ENERGY DISTRIBUTION OF SLOW NEUTRONS

the calculated transmissions for ¥0=0.122 ev, and is
in agreement with the experimental points.

VII. CONCLUSIONS

The experimental results show that over a wide range
of crystal parameters the Einstein model of a crystal
gives sufficiently accurate information about neutron
scattering to be of use where the fine details of the
scattering are not required. It can give no information
about actual energy transfers smaller than k0, or
angular variations of the order of the separation of
Debye-Scherrer rings.
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The agreement of the gas model with the Einstein
model over a wide region of conditions shows how little
influence the binding has on the general scattering
pattern; energy and momentum conservation between
the neutron and individual nuclei are, in most cases,
the over-riding factors. The gas model fails when Bragg
scattering, i.e., interference, is important or when the
Einstein temperature is large compared with either the
temperature or the half-width of the energy distribution.

The authors wish to thank Dr. N. K. Pope for com-
municating his results prior to publication and for
several helpful discussions.

PHYSICAL REVIEW

VOLUME 88,

NUMBER 3 NOVEMBER 1, 1952

Nuclear Reactions in the Stars. I. Proton-Proton Chain

E. E. SALPETER
Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received July 24, 1952)

The rates are calculated for the main reactions making up the “proton-proton chain,” whose net effect
is the conversion of four hydrogen atoms into one helium atom. These calculations are carried out for
temperatures and densities corresponding to central conditions in main sequence stars.

The mean reaction rate for the beta-decay conversion of two protons into one deuteron is calculated
accurately, using the latest data on the two-nucleon system and on beta-decay. It is shown that, under
normal stellar conditions, the reaction chain is completed by the radiative capture of a proton by a deuteron
and by the collision between two of the resultant He3 nuclei to form one He? nucleus and two protons. Values
are given for the rate of energy production and for the concentrations of deuterium and He? at various

temperatures.

I. INTRODUCTION

ETAILED calculations on nuclear reactions in

main-sequence stars were presented over a decade

ago in two papers by Bethe! and by Bethe and Critch-

field,? hereafter referred to as B and BC, respectively.

The present paper is largely a continuation of these

papers and, wherever possible, the same notation will
be used.

The main aim of the present paper is to revise the
work of B and BC on the reaction rates for the chain of
reactions starting with the combination of two protons
in main-sequence stars, in the light of the most recent
experimental information on nuclear reaction rates and
Q-values. No detailed calculations on the stellar hydro-
dynamics of the problem, using any specific stellar
model, are carried out. The results are presented largely
in the form of reaction rates as a function of tem-
perature, density, and relative abundance of the nuclear
species. In later papers, the carbon cycle and reactions
in stars which have exhausted their hydrogen supply will
be discussed.

Many of the reactions we shall discuss are of the
thermonuclear type, i.e., an exothermic reaction

1H. A. Bethe, Phys. Rev. 55, 434 (1939); B.

éH. A. Bethe and C. L. Critchfield, Phys. Rev. 54, 248 (1938);
BC.

undergone by two nuclear species with a Maxwellian
velocity distribution colliding with each other. Under
stellar conditions, the mean thermal energy 2T (of the
order of 1 kev for the sun) is extremely small compared
with the kinetic energies at which the Coulomb-barrier
is negligible (of the order of a few Mev). Consequently,
most of the reactions are undergone by nuclei in a fairly
narrow energy-region in the tail of the Maxwell dis-
tribution (10 to 50 kev for the sun), which we shall call
the “stellar energy-region,” E,. An approximate for-
mula for p, the number of reactions per second per
nucleus of type 2, is then obtained (see for instance B)
which can be written in the form

p= (4px1N 0F00R02/ 35/2h)
X[(A1+A42)53/ 4242, 72, 72>, (1)

where
[1!'264M0 Z12222A 1A 2]* ( )
= 2
2mkT  (A1+A42)
and
)\ = 4—[R0A 1A 2Z1Z2/00(A 1+A 2)?‘:]*. (3)

In (1) x, x» are the concentrations (by weight), 4,, 4.
the atomic weights and Z, Z, the atomic charges of the
two reacting nuclear species. Vo is Avogadro’s number,
M, one atomic mass unit, p the density ing cm=3, and T"
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the “reaction width,” i.e., I'/% is the reaction proba-
bility (for energy E,.) in sec™ after penetration. R, is
the “nuclear radius per nucleon,’”

Ry=(1.454+0.20) X 1073 cm, 4)
and ao is the “Bohr radius” for one amu,*
ao= 1/ Moe?=2.904X10~12 cm. (5)

The considerations leading to (1) are valid only if the
compound nucleus formed in the collision of particles
1 and 2 has no resonance levels for excitation energies
corresponding to the neighborhood of the stellar
energy-region, E,.

If T' is expressed in volts and 7" in units of 108 degrees,
the expression for p becomes, using DuMond and
Cohen’s* values for the atomic constants (for o™!
=137.036),

$=2.59X104X px:T[ (4 1+45)/4:]

X (21Z2/A 14 2)%T_%e()‘_7) sec‘l, (la)
T= 4248[Z12Z22A 1A 2/ (A 1+ A 2) ]%T—%’ (23.)
A=1.26(Z1Z,4 14 ) (A1 + A5 (6)

In many cases, the cross sections ¢ for such reactions
have been measured in the laboratory as a function of
energy for fairly low energies (100 kev and up). If the
compound nucleus formed has no resonance levels in
the region corresponding to these kinetic energies, then
the cross section is approximately of the form

o= (S/E) exp(—2we?Z:7:/ hw), 7

where E and v are the kinetic energy and velocity,
respectively, of particle 1 (relative to particle 2) and .S
is a constant (in units of ev barn). A simple formula
[see B, Eq. (11)] then expresses I' (for the energy
region E) in terms of the constant S. The experimental
energies E are usually larger than E;. But, if (E—E,)
is small compared with the difference of E;; and the
energy corresponding to the nearest resonance level,
then the values of the width I' will be approximately
the same in the energy regions E and E,;. Using Eq.
(11) of B, we can eliminate T and the poorly known R,
from expression (1) for p, and we obtain an expression
for p in terms of the experimentally determined con-
stant S,

p=(8px1NoSao/3%wh) (A 22 Zs) 1%, ©)
If S is measured in units of ev barn, we have
p= 434px15(A 12Z1Z2) —17% 7 secL. (9)

If there is one or more levels in or near the stellar
energy-region, then the above formulas are not valid.
The expression (9) is then usually a gross underes-
timate, since the nearest resonance level will usually
give overwhelmingly the biggest contribution and

3'H. Feshbach and V. F. Weisskopf, Phys. Rev. 76, 1550 (1949).
4J. W. M. DuMond and E. R. Cohen, Phys. Rev. 82, 556 (1951).
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destructive interference should be unimportant. If in
particular there is a resonance level corresponding to a
positive kinetic energy E, between zero and about 50
kev, then this level gives the biggest contribution and p
depends mainly on the ratio (E,/kT) and hardly on
the width of the resonance level.

If Q is the energy in Mev liberated in one reaction
between a nucleus of type 1 and one of type 2, then the
energy e liberated per g per sec is

e=(Nowa/ 42)9Q, (10)
or
€=4.19X10%(px1225Q) (A 124 221Z5) " 17?
XeTergglsecl. (11)

II. THE PROTON-PROTON REACTION.
ORBITAL MATRIX ELEMENT

For main sequence stars, which consist to a large
extent of hydrogen, two chains of nuclear reactions
were shown to be the main source of energy (see B),
each of these chains having the net effect of converting
four hydrogen atoms into one helium atom plus two
neutrinos. The reaction governing the rate of one of
these chains, the “proton-proton chain,” is the initial
and slowest reaction, the formation of a deuteron in the
collision of two protons:

H'+H'—>D?*}-¢t4-»4-0.42 Mev. (12)

Formulas for the reaction rate for this process were
derived in BC. Our knowledge of the properties of the
two-nucleon system and of beta-decay phenomena has
improved so greatly, that a much more accurate re-
evaluation of this reaction-rate is made possible. The
formula for the reaction rate p can be written in the
form

= 161X 352 f(W) | M op |2y A2N oA 5~ pomrre—"F.
b4
(13)

Here g is the Gamow-Teller part of the beta-decay con-
stant, f(W) is the well-known beta-decay jf-function
[see BC Eq. (8)], xx is the concentration (by weight)
of hydrogen, F, is a correction factor approximately
equal to unity. A is a dimensionless quantity which is
proportional to the orbital part of the matrix element
and is almost independent of energy, M, is the spin
part of the matrix element, and v~ is the radius of the

deuteron,
¥~1=(4.3144-0.003) X 10~ cm. (14)

Equation (13) is the same as the Eq. (32) derived by BC,
except for the factor’ | M, |2, which is omitted in the
original derivation, and the correction factor F..

The orbital matrix element A is of the form

A=(y¥/8xCi)} f oty (15)

5 G. Gamow and C. L. Critchfield, Theory of Atomic Nucleus
(Oxford University Press, Oxford, 1949),
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where yYp is the normalized wave function for the
deuteron ground state and ¥, is the S-part of the wave
function for the two-proton system with a particular
wave number k. Let R be the “Bohr radius” for one
proton,

R=#?/Me*=2.881X1072 cm, (16)
and
n=¢*/hv=(2kR)™'; y=r/R. (17)
Cy in (15) is the Coulomb-barrier factor,
Co=[2my/(e#—1) % (18)

The two-proton wave function ¢, is normalized per
unit density at infinity. Outside of the range of nuclear
forces, ¥, has the form

Fo(y) = e® sindCo{ O(y)+C? cotd(kR)yd(y)}/kr. (19)

In (19) § is the nuclear phase-shift constant for S-scat-
tering of two protons with wave number &, ® and &
are functions of £ and y, defined by Yost, Wheeler, and
Breit,® which are proportional to the irregular and
regular Coulomb wave functions, respectively, and have
the value unity for y=0.

The matrix element (13) has recently been evaluated
very accurately by Frieman and Motz,” using accurate
explicit wave functions ¥, and ¥p which are based on
specific assumptions about the potential shape of
nuclear forces with the constants chosen to fit low
energy experimental data for the two-nucleon system.

~In such a calculation it is difficult to evaluate the inac-
curacy in the final result due to the uncertainty in the
potential shape and the experimental errors. For this
reason, an approximate re-evaluation of A seems worth-
while, using the theory of the effective range,®~'° from
which the effect of the present uncertainties in the
theory of nuclear forces can be derived very simply.

The nuclear phase shift 6 is of the form8 1

m cotd/(e™—1)=K(y), (20)
where K is a slowly varying function of # (or &),
K(n)=(Kwt370sRE - ) —h(n), (21)

and #(n) is a function defined by Jackson and Blatt.!!
An analysis! of low energy proton-proton scattering
data gives the following values for the two constants
K. and ros:

ros=(2.6540.07) X 10~ c¢m,
K,=3.76+0.03.

(22)
(23)

We now make use of the fact that the range of

nuclear forces is small compared with the deuteron .

6 Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1937).
7 E. Frieman and L. Motz, Phys. Rev. 83, 202 (1951) and private
communication,
8 H. A. Bethe, Phys. Rev. 76, 38 (1949).
®H. A. Bethe and C. L. Longmire, Phys. Rev. 77, 647 (1950).
10 E. E. Salpeter, Phys. Rev. 82, 60 (1951).
(19"5(])) D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
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radius, v, with the “Bohr radius” R and with the
wavelength =1, We write the matrix element A in the
form

A=F, A2, (24)

where A, is the value obtained for expression (15) by
replacing ¢¥p by its normalized asymptotic expression
and ¥, by ¥,, Eq. (19). A would be exactly equal to
Ay if the range of nuclear forces were zero, and hence
the correction factor F, is only slightly different from

“unity.

At a temperature T of about 15()X10% °K) (central
temperature of the sun), the main contribution to the
reaction comes from proton pairs of relative kinetic
energy about 6 kev corresponding to n=1.5. At these
energies both 6 and e~ are.of the order of magnitude
of 10~* and hence negligible compared with unity.
Using this fact, considering only the S-part of y¥p and
neglecting tensor forces completely, we get an accurate
approximation to Ao, using (19) and (20),

Ao=QRy/K)J; J= f i dre{®+ (Kr/R)®). (25)

Using the expansions for © and @ for small values of 7,
(21), (22), and (23), the expression (25) can be evaluated
for a particular value of . For zero relative energy
(n= ), one finds

J=140y"1, (26)

the main uncertainty in the value of Ay coming from
the uncertainty in the experimental value for K. The
expressions for 0, ®, and K for energies in the stellar
region differ only very slightly from those for zero
relative energy: For n=1.5, one finds 2=0.04, K=3.73,
and A?=06.21.

The factor F,, correcting for the finite range of
nuclear forces, consists of the product of two terms:

Fr=Q1=p/v)7'(1=DJ7). @n

The first term is due to the difference between the
normalization integrals of ¥p and of its asymptotic
expression, p; being the effective range!® p,(—e, —¢)
for the deuteron ground state. The second term takes
care of the difference D between J as defined in (25)
and the equivalent integral involving the correct wave
functions normalized such that the asymptotic form of
the integrand is equal to the integrand of J. In two
previous papers®!® an integral D was defined and
evaluated (in connection with photomagnetic neutron-
proton capture) which is identical with the expression
D occurring in (27), except that the singlet wave func-
tions for the neutron-proton (instead of the proton-
proton) system occur. The main contribution to D
comes from the range of integration less than the range
of nuclear forces (0 to 310~ cm). In this region it
was shown by Bethe3 (see Fig. 5) that both the correct
and asymptotic singlet wave functions are very similar

Ag?=6.180.06,
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for the p—p and n—p systems, except for the slight dif-
ference between the singlet ranges 7o, for the two
systems. We therefore get a fairly good approximation
to D by using the expression (20) of reference 10 for the
various potential shapes, using the value (22) for 7o,
and the latest value!® for the triplet range

pe=(1.7042£0.030) X 10~ cm. (28)

Equation (27) then gives for F, a value of about 1.15 for
a Yukawa (Hulthén), 1.13 for an exponential, and 1.12
for a square well shape for both the triplet and singlet
potential. This gives, for these three potential shapes
and for n= o,

A=T7.11(Y), 7.00(E), 6.92(S). (29)

Frieman and Motz,” using accurate wave functions for
a specific potential shape find a value of 6.79 for A2 The
experimental errors in p; and 7o, contribute probable
- errors of about =3 percent and =1 percent, respec-
tively, to the factor F,. From the numerical values of
(29), we estimate a further probable error in A? due to
the uncertainty in the potential shape of about %3
percent, the uncertainty in A¢? contributes another ==1
percent. These four sources of error are also present in
the calculations of Frieman and Motz. The numerical
values in (29) contain an uncertainty of another 5 or 10
percent (due to the neglect of tensor forces and the
approximation used for D), which is not present in the
more accurate calculations. We therefore shall use the
value for A? obtained by Frieman and Motz plus the
small correction due to n=1.5 instead of infinity, cal-
culated above (and with the four errors of 3.3, 1, and
1 percent estimated above). Since the sources of these
errors are independent, we finally get

A?=6.82(12£0.05). (30)

III. THE PROTON-PROTON REACTION.
OTHER FACTORS

In the beta-decay factor f(W), W is the maximum
beta-particle energy (including rest mass) in units of
mc?. Using a value'? for the Hy—D doublet of

H;—D=(1.551=40.002)mMU, (31)
we have

Wo=1.827(1=£0.002), (32)

where W, is the value of W for zero relative kinetic
energy of the two protons. The main contribution to
the cross section comes from relative velocities.

v (4dwekT/hM)3,

which corresponds to a relative kinetic energy of 5.9
kev for T'=15. We evaluate f(W) for a value of W
equal to W, plus this “most probable” relative kinetic
energy. Using the very accurate approximations for

( 12L)i, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512
1951).
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J(W) given by Feenberg and Trigg,”® we find
f(W)=0.145[14-0.054(T/15)¥](14=0.03).  (33)

The reaction involves a transition from a singlet S-state
of the two-nucleon system and hence requires Gamow-
Teller selection rules. If these selection rules are valid,
then the factor |M,,|? (which takes care of the sum-
mation over spin-states and of the fact that either
proton can turn into a neutron) becomes equal** to §.

A lower limit for g, the Gamow-Teller beta-decay
constant used in Eq. (13), can be obtained from experi-
mental data on those super allowed beta-decays which
can only proceed by means of Gamow-Teller selection
rules. For such a decay™

g=I2/[f(W)ty| M|*| M 1 |*], (34)

where /; is the half-life in seconds, and M is the orbital
matrix element, which is equal to or slightly less than
unity. The most suitable decay of this type is that of
He® into Li%, which is a process quite analogous to our
p—p reaction.!® Using for the energy end point the latest
experimental value'® of (3.5040.05) Mev and for the
half-life (0.8234:0.013) sec, we get a value of (12704-90)
sec™? for [ft|M,,|%]. Since the factor |M|? cannot
exceed unity, we get from Eq. (34) and the upper limit
of this value the inequality

g>5.1X10"*sec™. (35a)

The beta-decay of the neutron, on the other hand,
provides an #pper limit for g. For this decay the orbital
factor |M|? is identically equal to unity, the energy
end point®? is (0.782+40.001) Mev, the half-life"” is
(12.84-2.5) min. If no Fermi type of beta-interaction
existed, this would give a value of (9304-180) sec for
[ft|M|?| M,p|%]. Since part of the neutron decay
probably proceeds by means of Fermi selection rules,
Eq. (34) and the lower limit of this value furnish an
inequality for the Gamow-Teller decay constant,

£<9.4X10™* sec™. (35b)
In addition to these two inequalities, actual estimates
for g can be obtained'® from the decay of H?® and other
beta-transitions between mirror nuclei. We therefore
take

g="7.5(14+A4)X 10~ sec. (36)

The error factor A lies between about =0.20 at the
moment, and it is hoped that further advances in-beta-
decay investigations will furnish a better value for it.

18 E, Feenberg and G. Trigg, Revs. Modern Phys. 22, 399 (1950).

( 1 U)sing the notation of C. S. Wu, Revs. Modern Phys. 22, 386
1950).

15 The decay of He® can be considered qualitatively as the
transition of two neutrons in a singlet state to a deuteron in a
triplet state, all in the field of an a-particle. The value of |M,p|?
is 2, the same as for the p—p reaction. (See reference 14.)

16 C, S. Wu, Phys. Rev. (to be published).

17 J. M. Robson, Phys. Rev. 83, 349 (1951).

18 G, L. Trigg, Phys. Rev. 86, 506 (1952).
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The correction factor F,, which occurs in (13) [also
(1), 4), (8), and (9) should be multiplied by F,] is of
the form

Fo=(r/7)be f dx exp{— (/[ (2/0)+2]).  (37)

0

The quantity 7, defined in (2), is greater than 10 for all
cases of interest and is about 13.7 for the proton—proton
reaction at a temperature of 15X 108 °K. On putting
x=(1+y), Eq. (37) becomes

Fy=(r/m)} f dy exp(—19?)
- X{(1+y) exp[27y*/3(1+)]}.

We replace the lower limit of integration by (— ),
which introduces only errors of the order of magnitude
of ¢77(<10™), expand the expression inside the curly
bracket in positive powers of y and integrate. This gives

F,=14(5/127r)— (35/2887%)+ - - -. (38)

For a temperature of 7= 15, the numerical value of F,
for the proton-proton reaction is 1.030.

In the formulas derived above, the screening due to
the electron charge cloud surrounding a proton has been
neglected. But for a relative kinetic energy of about 6
kev, the classical turning point corresponds to a distance
between the two protons of only about 2.5X 107! cm.
The electron charge cloud, on the other hand, is spread
out over distances as large as the mean distance between
neighboring nuclei, which is about 2X10~° cm for a
density p of about 100 g cm—2. Under these circumstances
the correction to the reaction rate due to screening is
less than 1 in 10* and hence will be neglected.

Substituting all the quantities calculated in this
section into Eq. (13), we obtain for the mean reaction
rate per proton

2=1.73(14A20.06) X 1018 px; 7%~
X[14(5/127)+ - - - J[1+0.054(T/15) ] sec™t.  (39)
The largest source of error in this expression is still the
20 percent error A in the beta-decay constant.!®
For temperatures in the neighborhood of 15 million
degrees, we obtain the following approximation for p,
£=3.94(14-A£0.06) X 1018
X (pxr/100)(T/15)3-96 sec™,

IV. REACTIONS INVOLVING DEUTERONS

(40)

Once deuterons are formed by the proton—proton reac-
tion, they are quickly converted into He? by the reaction

H!+D*—He’4-v4-5.5 Mev. (41)

We first consider the contribution to this reaction from

19 The expression (39) is much larger than the value given
originally by BC. This is mainly due to the fact that too low a
value for g was used and the factor |M,,|2 omitted in BC.
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protons of zero orbital angular momentum, which
contributes practically the whole reaction rate at the
low stellar energies.

A recent measurement of the capture cross section of
thermal neutrons by deuterium?® gives

o=(0.5740.01)(2200 m sec™1/2) X 102" cm?.  (42)

H? and He® are mirror nuclei which are extremely
similar except for the Coulomb repulsion. We therefore
assume that the cross section for reaction (41) for low
energy S-state protons is the same as Eq. (42), except
for the Coulomb-barrier penetration factor C¢?, Eq.
(18).* This gives a cross section of the form of Eq. (7)
with

S§=9.0X10"2 ev barn.?! (43)

Substituting into Eq. (9), we find for the reaction
rate p,
(44)

At temperatures T near 15 (in 108 °K) this can be
written as
$=0.25(pxr/100)(T/15)** sec™1. (44a)

The biggest uncertainty in the numerical values in Eqgs.
(44) and (44a) comes from the assumption that the
matrix elements for neutron and proton capture are
the same except for the Coulomb barrier. This uncer-
tainty in p should not be more than about 4-40 percent.

The cross section for reaction (41) has been measured
directly? for proton energies E between 400 kev and
1.5 Mev. The observed angular distribution indicates
that most of the cross section at these energies is con-
tributed by P-state protons. By means of the well-
known Coulomb barrier penetration formula® for
orbital angular momentum unity, the energy dependence
of the partial cross section for reaction (41) for P-state
protons can be calculated at all energies. For energies
of a hundred kev or more, this cross section rises sharply
with energy. In the 1 Mev region, this theoretical energy
dependence was found to agree very well with the
measured one,” confirming the fact that the bulk of the
reaction comes from P-state protons in this energy
region. For much lower energies, however, the P-state
cross section becomes smaller than that for the S-state.
At energies of about 20 kev or less the energy de-
pendence of the P-state cross section is of the form of
Eq. (7) with .S about 2X10~% ev barn, which is neg-
ligible compared with Eq. (43). We therefore neglect
any P-state corrections to Eqgs. (44) and (44a).

The mean life for reaction (41) is of the order of

p=239(pxu) %" sec”1.

20 Kaplan, Ringo, and Wilzbach, Phys. Rev. 87, 785 (1952).

* Note added in proof —As was kindly pointed out by Dr. W. A.
Fowler, Egs. (43) and (44) have to be multiplied by an additional
factor resulting from the finite size of the nuclei involved. This
factor was estimated to be about (1.340.3). The numbers in the
second lines of Tables IT and III should be divided by this factor.

2t Corresponding to a width T of about 0.25 ev.

2 Fowler, Lauritsen, and Tollestrup, Phys. Rev. 76, 1767 (1949).

ZN. F. Mott and H. S. Massey, The Theory of Atomic Collisions
(Clarendon Press, Oxford, 1949), second edition, p. 54.
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seconds or minutes for normal stellar conditions (see
Table III). Dynamic equilibrium between the concen-
trations xp of deuterium and xm of hydrogen will
therefore be established very quickly; the ratio (xp/xm)
is then equal to the ratio of the mean lifetimes of reac-
tions (12) and (41) (formation and destruction, respec-
tively, of deuterons) multiplied by the ratio of atomic
weights. Because of the high speed of reaction (41), the
concentration xp is extremely low and values for xp
are given in Table II. No spectroscopic measurements
of xp in stellar atmospheres are available as yet, but
terrestrial deuterium concentrations are enormously
larger than those given in Table II. This fact may
suggest that the material from which the earth was
formed could not have come from the interior of a main
sequence star (like our sun).

There are a few reactions involving deuterons which
might compete with reaction (41), but these were all
found to be much slower. Collisions between two
deuterons are negligible under stellar conditions, because
of the extremely small concentration xp. Collisions
between a deuteron and an alpha-particle are unim-
portant because of the high Coulomb barrier and small
gamma-ray width I'. The reaction between one deuteron
and one He® nucleus is somewhat more important,
because of a resonance? % near the stellar energy region.
Using the experimental cross sections®? and the
equilibrium concentrations of He® (calculated in the
next section), this reaction was found to be slower than
reaction (41) by a factor of at least 50 at temperatures
of 5X10% °K or more.

V. REACTIONS INVOLVING He?

Since Li* is unstable to particle disintegration, no
direct (p,y) reaction on He® is possible. There are,
however, a number of competing reactions which use
up He?. Of these the reaction

He*+He*—He!4-2H'4-12.8 Mev, (45)

first suggested by Schatzman?® and by Fowler and
Lauritsen,?” turns out to be the fastest and most im-
portant. This reaction has been detected experimen-

TaBLE I. Mean life of He? corresponding to various competing
reactions for pxg=100 and for two temperatures T (in 10¢ °K).

Mean life (years)

Reaction T =5 T =30

He3+He3—He!+-2H! 6 1010 240
D2+He’—He!+H! 7X 102 3% 105
He!+He*—Be'+y 1X 108 8% 108
H! +He’>He!+et+v 5X10¢ 2X108
e +Hel—>H3+v 2X10% 3x10¢

24D, L. Allen and M. J. Poole, Nature 164, 102 (1949).

2% C. P. Baker ¢f al., Atomic Energy Commission Declassified
Report AECD 2189 (1948) (unpublished).

28 E, Schatzman, Compt. rend. 232, 1740 (1951).

7 W. A. Fowler and T. Lauritsen, private communication; and
Phys. Rev. 81, 655 (1951).
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tally,” but no accurate cross-sectional measurements
are available as yet. But cross sections for the similar
reaction involving two H? nuclei have been measured?
for energies of 100 kev and up. For energies between
100 kev and 500 kev, the experimental cross section is
of the form of Eq. (7) with

S=(3.241.5) X 10% ev barn. (46)

H? and He® being very similar, we assume that the
cross sections for reaction (45) and for the reaction
involving two tritons are the same except for the dif-
ferent Coulomb barrier factors. This gives for reaction
(45) a value for S of four times (ratio of the values for
Z?) the expression (46), if the nuclear radii are assumed
to be zero. The finite size of the nuclei involved intro-
duces an additional correction factor, which cannot yet
be calculated accurately. This factor was estimated to
be between two and eight (but may even lie slightly
outside these limits) and a value of four was adopted
for it. Using Eq. (9), the rate p of reaction (45) becomes

p=6X107(pxs) 7% " sec, (47)

where w3 is the concentration (by mass) of Hed. The
numerical factor in Eq. (47) should not be in error by
a factor of more than five.

When dynamical equilibrium has been set up, the
concentration x; adjusts itself such that the number of
He? nuclei created per cm? per sec by means of reactions
(12) and (41) equals the number destroyed by means
of reaction (45). The ratio (x3/xr) can then be computed
using Eqgs. (39) and (47). Values computed for x; in
this manner are given in Table II for different tem-
peratures. For temperatures T about 10 to 15 (central
portions of the sun), x; is very low, which agrees with
the fact that He’ has not yet been detected with cer-
tainty in solar spectra.’® But at temperatures 7" of the
order of 5 or lower (extremely cool stars), the equi-
librium concentration of He? is quite appreciable and
it would require a very long time to build up this con-
centration (starting from pure hydrogen).

A list of reactions involving He? which compete with
reaction (45) is given in Table I, together with the
estimated mean reaction times at two temperatures
which respresent lower and upper limits to central
temperatures of main sequence stars. Although the
stated estimates for the reaction times for all reactions
except (45) could be in error by a factor of as much as

TasirE II. Concentrations (by mass) of deuterium, xp, and of
He?, x5, relative to that of hydrogen for various temperatures T'
(in 108 °K).

T 5 8 15 30
xp/x 5.6X10717  4,X1077 310717 25 X107V
2a5/xm o\3 0.2 0.01; 8X1075  1.8X1078

28 Good, Kunz, and Moak, Phys. Rev. 83, 845 (1951).
29 H. M. Agnew ef al., Phys. Rev. 84, 862 (1951).
3 J. L. Greenstein, Astrophys. J. 113, 531 (1951).
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TaBLE III. Mean reaction times, 7%, and the rate of energy production e (in ergs g™ sec™) at various temperatures 7 (in 108 °K) .

Mean reaction

T=30

Reaction times* T=5 T=8 =15
H4+-H!'-D24-¢t4-» (100/pxg) p~1 Y 1.7 102 yr 1.3 10" yr 8.1X10° yr 7.6X108 yr
H!+D>—He4v (100/pxm)p=t /17 23min/ (.7 80sec / (.2 4sec /1.7 0.3 sec/¢.m
He3+Hel—Het4-2H! (200/pxp)p~1 25X 101 yr 13X 108 yr 4X 105 yr 10X 103 yr
Rate of energy production (100/pxu?)e 0.24 3. 50 530

* The ““mean lives” of H! and He? are one-half of the mean reaction times for the first and third reaction respectively. p is the density in g/cm3, xg

the concentration (by mass) of Hl.

ten or twenty, Table I shows that the competing reac-
tions are probably much slower than reaction (45) for
all temperatures T between 5 and 30 (in 10° °K) and
almost certainly slower for 7" between 10 and 20. The
reaction rates were estimated as follows.

The rate of the reaction involving a deuteron was
calculated from the experimental cross section* ? near
resonance as described in the preceding section. The
rate of the reaction involving He* was estimated as
described by B, using an estimate for the y-ray width
of I'~0.1 ev and an upper limit of xge~0.5 in Eq. (1a).

The rate of the reaction involving capture of a proton
and a beta-decay was estimated in analogy with the
proton—proton reaction, (12). An approximate one-
particle model was used, considering the He* nucleus
as made up of one neutron moving in the field of a core
of the same type as a He® nucleus. The matrix element
for the transition of the incident proton to this neutron
was then calculated, using the theory and constants of
the effective range of nuclear forces.

Finally, the inverse beta-decay involving the absorp-
tion of an electron was calculated using the formulas of
Gamow and Schénberg.®! A value? of (18.540.2) kev
for the energy end point and a half-life of 3.9X10% sec
for the normal beta-decay of H? into He® was used and
the electron gas was assumed to be nondegenerate.
This nondegeneracy applies to the interior of all main
sequence stars, but not to the interior of white dwarf
stars. In fact, at densities of the order of 10° g cm™ the
Fermi energy is of the same order as the energy dif-
ference between H?® and He® and the inverse beta-decay
proceeds enormously faster than for a nondegenerate
gas and would be faster than reaction (45) under these
circumstances.

VI. ENERGY PRODUCTION

The three reactions making up the proton—proton
chain are given in Table III, together with their mean
reaction times for four different temperatures corre-
sponding to central conditions of different main sequence
stars. The corresponding concentrations of deuterium

3 G. Gamow and M. Schénberg, Phys. Rev. 59, 539 (1941).

and of He?, under conditions of dynamic equilibrium,
are given in Table II. The probable errors for the reac-
tion times given in Table III are of the order of 40
percent for each of the first two reactions and of a factor
of two or three for the third reaction.®

As pointed out before,? the net result of the proton—
proton chain is the conversion of four hydrogen atoms
(ionized) into one helium atom (ionized He?) plus two
neutrinos (the two positrons created quickly anni-
hilating with two electrons of the ionized gas). Note
that, since two He? nuclei are involved in reaction (45),
two reactions of type (12) are required to form one
He! nucleus. A fraction of about 0.6 of the energy
release of reaction (12) escapes from the star in the
form of kinetic energy of the neutrino. Allowing for this
loss and using the known binding energy of an a-par-
ticle,? one gets an energy release of 26.2 Mev for every
He* nucleus formed [i.e., for two reactions of type (12)].
Substituting this into Eq. (10), one gets for the energy
release €

e=1.26X10"(xup) erg/g sec, (48)

where xg is the hydrogen concentration and p is the
reaction rate given by Egs. (39) or (40). For tem-
peratures near 15X 108 °K, we get

e=49.6(14A=£0.06) (pxr/100)
X (T/15)3-% erg/g sec. (48a)

It should finally be emphasized that all the calcula-
tions of this paper were carried out under the assump-
tion of a perfectly Maxwellian distribution of thermal
energies, fixed and uniform chemical composition,
density and temperature and complete dynamic equi-
librium. The carbon nitrogen cycle and its relation to
the proton—proton chain will be discussed in a later
paper.
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% For the lower two temperatures in Table III the errors may
be somewhat larger than those stated above.



