implicit relation I=NO
=4(xg

i
s,up)i.

It is a satisfactory feature that the angle ~& vrhich

was introduced as an artifice to facilitate the calcula-
tion but which has no clear-cut physical significance,
has disappeared from the final result.

Formula (21) has been compared with the predic-
tions of other theories. Calculations based on numerical
values given by Moliere, and by Snyder and Scott for
the angular scattering distribution, and on the relation
3(x') =sg(Pg) between lateral and angular mean square
deflections, gave results for (x' srup) that agreed to
within the limits of error of the computation (1—2 per-
cent) with Eq. (21).This equivalence was found to hold
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under a wide range of conditions (n= av. no. of collisions

ranging from 100 to 84000). Expression (21) thus pro-
vides a convenient substitute for numerical calculations.

Moreover, the same approach may readily be adapted for

use in conjunction with some other assumed form of the

underlying single scattering law.
A calculation of (x'~ srup) (with up=4(x'~ srmp)i),

either by a method similar to that used above for

(x'~ stup), or with the use of the numerical tables given

by Snyder and Scott, indicates that M(up) = (x'~ srlp)/

(x
~
stlp) 3.7, so that the cutoff will considerably

reduce the statistical fluctuations.
For scattering by a mixture of substances, as in

photographic emulsions, we shall follow Snyder and

Scott in using an efFective average number of collisions

g ff and an effective minimum angle oro, «, defined by

r4rr= P,~;,
2 ~ . .2+effoef f ~i+i&oi 7

(22)

(23)

where n; and coo; are the parameters appropriate for the
i'th substance. A cutoff may then be applied after the

substitution of rs, r~ and rpp fr in (21).

IV. EXPERIMENTAL PROCEDURES

A. Source of Data

The proton tracks to be analyzed were obtained by
the exposure of Ilford G-5 plates that were dropped

through the proton beam of the Berkeley 184-in. cyclo-

tron, which has an energy of 340.0&0.8 Mev."In some

of the exposures, the protons were first slowed down by
a block of aluminum with a thickness of 42.210 g/cm'
before entering the plates, which reduced their energies

to 222&2 Mev. '4 The direction of entry of the protons
into the plates was almost parallel to the emulsion

surface. Most of the tracks were longer than 8000
microns. In order to avoid the effects of possible emul-

sion distortion in the edge zones of the plates, the

multiple scattering was determined only in a portion of

the tracks, averaging 5000 microns in length, that
followed the first 1500 microns of track as measured

from the point of entry of the protons into the emulsion,

whereby sections of track lying closer than 50 microns

to the surface of the emulsion were practically also

excluded. Otherwise the selection of tracks was random.

The direction of motion of the protons in the emulsion

could easily be determined from the occasional stars
which they produced. Energy loss in the emulsion was

calculated to reduce the mean proton energy in the
measured portion of each track to 337 Mev without,

and 218 Mev with the intermediate aluminum layer.
Nine different plates were used, with thicknesses of 200,

400, and 600 microns and surface areas of 2 in. )(4 in.

and 3 in. )&4 in.

"R.L. Mather, Phys. Rev. 83, 895 (1951).
~ This follows from Bethe's theoretical expression for energy

loss by ionization as evaluated numerically by J. H. Smith
)Phys. Rev. 71, 32 (1947)g. The increase in the energy spread is

due to straggling.

B. Apparatus and Measurements

The measurements were made with a Zeiss "Lumi-
pan" microscope using a 90-power oil immersion lens.
The total magnification was 1350, and the field of view

had a diameter of 140 microns. The ocular of the micro-

scope was provided with a filar micrometer, by means
of which distances of the order of 0.001 micron could
be measured. The regular microscope stage was mounted
on a specially built stage" that could be moved rec-
tilinearly in two directions at right angles to each other

by means of two precision screws. By means of measure-
ments with an interferometer it was found that the
deviation from rectilinearity of the motion of the stage
was less than 0.03 micron when the stage was moved
over a distance of one centimeter. The microscope was
mounted on a solid bench anchored to the ground in

order to eliminate vibrations, and was located in a well-

insulated cork-lined basement room in which the tem-
perature was found to vary not more than 2' over
periods of several days.

The procedure used for measuring the track deflec-

tions was the following. The track under consideration
was lined up so that it was very nearly parallel to one

of the directions of motion of the microscope stage. The
thread of the filar micrometer of the eyepiece, also

approximately parallel to the track, was lined up to lie

across the center of a grain of the track. The stage was

then moved through a distance equal to the cell length,
which resulted in a displacement of the thread from the
track. The distance through which the thread had to be
shifted in order to be again centered on the track gave
the lateral displacement or change in the y coordinate
of the track with respect to the reference line (the
direction of motion of the stage) (see Fig. 1). Since the
ionization density of the tracks was low, it was some-

times necessary to center the thread not on a grain but
on the estimated position of the track between two

adjacent grains. The basic cell length was chosen to be
250 microns, while the analysis of the measurements
was carried out for multiples of this unit: 250, 500, 750,
and 1000 microns.

The experimentally measured scattering includes

both the true multiple scattering and spurious scatter-
ing. This spurious scattering may in turn be considered

to consist of two components of different origin. One

of them, usually designated by the term noise level, is

approximately random, and results from errors in the
experimental determination of the trajectory of the
particle in the photographic plate. The other component
is more or less systematic and results from emulsion

distortion.
The noise level, expressed in terms of a spurious

average second coordinate difference, is found to be
approximately independent of the cell length. It can
be determined, therefore, by repeated measurements of
the same track, using different cell lengths, provided

"Used in a previous investigation by Dr. J. Lord.



that the dependence of the true multiple scattering on
the cell length is quite accurately known. Since the
determination of this dependence was one of the objects
of this experiment, this approach was not used. Instead,
reliance was placed on measurements carried out on the
tracks of particles with energies so high that any ap-
parent scattering was certain to be spurious. "These
measurements had to be made on plates other than
those containing the proton tracks, but the experi-
mental evidence indicates that the noise level is essen-
tially determined by the measuring apparatus and is not
aGected by the idiosyncracies of individual emulsions.
Numerous noise level calibrations were made periodi-
cally throughout the course of the experiment in order to
make sure that the apparatus was in good working order.

The spurious second coordinate diGerence due to
noise was found to have a root mean square value
E=O.I82 micron, and an absolute mean value E'=0.150
micron. The ratio E'/E=0. 824 is compatible with the
assumption that the noise level deAections have a
Gaussian distribution. Variations of the cell length
from j.25 to 1000 microns did not result in a significant
change of the noise level. The correction applied to the
proton data consisted of subtracting E' from the ob-
served ((5'y)'), and E" from the observed (lAsyl)'
and &IA'yl) '

In order to detect the possible presence of emulsion
distortion, the distribution of the algebraic signs of the
observed second coordinate diGerences was examined.
Under the hypothesis that there is no emulsion distor-
tion, positive and negative dPy&'s are equally likely;
moreover, alternate d'y&'s are independent of each
other; and the probability that an actually observed
distribution of algebraic signs may have arisen under
this hypothesis due to chance fluctuations may be
calculated with the aid of formulas for the probability
distribution of the number of "runs" of alternate 6'yf, 's.'7

~ The tracks used for this purpose included those of mesons
vrith energies estimated to be 250 Bev or more that were pro-
duced in a nucleon-nucleon collision LLord, Fainberg, and Schein,
Phys. Rev. 80, 970 (1950)j, and the track of an oxygen nucleus
with an estimated energy of more than 15 Sev, found in the cosmic
radiation by M. Schein and J.Lord (private communication).

~' In the sequence of second coordinate differences A~y&

(f=1,2, ~ ) obtained from a track, successive r9y&'s are corre-
lated:

(n'yi. n'y~+r) = ((*~+r—«) (*t+s—*~+~))-—(*i+r')
But in subsequence of alternate d'y&'s (e.g., t= 2T, 7=1,2 « ~ ) all
elements are uncorrelated and independent; moreover, each is
equally likely to be positive or negative. Let P(r, k

~
R) denote the

probability that in an observed ordered sequence of R alternate
dPy&'s there are exactly A~yf's with a positive sign, and that the
sequence contains exactly k runs. The number of runs is equal to
the number of blocks containing b2yf's of like sign, into which the
sequence can be divided; e.g. , in the sequence ++ +,
there are four runs: —,++, ———,+. It can be shown /see
A. M. Mood, Ann. Math. Stat. 11, 367 (1940)g that

if k=2 P(,alii)=2'-*( " )(" );
if k=2m+I P(r,k jR)

R—r—1 r—1 E.—r—1 r—1

Given R, one can compute with the aid of these formulas the
probability that k and r will lie in a speci6ed range.

~I
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5
d0
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40
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O
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Such a statistical analysis was applied individually to
the results obtained with each of the nine plates used
in this experiment. For eight of these plates the hypoth-
esis of no distortion had a probability of 75 percent or
better. For one plate (2 in. )&4 in. , 600 microns thick)
this probability was as low as 15 percent so that, be-
cause of the suspicion of emulsion distortion, the results
from this plate were not used for the computation of the
scattering factors.

V. RESULTS AND CONCLUSIONS

A. Distribution of Lateral Multiyle Scattering
De6ections

Each second coordinate diGerence 6 y~ is the diGer-
ence of two independent lateral multiple scattering
deftections. The histogram in Fig. 2 shows the distribu-
tion of 795 lay&'s obtained from measurements on the
tracks of 337-Mev protons divided into 500-micron cells.
Only alternate 6'yg's were used in plotting the histo-
gram in order to avoid correlation eGects, successive
6'y&'s being correlated since they have one lateral
deQection in common. The scale of the abscissa is in
units of (l A'y

l ), ; the shaded areas to 'the left of —4 and
to the right of +4 on the abscissa represent the j..4 per-
cent of the data eliminated when the cutoG was intro-
duced. The curve in Fig. 2 represents a Gaussian
distribution with an absolute mean value equal to
(llVyl), . It is seen that the experimental histogram
exceeds this curve in the center and at the tails, whilei

it is lower in the intermediary region. This is consistent
with the theoretically predicted non-Gaussian shape of
the distribution curve of the lateral deQections.

B. Scattering Factors

The results of the measurements are summarized in
Table I, which gives, for cell lengths @=250, 500, 750,
and I000 microns, the number of cells included in the
analysis, and the multiple scattering. in Ilford G-. S
emulsions, as expressed in terms of the average secondi

0 ~m ~
-a -I 0 t a d O d e

Second Coordinate Oiffetenced
I unit a Cga+& a Ohkp,

Pro. 2. Distribution of 795 uncorrelated second coordinate
differences obtained from the tracks of 337-Mev protons divided
into cells with a length of 500 microns.
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TABLE I. Multiple scattering of protons in Ilford G-5 photographic plates.

Energy
T

(Mev)

. . Cell.
length

S
(microns)

No. of
cells

k

Mean deflections
(no cutoff)

(l ~'xl &

(microns) Kt

Mean deflections
(with cutoff)

&I &'sl &.
(microns) Kp

rms deflections
(with cutoff)

((~ ~) &.~

(microns) . Ke

337 250
500
750

1000

3620
1682
1140
815

0.310
0.878
1.636
2.602

26.2~0.9
26.3&1.0
26.6~1.1
27.5+1.2

0.289 24.4&0.7
0.820 24.5&0.8
1.512 24.6~0.9
2.395 25.3+1.0

0.383 32.4+0.9
1.101 32.9~1.1
2.035 33.1~1.2
3.189 33.7&1.3

218 250
500
750

1000

1607
756
496
360

0.464
1.347
2.509
3,933

26.5+1.0
27.2&1.3
27.6&1.5
28.1+1.7

0.437
1.257
2.337
3.681

25.0+0.8
25.4&1.0
25.7~1.2
26.3~1.4

0.579
1.683
3.127
4.913

33.1+1.2
34.0&1.4
34.4a1.6
35.1~1.9

coordinate differences and the corresponding scattering
factors. The last two of these quantities are listed for
the following three cases (see Sec. II): (a) average of
absolute values without cutoff ((~dPy~) and E'r); (b)
average of absolute values with cutoff at four times the
experimental mean value ((r)'y~), and Er'); (c) root
mean square average with cutoff at-four times the ex-
perimental root mean square value (((6'y)'), I and Kr').
The values given are those obtained after correcting for
spurious scattering (noise level) according to the pro-
cedure described in Sec. IV B, by subtracting E" from
the observed (~ dPy))' and (~ 6'y~) r and E' from the
observed ((dPy)'), . (E'=0.150 micron, E=0.182 mi-
cron. ) The indicated standard errors of the scattering
factors were calculated on the assumption that the total
error has the following three independent components
whose squares are to be added: (1) the statistical error,
arising from the circumstance that the spattering factors
are determined from a limited number of cells s' (2) an
error of 2 percent resulting from the expected variation
of the composition of the emulsion from the nominal
composition (density variations; humidity effects); (3)
the error resulting from the uncertainty of the proton
energy, which was assumed to be 1 percent for the 337-
Mev protons, and 2 percent for the 218-Mev protons,
considering the spread in the proton beam energy as
well as energy loss in the emulsions.

In Fig. 3, the experimental values of the scattering
factors E~ and E~' are compared with the theoretical val-
ues predicted both by the theory of Moliere, "and the
equivalent theory of Snyder and Scott (as modified by
Scott)."It can be seen that the experimental values are
in fair agreement with, though somewhat lower than,
those predicted theoretically, the discrepancies being
just outside the limits of error (3—4 percent) for 337-
Mev protons, and within the limits of error (3—6 percent)
for the 218-Mev protons. The rise of the scattering

s' The following expression can be shown to hold for the sta-
tistical error:

SKs'/Xs' =$E(k—$) (kr —3)+(3k—4) (1+n4/s') 7I(k -1) '

where SEE'=standard deviation of E~', %=number of cells; s=cel
length (microns); M=3.7; p= 10E pv/E2'Zs; E=noise leve l

(microns). The ratios SEE'/El' and SEE/E~, being based on aver-
ages of absolute values, cannot be easily calculated, but may be
assumed to be of the same order of magnitude as bE2'/E2c.

factors with increasing cell length is less than pre-
dicted. The simple version of the theory of Williams
(as presented by Rossi and Greisen) would give
Xr' ——32.7 (regardless of the cell length and proton
energy), which is 24 percent to 34 percent higher than
the experimental results. According to calculations by
Goldschmidt, ' and Voyvodic and Pickup, 7 the more
exact form of the theory of Williams is in close agree-
ment with that of Moliere, and therefore is also con-
sistent with the results of this experiment.

In Fig. 4, the experimental values of the scattering
factor E2' are compared with the corresponding theo-
retical, 'values. The latter were obtained by 6rst com-
puting (x

~
s,ue) with the use of (21), multiplying this

result by a factor of two to obtain ((6'y)')„ from which
Ks' is then found according to (3)."Again the experi-
mentaljgvalues are seen to lie somewhat below the
theoretical curve, the discrepancy being within or just
outside the probable experimental error.

e5
1 I s

o eo
ssa
4,

337- Mev Protons 2IS-Mev ProtonsI5

5
rrs Expt. Theor.

With cut-off Kt

Without cut-off Kt

0- Theor.

With cut-off KI

Without cut-off Kt--~

Expt.

e50 500 750 IOOO e50 500 750 looo

Cell Length Imlcrone)

FIG. 3. Scattering factors E1 and El' for Ilford G-5 emulsions.
Comparison of the experimental results with the theory of Moliere
and the equivalent theory of Snyder and Scott.

"This step in the calculation involves a slight approximation.
For the cutoG is applied to x; theoretically, arid to bx; experi-
mentally. But it may be shown that the following relation holds
for the distribution functions of b,x; and x;

f(Ds~/A)d(rssr, /A) f(r,;/A')d(x;/A'),
for

~
ax;

~
&4A and

~
x; &4A', where A and A' are the truncated

root mean square vaues of Ax; and x;, respectively. Hence
A'= 2A'2. It was estimated that under the conditions of the present
experiment, this approximation will introduce an error less than
1 percent into the calculated value of Es'.
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TABLE II. Scattering factors: results of various calibrations.

Particle
Cell length
(m icrons) +&C Reference

Electrons
Pairs from 14.8- and 17.6- 15—70
Mev Be' gamma-rays

Electrons and positrons
40 to 283 Mev (weighted
average)

21.3&1.0

25,1+0.6

Voyvodic and Pickup'

Corsonb

Positrons
105 Mev
185 Mev

Protons
336 Mev
337 Mev
218 Mev

200
400

600
500
500

26.2~0.6
24.0+0.8

29.2&1.0
24.5~0.7
25.4~1.0

26.7~0.6
24.9~0.8

30,7&1.0
26.2~0.9
27.2&1.3

Gottstein et al. '
Gottstein et al. '

Gottstein et al. '
This work
This work

& See reference 7.
b See reference 6.
& See reference 8.

It should be mentioned that the results obtained
for different plates were consistent; no significant varia-
tions of the value of the scattering constants were
found beyond those to be expected on account of sta-
tistical fluctuations.

In Table II a listing is given of the scattering factors
for Ilford G-5 emulsions found by various investigators
under conditions such that the particle energy was con-
trolled and approximately constant. The values ob-
tained in this experiment which are quoted for com-
parison are those for a cell length of 500 microns; these
are regarded as the most reliable values because their
statistics are good while the noise level corrections were
quite small (1.4 percent for the 337-Mev protons, and
0.7 percent for the 218-Mev protons). As previous results
for photographic emulsions have been given in terms of
the mean rather than the root mean square deflections,
the comparison is confined to the factors E~' and E~.

C. Accuracy of Energy Determinations by
the Scattering Method

The measurement of a large number of tracks of
particles with identical properties provided an oppor-
tunity of making an experimental check of the accuracy
with which energies can be determined by the multiple
scattering technique. For this purpose a group of 128
tracks of 337-Mev protons, all in one plate with dimen-
sions 3 in. )&4 in. )&400 microns, were selected. Each
track had a measured portion 5000 microns long and
was divided into twenty cells with a length of 250
microns. With the use of the experimentally determined
scattering factor E2' an apparent energy was computed
for each track from the observed root mean square
second coordinate difference (with cuto6'). The resultant
energy spectrum is shown in Fig. 5. The peak of the
spectrum is at approximately 330 Mev, and 50 percent
of the tracks underwent defiections indicating apparent

energies in the range from 285 Mev to 395 Mev. The
slight asymmetry of the histogram is not due to an
asymmetry of the scattering defiections, but arises from
the transformation to a kinetic energy scale. The histo-
gram in Fig. 5 may also be interpreted to represent the
inherent uncertainty of an energy determination based
on the knowledge of the true scattering factor and
measurements made on a single track 5000 microns long
and divided into 20 cells, the probable error in this case
being approximately 20 percent.

a Ol
sc 30I
O

25
O

Cl

20
O
V
lA

337 Mev

Protons
2I8 Mev

Protons

T
35I

0
250 750 l000 250 500 750 IOOO

0

Cell Lenglh (rnicrons)

FIG. 4. Scattering factor E2' for Ilford G-5 emulsions. Com-
parison of the experimental results with the theoretical value
calculated from Eq. (21).
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APPENDIX: LATERAL MULTIPLE SCATTERING
DEFLECTIO NS

A. General Theory

collision. P is assumed to obey the following conditions:

P(8', y'; g, q is)=P(g, y; 8', y'js) (symmetry), (A3)

2tt'

de(8', y': 8, v i s) = 1 (normalization). (A4)

The dependence of Q and P on s may be used to express
their energy dependence, if the energy for some value of
s and the energy loss as a continuous function of s are
known.

From the difference equation (A1) one obtains, by
going to the limit hs—4, the integro-difFerential equa-
tion

8F(g, y,xi s)
Let us consider a particle traveling in an infinite

medium in which scattering centers are distributed at
random. YVe describe the state of the particle by the
probability density F(g, q,x,y, zts) which is conditional
on the path length s traversed by the particle; s is
measured from a reference point on the trajectory which
is also taken to be the origin of a Cartesian coordinate
system ( yx, )sspecifying the position, and a spherical
coordinate system (g, q) specifying the direction of
motion of the particle. If the particle is initially, at
s=o, moving in the s direction, the x coordinate may
be used to represent the lateral deflection as projected
on the x—z plane (a plane parallel to the surface of the
emulsion as discussed in Sec. II). The dependence of F
on y and s is then of no interest to us, and we shall
ignore these coordinates from now on. The stochastic
equation governing the probability density F is

F(g, y,xi s+Ds)

2 tr

= iVQ(s) ' d v
' d8'[F(8', q', x

j s)
~Q &Q

Xf(8',y'; 8, pis) j IVQ(s)F(8, p—,xmas)

8F(8,y,x i s)
slI18 cosp . (AS)

The kernel f, positive and symmetric in (g, lr) and
(8', p'), can be expanded in terms of its eigenfunctions:

O(8', ~'; g, ~Is)= Z c-(s)~.(8',~')~.(8,~) (A6)
n=0

The eigenfunctions p.„are solutions of the integral
equation

= L1—iVQ(s)lb]E~'(8, (p,x—sing cosy As
i s)

2tl a tl

+iVQ(s)hs ~l
d~'

~
dg'F(g', ~',x

0 n

e-(g, t ) =
1 f d IP', dg'tt„(8', q ')

c„(s)

Xtt(8', y', g, yis). (A7)

—S1118 cosy As
i s) lP(g, y; g, (pi s). (A1)

The initial condition is assumed to be

F(8,v,x
/
0)= (27r)-Ig(x) B(8) (A2)

where 8(x) and g(8) are delta-functions. The first term
on the right side of Eq. (A1) takes into account the case
in which the particle makes no collision in the interval
(s,s+hs), while the second term refers to the case that
the particle makes one collision by which it is deflected
into the direction (g, p). The probability of more than
one collision in the interval (s,s+hs) is assumed to be
negligibly small. E is the number of scattering centers
perunitvolumeof the medium, Q(s) is the total cross sec-
tion for the underlying single scattering process, and
$(8', p'; g, @is) is the transition probability density for
a change of direction from (8', p') to (g, q) in a single

They form an orthogonal system, and will be assumed
to be normalized. All the eigenvalues are real and posi-
tive. One eigenfunction, do ——1/(4s.)t, can be found by
inspection with the help of the normalization equation
(A4) of the text. The corresponding eigenvalue co=1 is
the largest eigenvalue since it belongs to the eigenfunc-
tion with no node.

Mllltlplylrlg Eq. (AS) by x, sllbstl'tlltlIlg 'tile expa11-
sion (A6), and integrating with respect to g, y and x, one
finds

2' (Q 1l s

dp
i

dg t dx —+iV'Q(1 —c„) x~rtp„F

2tr tl' 8

dq lj de I Lv x~ sine cosq@„—
Q 0 Bx

(n =0, 1,2, ). (AS)
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The initial condition (A2) implies that

F(8,y, &s
I s) =0,

so that

(A9)

The remaining problem is to determine (qb0I s). Let

pS

G(8, @Is)=
' de(8, (p,xls).

and

Hence

S M
xVdx= ~ x~ d

8s -s j—a 85

s elF S

j x~ dx= —k ~~
x~ IPdx.

—s BX —S

It follows from (A5) and (A9), that

8G(8 ~l s) (op~ pr
=1vQ(s) I d00' I d8 LG(8 F Is)

8$ 0 0

Xg(8', y'; 8, y Is)j NQ—(s)G(8, pl s) (A.15)

Substituting in (A15) the expansion

8 2g S—+jVQ(1—c ) I dy I d8 ' x &„Fdx" .J,
G(8, 0 Is)= 2 A.(s)4 (8, 0)

n=p
(A16)

[d/ds+ jVQ(1 c„)7a„=—0. (A17)

and the eigenfunction expansion (A6) for the kernel!!,
one obtains the differential equations=k

I~ dpp ~ d8 ~ x" ' sin8 cospp&„F. A10
JP j0 6 s

It is convenient to use the notation Solving for the coefficients u, and substituting the
solutions in (A16), one obtains

27K f 1I S

(f I s)=, I dpp i d8 dxf(8, y,x,s)F(8,y, xI s),
J0 0 ~ —s G(8, 0 ls)= Z (e.l0)4.(8, 0)R-(s),

n=p
(A18)

ps
R„(s)= exp —jV j' Q(s')L1 —c„(s')]ds'

0

in terms of which the solution of (A10) may be written

where

2r 7r

(Q„l0)= I d00 t d8G(8, qr
I 0)$„(8,P). (A19)

0 0

dsy
(x'p. ls)=kR (s), (x"—'sin8cospptt ls~). (A11)

jp R„(sg)

Thus, since the p„are orthogonal,

(O 0 I s)=(0 0 I0)R-(s), (A20)

If the expansion

sin8 cosy' =PjiAji"Pj&

is substituted in (A11), the result is

(A12)

where

X(p&0I0)~i&jp "jp",

so that finally

(x &~ I s) =k!R~(s) p Ajy Ajoj ' ' ' Ajk
'"

71 72' ~ ~ 770

(A21)

(x"y„ls)=kR„(s) Q Aig"
lsd

(x pjy I
sy).'(A13) r Rjl(sl) e" Rip(s0)

&0 R„(sg) Tj Ij2...jlc =, dSy — dS2
R„(s)) ~ 0 Rj~(s()

X Q Aig"A jp" Aippj0'
71 72~ ~ ~ 770

Rj&(sg)
dSy

R„(si)

Rjp(») I' ' (4'jp I »)
X II dsp dsp . (A14)

p Rjg(sp) 0 Rj0(sp)

Repeated application of this recursion relation yields

(x'y Is)=k!R„(s)

Rj,(sp)
X

Rj0 i(s0)

This expression gives not only the moments of x (for
m= 0), but also the product moments of x and the eigen-
functions P„(8,&p) It should . be noted that (A18) is a
generalization of the angular distribution function of
Goudsmit and Saunderson LEq. (6) of the text], to
which it reduces if the underlying single scattering law
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S S1 (e Sk—1

Tjijo...jo"~ If dsi I dso l dso

is axially symmetric so that f=P (cosx), where may neglect its second and higher powers. Then
cosy = cos8 cos8' —sin8 sin8' cos(oo —oo'). In this case
spherical harmonics

1 2jo+1 (jo—m)!
P„(cos8)e'"'",

2~ 2 (a+m)!

are the normalized eigenfunctions satisfying the integral
Eq. (A5). Since these eigenfunctions are characterized
by two indexes, m and e, the corresponding matrix
elements in Eq. (A21) will have four indexes:

X(1+8„—8ji)(1+8ji—8jo) (1+8ik i 8—io)

S pS1 pSk —1—
J

dsi Jl ds, I ds&(1+ 8, 8j—j'c)

0 0 0

t'" t' ' ' Rja(ro)
dsi dso dso . (A24)

"o "o "o Rj (&o)

Aj~ "= doojf d8$j~ sin8 cosy'� „~J,
2' '!r

—+A„'„,'" =
J dooJf d8I'„„sin8cos&pV„„, *

0 0

1 (jo+m+1) (jo+m+2)

2 (2jr+1)(2N+3)

1 (e—m)(jo —m+1)
]

l
A„1, +1n™=——

2 (2jo+ 1)(2jo —1)

1 (jo—m+1) (jo—m+2)
t

l
nf m

2 (2ji+1)(2jo+3) I

1 (jo+m)(jo+m —1)
nj m~n-1, m—1

2 (2jo+1)(2jo—1)

But because of (A12) and (A21),

Al +jo ' ' '+ jo (4jo ~
0)Rjo(&)

7172» o 77c

=(sin"8 cosoqP„~ s), (A25)
so that

pS pS1 p Sk-1

(x"p„~s)=k! l' dsi
~

dso I dso
J, J,

X(sin"8 cosoooP„~ s). (A26)

.(A22) By a simple integral transformation" one obtains from
(A26) Eq. (5) of the text (which corresponds to the
case n=0).

C. Reversibility

t.)In addition to the "forward" stochastic Eq. (5) of
the text, one can also write down the "backward"
equation

,nm P

mmmm'&1

n /n' ~1

F(8,q,xl s as)—
= (1—ArQhs)F(8, q,x+sin8 cos oops

~
s)

tI2w (w
+XQhs

J
doo' d8'F(8', oo',x

0 0

+sin8' cosoo'As~ s)P(8', oo; 8', y'~s), (A27)

BP 2' 7r

=SQ f doo' I d8'[F(8', (p',
t )

as

The moments (x") for the case of axial symmetry
have also been dealt with by Lewis, " who expanded
them into infinite series whose coeS.cients are shown to
obey an infinite set of coupled diGerential equations
that can be solved recursively. The explicit solution of and the corresponding integro-Qifterential equation

these equations would yield a result equivalent to
(A21) with the matrix elements (A22).

B. Approximation

If the underlying single scattering is predominantly
in the forward direction (which implies that (c„—1) is
small), and if the layer of matter traversed by the
particle is thin (s small), then we may set

S

R„(s)=exp —cV If Q(1—c.)ds = 1—8„s, (A23)
0

where 5„ is assumed to be suKciently small that we

30 H. W. Lewis, Phys. Rev. 78, 526 (1950).

XP(8,y; 8', oo'
~
s) $ SQF+cos p sin8—8F/Bx. (A28)

Let us assume that P and Q do not depend on s (no
energy loss). Since f(8', q'; 8, y) =P(8, oo~ 8'y'), the sub-
stitution s'~( —s) and x'—&(—x) will transform (A28)
into the "forward" equation (AS). Hence the solutions
of the "backward" equation will be the same as that of
the "forward" equation, except that the "initial"
conditions (at s= 0) become "final" conditions (at
s'=0), i.e., refer to the direction of emergence instead
of the direction of incidence of the particle.

3' See, for example, B.Van der Pol and H. Bremmer, Operational
Calculus (Cambridge University Press, Cambridge, 1950), p. 52.


