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Using Racah’s methods, the matrix components of the electrostatic interaction between the terms of
the configurations d»2sp and d»~'p are expressed as linear combinations of Slater integrals. The result
consists of two parts. One part represents the interaction between the terms of the parent configurations.
The second part results from the coupling of the p electron to the parent groups and contains the Slater
integrals R2(sp,dp) and R'(sp,pd). The appropriate linear combinations of these integrals are formed by
means on the coefficients of fractional parentage, the Racah coefficients, and a spin-dependent factor. A
tabulation of coefficients sufficient for the construction of the matrix components for the entire iron group

is given.

L. INTRODUCTION

HE principal lines observed in the spectra of the
elements in the iron group arise from the combi-
nations of the levels belonging to the deep even con-
figurations 3d"24s%, 3d"'4s, 3d™ with the levels of the
deep odd configurations 3d"%4s4p and 3d"4p.
Analyses of many of these spectra have been carried
out, and assignments of the spectroscopic levels have
been made with respect to configuration, spin, and
orbital and total angular momenta.!

However, whereas the identification of the angular
momenta is rather reliable, the specification of the
configuration is sometimes not. Under such circum-
stances it is desirable to settle doubtful assignments
by means of theoretical calculations. A twofold attack
‘on this problem is possible? namely, the calculation of
energy levels and the calculation of line strengths.

This paper deals with the energy level problem? and
more particularly with the matrix components of the
electrostatic interaction which connect different con-
figurations.

If the configurations are well separated, the matrix
components of the configuration interaction (CI) are
usually small compared to the difference between the
diagonal elements which they connect. In such a case
these matrix elements have no appreciable effect on the
determination of the eigenvalues and they may be
neglected. The configuration label then is a set of good
quantum numbers to a high degree of accuracy. If, on
the other hand, the configurations overlap, the matrix
components of CI can frequently not be neglected. In

* Based on Sec. V of the author’s Ph.D. thesis, Cornell Uni-
versity, 1951, unpublished. Some of the work was carried out
at the Argonne National Laboratory.

t Now at Argonne National Laboratory, Chicago, Illinois.

! Atomic Energy Levels, Vol. I, National Bureau of Standards
Circular 467 (1949). Volume II to appear in the near future.

2 See F. Rohrlich, Phys. Rev. 74, 1381 (1948).

3We are concerned here with the traditional attack on the
problem as described by E. U. Condon and W. Shortley, Theory
of Atomic Spectra (Cambridge University Press, Cambridge, 1935).
It consists of constructing the matrix of the electrostatic inter-
action in the Russell-Saunders scheme. The matrix elements are
expressed in terms of the solutions of the approximating central
field problem, i.e., in terms of Slater integrals. Extensions which
make the theory applicable to configurations containing many
equivalent electrons (e.g., filling of the d shill) have been made
by G. Racah (see reference 5).

this case the energy eigenfunction may contain more
than one configuration to a considerable extent, so that
the assignment of a term to only one configuration,
if at all meaningful, is a rough approximation.

The configurations of the elements in the iron group
overlap considerably. A theoretical study of their term
values must therefore include a consideration of CI.
The matrix components connecting the even configura-
tions have been derived for &%, d%, and ds® by Ufford*
and for configurations containing many equivalent
electrons by Racah.’ Their results have been applied
to specific spectra by various authors.$

It is desirable to make available also the matrix
components connecting the odd configurations. Rohr-
lich? in his work on the classification of the odd terms
of TiI treated the CI to some extent by considering
the interaction between the even parent configurations
only. He found that the CI had an appreciable effect
on the eigenvalues. Ishidzu and Obi’ attribute at least
partly to the CI, the disagreement between the calcu-
lated and observed values of several terms assigned to
the configuration d%% in the spectrum of FeIl. A
study® of the odd terms of FeI indicates that CI is
even more important in this case than for TiI or Fe II.
This is not surprising in view of the almost complete
overlapping of the configurations d®p and d’p and the
relatively small energy differences which separate the
many like terms.

In this paper we shall obtain the matrix components
of the electrostatic interaction which connect the terms
of d»%p and d"'p. As usual this means we shall
express the interaction in the Russell-Saunders scheme
in terms of the solutions of the central field problem,
i.e., in terms of the Slater integrals R*. The methods
given by Racah®® for dealing with many equivalent
electrons will be employed. We refer to his papers for

4 C. W. Ufford, Phys. Rev. 44, 732 (1933).

§ G. Racah, Phys. Rev. 63, 367 (1943), hereafter referred to as
RIIIL.

6 See, for example, C. W. Ufford (reference 4), Ti IT and Zr II;
A. Many, Phys. Rev. 70, 511 (1946), Ti-I and -II, V-II and -III;
A. A. Schweizer, Phys. Rev. 80, 1080 (1950), V I and Cr II;
R. E. Trees, Phys. Rev. 83, 756 (1951), Mn II.

7T. Ishidzu and S. Obi, J. Phys. Soc. Japan 5, 124 (1950).

8 N. Rosenzweig, thesis, Cornell, 1951, unpublished.

9 G. Racah, Phys. Rev. 62, 438 (1942), referred to as RII.
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CONFIGURATION

an exposition of the underlying theory as well as for
definitions and notation.

II. THE ELECTROSTATIC INTERACTION BETWEEN
dr2sp AND dvp

In order to be able to distinguish all the observed
terms in the configurations d*'p and d"%p, the
Russell-Saunders scheme must include not only .S and
L, the spin and orbital angular momenta of the entire
configuration, but also the following quantum numbers:
auS1L; representing respectively the seniority number,
spin, and orbital angular momenta of the d*=2 group;
Sy spin of the parent d*~%s; and «3S3L; of the parent
d*1. The matrix elements which are of direct interest
are the following:

n e
Z_..._

<7

[d"_2(0£1S1L1)852L1pSL

dn—1a3S3L3PSL]. (1)

However, to begin with, we shall consider the somewhat
more general configurations /*~%'l" and [*". The
identification of /, /', and // with d, s, and p electrons
will not be made until this specialization results in a
simplification. Thus, we wish to express

C= [l"—Q(a1S1L1)1152L21,’SL
n e

> —

i<i

l"“lagsngl”SL] )

in terms of Slater integrals. This can be accomplished
because we know, as a result of Racah’s work, how to
expand the antisymmetric eigenfunctions in the above
scheme in terms of one-electron eigenfunctions. The
reduction of (2) will, in fact, consist largely of exhibiting
explicitly (but only to the extent necessary) the
construction of the eigenfunctions and the application
of orthogonality conditions.

The following expanded forms of the eigenfunctions
will be used:

(A) Explicit antisymmetrization with respect to a
particular inequivalent electron.

W[I" oS5 Ll "SL]=n4 L (—1)9W[1*asSsLal,"SL].
q=1

Q is the parity of the permutation which exchanges ¢
with 7.
(B) Addition of two angular momenta.

Y{I"1asSsLal,"SL]
= Z Z ‘l/[ln_la353L3MS3ML3](b[’ﬂ”lq”mlumsuj

MgS3MLz mg'rmyre
X[MS3ML3m3HmlH l MSMLSL]

The coefficients of the transformation are well known.
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We shall need only the general properties of the unitary
transformation.

(C) Expansion in terms of fractional parentage.

Y asSily]= X YL 2s/Sy/Ly'la-1SsLa]

a3’ S3’ L3’
X [l"_2a3’S3’L3llS;;L3l"—la353L3].

The coefficients in this expansion are the coefficients of
fractional parentage as introduced by Racah in RIII.
It should be noted that the equivalent ! electron which
is added to the parent angular momenta in the manner
(B) is numbered #»—1. However, the linear combination
is determined in such a way as to make it antisym-
metric in all pairs of coordinates.

(D) Transformation between two schemes of coupling
three angular momenta.

YISy Ly, 1(SaL3)l,"SL]
= Z ‘M:ln—l 0(3/.53,L3,ln_1lq” (S4L4)SL:]

SsLs
XSy’ Lyl (SeLa)SL| Sy’ Ls'd(SsLa)l"SL].

The coefficients of the transformation have been given
by Racah in RIII in terms of his W function and are
called the Racah coefficients.

Naturally, the eigenfunction

yl/[l"‘zalSlLllf (Ssz) l”SL:I

can also be expanded in the various forms described
above. We are now ready to proceed with the reduction
of the matrix component (2). In view of the symmetry
of the operator and the antisymmetry of the states,
we may write

C= %’ﬂ(%— 1)[1"_201151];1[/52112”[5[4
32

X

l"_lassale”SL]. (3)

¥, n—1

Indicating explicitly the antisymmetrization with
respect to the /' electron in the manner (A), we have

C= %(%“ 1) Z (— 1)P+Q[l"~2a151L1l/(S2L2)lp"SL
p,q

2

X

l"—lasS'sLalq"SL]. )

rn, n—1

The expression (4) is a sum of #? terms, an advan-
tageous grouping of which is the following:

(@ C:p=n—1,n;9=1,2---n—2
and p=1,2.--n—2;g=n—1,n.
(b) C":p=1,2--n—2;9=1,2---n—2,
() C":p=n—1,n;9=n—1,n
and C=C'+C"+C"". )
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Let us consider one part at a time.

(a) In each term of C’ one and only one of /,”" and
;" has the same coordinate as the operator; the other
one is orthogonal to the parent eigenfunction. There-
fore, each term ot C’ vanishes.

(b) The coordinates of both Z,”” and /,” differ from
those of the operator in every term of C”. Therefore,
the terms of C” vanish unless p=g¢. It should be noted
that

(—1)Pte=1

for every term. There are »—2 nonvanishing terms,
all of which have the same value. Thus,

C”= ‘21‘(71— 1) (ﬂ* 2)[ln_2a151L11’52L211//SL
62

X

l"_lagSgle;"SLJ. (6)

¥n, n—1

This expression can be simplified by considering the
coupling of the electron to its parent angular momenta
in the manner (B). Thus,

C"=3n—1D(»=-2) ¥~ X X X

Mg, MLy m’prom’srr MSMLy mirtmsrs
X B[l myme’ LM sMLSL|my'me/’ MseMLy]
X [l"_lelSlL]l/SngMSgMLQ

e2

X

l"—lassaLsMS;;MLs]

rn, n—1
X[MssMrigmgmp: | M sM i SLI®[ L 'mymg]. (7)

However, the matrix element of the electrostatic inter-
action is diagonal with respect to SeLsMs:M Lo, and its
value is independent of Ms,ML,. Hence, the matrix
element can be taken outside the summation sign. The
summation gives unity. Also, we may make the replace-
ment

e2 n—1 62
Yn—)(—2) —— - % —
¥n, n—1 i<ir1,‘j

The result of these considerations is

n—1 62
Z —_

i<i ¥

C'= [l"_2a151L1l'52L2

l"_IOZgSng]

Thus, C” is precisely the matrix component of the
electrostatic interaction between the parent configura-
tions. The reduction of (8) for the configurations
d~%s, d* 1 is dealt with in RIII. All of these matrix
components can be expressed in terms of the single
radial integral R*(dd,ds). The coefficients needed for the
left side of the periodic table are tabulated in RIIL
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In the next section we shall extend these results to the
right side of the periodic table. Let us now turn our
attention to C'”’.

(c) We shall subdivide C"” into two parts as follows:

C": p=n, q=n; p=n—1,q=n—1;

G p=n, g=n—1; p=n—1, g=n;

C/II= Cl,,/—""CZ”,-
Inspection of (4) shows that the two terms comprising
C/'"" are equal, and so are the two terms making up C,'”.
However, C,’”” and Cy"’ differ in several important

respects, as we shall see. We study Cy"’ first. Since
(—=1)P+9=1, we have

C;Hl= (ﬂ— 1) [1"~20{151L11'52L21nNSL
32

X

l"“lasS;;len”SL]. (9)

¥n, n—-1

Considering the antisymmetrization of the inequivalent
electron I’ in the manner (A) and its orthogonality to
the eigenfunction on the right leads to

C1/”= (’I’l‘— 1) *l:l”‘2a1SlLll,,_1'Sngln"SL
62

X

l"—IOZsSsLaln”SL]. (10)

¥n, n—1

We progress in the reduction of (10) by expanding the
left eigenfunction in the scheme in which the resultant
angular momenta of /,—,’ and /,” are coupled to the
angular momenta of the group of equivalent electrons
[see Sec. (D)]. The right eigenfunction can be treated
in the same way after it has been expanded in terms of
fractional parents [see Sec. (C)]. Thus,

G"=% X X
S4Ls SsLs a3’ Sz’ Ly’
X[S1Lil (SeLo)l"SL| S Lyl (S4Ly)SL]
X ('}’L— 1)%[l"_le]SlL1ln_1,l,,"(S4L4)SL

e2

ln—20l3,53'L;/ln_1ln”(S5L5)SL]

n, n—1
X[ 2as’Sy' Ls'1S3Ls " a3S3Ls ]

XSy’ Ly'll" (SsLs)SL| S5’ Ly'l(SsLs)l"SL].  (11)

Next, we observe that the matrix element occurring in
(11) is equal to
62

[l;’ 15/'S4Ly

l112”S4L4]

712

X 8(a1S1L1; as'Ss'Ls")6(SaLa; SsLs).  (12)
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Thus, we obtain
C1"l = (n-— 1)§[Z"_‘ZQISIL1ZS:;)L3Bln*la3S3L3]
X 3 (S (SoLa)l"SL| 1Ll (SeLo)SL]

S4Ly
&2

X [1172"54144

lll2”S4L4:|

Y12

XES1LA (SsLa)SL| SiLil(SsL)l"SL].  (13)

It should be noted that the matrix element in expression
(13) is actually independent of Sy; it has the same value
for singlet and triplet states.

Next we will identify /)" with dsp electrons and
thereby achieve a considerable simplification of (13)
because Ly=Ls and L, can be a P state only. Thus,

The sum over Sy amounts to
2[S13(S2)3S|5133(S)S]
Sa

X[Sl%%(54)5|51%(83)%53= 5(5253);

in accordance with the general property of unitary
transformations. Therefore, we have

Cllll — (n — 1)%[d""2a1S1L1d53L3 ]}d"—la;;SgLs]

(14)

X[ Lidp(P)L| Lid(Ls)pL]6(S2Ss)Ra  (15)
in which we have put
&
Rd= [Slpgp - d1P2P] (15,)
712

By the use of Racah’s tensor calculus R4 can readily
be expressed in terms of Slater integrals. The result,
obtained in Appendix I, is

Ra=—(V2/5)R(sp,dp). (16)
Next we must consider Cy”’. Since (—1)P+0=—1,

we have

Cy""=—(n— 1)%[ 172081 L1'So Lol SL
e2

X

l”_lagSslen_l”SL]. (16’)

¥n, n—1

This is treated in the same way as expression (9) for
Cy"" and leads to an expression corresponding to (13),
v13.,

Czl’/ = — (n— 1) 5[1”‘20:151L1153L3 ]}l"“la;gSng]
X 5 [SiLal/ (SeLo)l"SL| SyLil'1" (SsLs)SL]
S4L4
e‘Z

X [11/12"54114

l2l1”S4L4]

712

XS1Lul (SeL)SL| S1Li(SsLa)l"SL].  (17)
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TasiE I [d7a’S'L'sSL|%/ri;| dZefaSL].
d7s ds H
gsggg 23'; 0—(210)4
(DD 2D —(35)}
(2D)'D oD 3(15)*
g i st
3
(2G)'G 96 —10
TasLe II. [d8'S'L'sSL|Ze/r:;|d'aSL].
ds di H, ds d7 H,
(FP?P 2P (105)} WF2F  2#F  (15/2)(2)*
(#PRP 2P —(30) (BF2F  @2F  —(30)
(SP)P  #P 0 (SFPF  #F  (3/2)(30)%
(8PP #P —(210) (SFPYF  &#F 0
(2'D)*D 2D (1/2)(210)% (F)F  #F  2(15)%
(2!D)*D  #D  (3/2)(10)} (GGG £#G  —(5/3)(6)}
(&D)2D  #D  —6(5)* WG?G - G —(5/6)(66)}
(#D)D £D —2(30)% (£#G)2G #G  (3/2)(30)F
(fH2H ¢H —(30)
TaBLE III. [d®/S'L'sSL|Ze?/ri;| daSL].
dss ds H, dbs ds H,
(2SS LS 8(10)¢ (F)F  g&F  (7/2)(10)%
(2PPP $#P  —2(35) (#FBF  #F  (3/2)(10)
(P3P £P —(10)} (2F)PF  2F  2(10)}
(#P3EP PP 0 (FPF  8F  —(15/2)(2)*
(s*P)*P 2P 2(35)? FPF  SfF 0
(2D)D D —(70)} (FFPF  #F —2(10)}
(2D)D 4D 3(10)} (#G)'G G  —(10/3)(6)}
(#D)D 4D 6(5)* (£6)'G &G (5/6)(66)*
(2D)'D D —(10)* 2G)'G &G —(9/2)(10)%
(#D)D #D  —2(10)} (#G)*G &G (3/2)(10)*
(#D)y*D  #D  6(5)* (2G)*G &G (5/6)(66)}
(DD £D  —3(10)% (GG £G  (10/3)(6)}
(*D)’D $D  (70)} (HP*H £#H  —(10)*
@FF)YF  J&F —(15/2)(2)* DY & (10)

Cy" differs from Cy”’ in that the direct integral is
replaced by the exchange integral with a minus sign.
Furthermore, the exchange integral is not independent
of spin; the singlet and triplet states differ by a minus
sign. Specializing to dsp electrons, we have

é &
[31102 'P|—|dspy IP}= _[Sli’zp — daPlP]= —R,
T2 712
(18)
é &
[S1P2 P|—|dsp1 3P]=[31P2P — d2P1P]=Re.
712 712
Therefore,

Cz”l= (’ﬂ— 1)*[d"‘2a151L1d53L3 ]]d”_‘agSgLﬂ
X[Lidp(P)L| Ld(Ly)pLIR.
XL (=1)5[S13(S2)3S[ S133(S9)S]
Sy

X[S133(S)S[513(S5)35].  (18")
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The sum over Sy is evaluated in Appendix II:

q[(252+1)(253+1)]5
25+1

2 =58(5:S)(—1)55
Sy

—58(S2S3). (19)

The exchange integral R, is evaluated in terms of
Slater integrals in Appendix I with the result

R.=—(V2/3)R\(sp,pd). (20)

Finally, we form the desired matrix component from
the partial results (5), (8), (15), (18'), and (19), viz.,

n €2

> —

<775

d"—20£151L15(S2L2)?SL [

d"hla;;s;;sz)SL]

n—1 62
Z —
i<i ¥4
+ (ﬂ'— 1) %[d"'—20£151L1dS3L3 ]}dn—la3S3L3]
X[Lidp(P)L| Ld(Ls)pL]

X[(Rd_Re)a(Sﬂss)‘{'geRe];

= [d"~2a151L1852L2 d"_lol352L2]a(Swss>6(L2L3)

(21)

in which
ge=0(51S) (— 1) S2=83{[(25,4+1) (2S5+1) ]t/ (25+1) ).

R; and R, are given by (16) and (20), respectively.

The result has certain obvious features. If the parent
orbital angular momenta are different, the interaction
between the parents (first term) vanishes. If, in addi-
tion, the parent spins differ, the term containing Ri— R,
also vanishes. Finally, if the grandparent spin .S; and
the total spin are also different, the entire matrix
component vanishes.

It should also be noted that the consideration of the
configuration interaction introduces three radial inte-
grals, none of which occurs in the part of the matrix
labeled by one configuration only. In addition to Rq
and R,, which appear explicitly in formula (21), the
integral R*(dd,ds) arises from the first term of (21)
[see Sec. III, part (1) below]. Thus, in the usual
procedure of adjusting parameters there will be three
more independent parameters. In practice it will be
convenient to adopt as independent the combination
Rs—R, and R,.

TasLE IV. [dsaassLa {[d7<0(151L1)d53L3:|, A particular N is the
normalizing factor for the coefficients in its column.

\d?

a7 \ olS 28P 2D 2BF 2AG
£P 0 —14% —126% 4 0

§tP 0 -8 0 —56¢ 0
12D 1 —15% —35¢% —35¢ —21#
#D 0 — 35t 1354 15% -5
#F 0 —56% 844 —14% 70%
$'F 0 —56% 0 224} 0
2G 0 0 —180% 90% 664
2H 0 0 0 110% — 1544

N 1 240—% 560~ 560—% 33674
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We shall now discuss the quantities in the formula

(21).
III. TABULATION OF COEFFICIENTS AND
MATRIX COMPONENTS

In this section we shall discuss the availability and
tabulation of the matrix elements and coefficients
occurring in the result (21). We shall point out that
many of these quantities are already listed in RIII;
the remaining ones are supplied in this section.

(1) Interaction between the Parent Configurations
d*'s and d»

The matrix components of the electrostatic interac-
tion between the parent configurations d"~!s and d" are
discussed fully in Sec. 7 of RIII. We merely wish to
reiterate certain features of these matrix elements and
extend the tabulation given in RIII.

The matrices of the electrostatic interaction are, of
course, diagonal with respect to S and L. For the
particular matrix components under consideration, we
have the additional rule that an element will vanish
unless the seniority numbers of d»! and d» differ by
unity. The nonvanishing matrix elements depend on
the single Slater integral R*(dd,ds). Racah introduces
the more convenient parameter Hy= R*(dd,ds)/35. The
coefficients of H, are given in Tables XX, XXI, and
XXII of RIII for the left side of the periodic table
(n=3, 4, and 5). There is a simple relationship®
connecting the matrix components of the left and right
sides of the periodic table, viz.,

2
€
[d"”lallelé‘S;ng Z —_— d"a3S3L3]
(27
s 25114\ }
= (— 1) +i— dll—"a1S1L1
2541
&
X2 — dlo_"a353L3551L1]. (22)
1’7;]‘
TABLE V. [d7a383L3 {[ds(allel)dS:;Ls:l.
\d’
AN
s\ 2P 3P 12D 32D 2F #F 2G ©2H
olS 0 0 gt 0 0 0 0 0
415 0 0 0 56! 0 0 0 0
2P 7 16t 27h 4ok 1128 —14f 0 0
8P =500 —14} 0 56t 200% 16} 0 0
2D 15} 0 15t 45t —a0f 0 —200% 0
4D —30t 0 0 40%  —180% 0 100% 0
$D —208  —35% 0 —240t —120 158 —600% 0
8D 0 75% 0 0 0 175% 0 0
OF  30% 0 0 —140% —105% 0 74 33t
#F —8t 14} 63} 21} 28% 56t 420}  —sst
$F 508 —s6t 0 84} 175t —14%  —o45t  _s55b
G 0 o 27 —25t —100% 0 220} 55t
pre; 0 0 0 44 275t 0, —845¢ 5t
$G 0 0 0 —180} 405% 00! —891} 9ok
oH 0 0 0 0 —220t 110} —924% —286%
o1 0 0 0 0 0 0 7288  —182
N 2107t 210-% 140-%  980-% 1960~} 400-% 5880t 770}

10 The author is indebted to Professor G. Racah for pointing
this out to him.
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TaABLE VI. [dGOI:;SsLsl[ds(allex)d53L3].

~

@& O\ oS S 23P 43P 1D 41D 4#D $D 4AF 23F 43F 2AG 4G 8G #H a7
25 0 0 0 0 0 —280% 42} 0 0 0 0 0 0 0 0 0
#S 0 0 0 0 0 0 0 6t 0 0 0 0 0 0 0 0
2P 0 0 —14} -5 —42F  —210% 14% 0 —120% 8 2008 0 0 0 0 0
#P 0 0 —8 14% 0 0 -7 -3t 0 —224% 448% 0 0 0 0 0
2D 1 0 —45! 0, —35 0 0 0 0 —420 0 —63} 0 0, 0 0
#D 0 -1 —35% —10} 45t —10,  —o0} 0 —200} 60}  —120 -5 —968%  —200% 0 0
2D 0 -2} 0 45} 0 4500 —30% 0 —10 0 540} 0 4356} —10, 0 0
#D 0 0 0 —90t 0 o —13st st 0 0 480% 0 0 800? 0 0
#2F 0 0 =56 5 28t 315! 21% 0 105¢ —56t 175} 708 —4235t 315t —55% 0
#F 0 0 0, —45t 0 175% 105% 0, —525t 0 315t 0 —7623% —73 99% 0
#F 0 0  —56t —4 0 0 21 —7h 0 896} 112} 0 5608  —220% 0
2G 0 0 0 0 —c0t  —75t 45k 0 3% 360! 405} 66} 55778 —207} 90} —33}
#2G 0 0 0 0 0 495% —33t 0 495} 0 825% 0 —3645% 845} —15% —45%
#G 0 0 0 0 0 0 75% 3 0 0 1200% o 0, —880F  —660% 0
2H 0 0 0 0 0 0 0 0 1324 440t —220t  —154} 3088 —308% —286} —77}
2l 0 0 0 0 0 0 0 0 0 0 0 0 —65528  —728% 5468 —175%

N 1 3% 270t 270 210 21004 630  30-%  1680% 2520% s040-F 378 33264 s040% 1980 330}

This follows directly from (79) in view of (81) of RIII cient becomes

and (74) of RII. We have used Eq. (22) to obtain the - ' Li(2L,—1) ¢

results for the right side of the periodic table and have LLidp(P)L| Lyd(L)pLit1]= .

10(L+1)(2L:+3)

listed these in Tables I, II, and III.

(2) Coefficients of Fractional Percentage

Equation (19) of RIII relates the coefficients of
fractional parentage of the left side to the corresponding
ones on the right side of the periodic table. For d
electrons this relationship is

[d*(a’S’L))dSL]d""aSL]
= (—1)S+SHI+LI=5]2 (n4-1)(25'+1)(2L'+1) r

L(10—n)(25+1)(2L+1)
X [d™(aSL)dS'L JdrHa/S'L'].  (23)

We have applied the above to the results given in
Tables II, III, and IV in RIIT and have thus obtained
the coefficients for the conjugated configurations. The
fact that the calculation yielded normalized coefficients

served as a valuable check. Our results are given in
Tables IV, V, and VI.

(3) Racah Coefficients

The Racah coefficients are given in terms of Racah’s
W function. Thus Eq. (4) of RIII applied to the Racah
coefficient occurring in our equation (21) gives

[Ldp(P)L|L1d(Ls)pL]
=[3QLy ) PW[L2L1; L], (24)

An explicit algebraic formula for the W function in
terms of its six arguments is given in Eq. (36) of RIL
There are altogether fifty-four different coefficients of
this type in the entire iron group. We have evaluated
these and have listed them in Table VII. The evaluation
is best carried out by first reducing the general form
of the W function to more specialized expressions.!!
For example, there are six cases of the type in which
Ly=L, and L=L,+1. For this case the Racah coeffi-

1 Compare H. A. Jahn, Proc. Roy. Soc. (London) A205, 234

(1951). In this paper there are given a large number of specialized
expressions. See also reference 12.

The ffty-four coefficients listed in Table VII were
obtained by means of nine similar formulas.!?

It should be noted that all the quantities which
enter in the configuration interaction (21) are now
available in either RIII or this section.

IV. CONCLUDING REMARKS

It need hardly be emphasized that in order to study
the term values of a spectrum one must obtain also the
matrix components of the electrostatic interaction
within configurations. However, it should be pointed
out that these matrices are amenable to treatment by
the methods given by Racah, and many of these
matrices have been obtained by various authors. In
RII there are given the matrices of d?p and d®p. Rohr-
lich® has calculated the matrices for d®p, d7p, and also
for d%p. Ishidzu and Obi* have made available the
matrices of d'p, d°p, and dSp. The author has obtained
the matrices of d®ps.8

It is expected and hoped that the configuration
interaction which we have treated in this paper will be
sufficient for an elucidation of the odd terms in the
spectra of the iron group. However, the possibility of
interactions with other configurations, notably d»—3s?p
and the higher configuration of the type d*»'p, is by
no means ruled out. If we include the word ‘“hope,”
it is because the matrices are already close to being
unmanageably large.

The author wishes to express his gratitude to Dr. F.
Rohrlich both for suggesting this work and for many
helpful discussions.

2 The W function and related coefficients have recently been
evaluated and compiled at the Oak Ridge National Laboratory
for a wide range of the arguments. The results are contained in
Oak Ridge National Laboratory Report ORNL-1098 (April, 1952),
by L. C. Biedenharn. We have checked our results (Table VII)
against the entries in that collection.

B F, Rohrlich, Phys. Rev. 74, 1372 (1948).

14 See reference 7. We wish to draw attention to a misprint in

that paper. In the 1D matrix in Table I, p. 126, the off-diagonal
element should be 12(2)!B instead of 12(12)%B.
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TaBLE VII. Racah coefficients [Lidp(P)L| Lid(Ls) pL].

L Ls L Coeff.

0 2 1 1

1 1 0 1

1 1 1 —1

1 2 1 i3]

1 1 2 1/10

1 2 2 —(1/10)[15]
1 3 2 (1/5)[21]%

2 0 1 (1/5)[5T

2 1 1 —(3/10)[5]

2 2 1 (1/10)[357
2 1 2 (3/10)

2 2 2 —(1/10)[35]
2 3 2 (1/5)[147

2 2 3 (1/35)[35
2 3 3 —(1/5)[5]

2 4 3 (3/35)[105
3 1 2 3/5

3 2 2 —(1/5)[107

3 3 2 (1/5)[67]F

3 2 3 /N7

3 3 3 —1[6]

3 4 3 (3/28)[42*
3 3 4 (1/12)[6TF

3 4 4 —(3/20)[107]
3 5 4 (1/15)[ 165
4 2 3 (a/n(21]

4 3 3 —1f6]

4 4 3 (1/28)[154 ¢
4 3 4 (1/20)[ 70t
4, 4 4 —(1/20)[154 ]
4 5 4 (1/5)[11

4 4 5 (1/55)[ 154
4 5 5 —(1/5){6]

4 6 5 (1/55)[21457:
5 3 4 (1/15)[1057F
5 4 4 —(3/5)

5 5 4 (1/15)[39]¢
5 4 5 (3/55)[66 1
5 5 5 —(1/10)[39
5 6 5 (1/110)[ 5005
5 5 6 (1/26)[397
5 6 6 -1

5 7 6 (3/13)[13
6 4 5 (3/55)[165
6 5 5 —(1/10)[35
6 6 5 (1/22)[777
6 5 6 (1/26)[143
6 6 6 —(1/14)[777
6 7 6 (6/91)[91 7
6 6 7 1/35)[77]}
6 7 7 —(3/35)[35]
6 8 7 1/5)[17]

APPENDIX 1

We shall express Ry and R, in terms of Slater integrals
R*. Applying the well-known development

1 w  rck
;1—;= g HlPk(cos(?m)
to R, gives
& © ek
Rg= (81P2P — d1P2P)= > (S1P2P Py d1P2P).
712 k=0 rskH

The integration over 7, and 7, may be separated from
the rest giving

Ri= ;;j RE(sp, dp)(s1paP | Pr| d1p2P).
—0

NORBERT ROSENZWEIG

The matrix element multiplying R* differs from zero
for only one value of &, viz., k=2. This follows from
the triangular conditions. Hence,

Ry=R*(sp,dp) (s1p2P| Ps| dipsP).

Racah’s matrix methods for tensor operators enable us
to evaluate the coefficient of R% P, is a scalar product
of tensors, and a straightforward application of RII
(38) gives

(s1p2P| Pe|d1p2P) = (0] T®||2)(1]| U®||1)W (0121 12).
Using RII (51) and (50”) we find
OI7®)2)=1, A[U>(1)=—(6/5)}
and for RII (36’) we obtain
W(0121;12) =(15)%.

a=—(2)}/5R*(sp,dp).
Similarly, we have
R.=[s1p2P | /11| dop1P] =R (sp,pd) (s1p2P | P1| dop1P),

(s1p2P| P1|dsp1P)
=—OT®[DHAT®|2)W(0112; 11),

OIT®1)=—1, 1[UD]2)=—(2)}
W(0112; 11) =1,

— (V2/3)R'(sp,pd).

APPENDIX II

The sum over spin in Eq. (18) is evaluated here.
We have

Z =2 (= D[S3(S3S]Sd

84 Sy

Hence,

and

3(S9)S]
X[S133(S)S|S13(S2)3S].
Ss assumes the values 0 and 1 corresponding to singlet

and triplet states. If the factor (—1)54 is replaced by
unity, the sum becomes simply 3(S»S3). Therefore,

> =2[S513(52)%5]5:133(0)S]

54 X[S133(0)S|S13(S5)5S1— 8(S2S5).
Now let us consider the various possibilities. In the
first place, the Racah coefficients occurring in the above

vanish unless
S1=3S.

The only possibilities for S, and S; are S+3% or S—3.
Evaluating the Racah coefficients by means of RIII (4)
and RII (36’), one finds

[S3(S2=5+13)%5]533(0)S]=[(25>+1)/2(25+1) }
and
[S3(Ss=S—%)5S(535(0)S]=—[(2Ss+1)/2(2S+1)

All possibilities for 3 can thus be summarized by
84

2 =8(518) (= 1)S=Ss[(28y+1)(2S5+1) 1/ (25+1)
84 —5(5253)



