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Natural Line Shape
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The covariant methods of Feynman and Dyson are applied to the problem of line shape. It is shown that
the line center depends almost completely on the form of the Sz,' function, that is the Feynman-type
Green's function for the electron interacting with an external field A„' and with the quantized radiation
field. A finite equation for Sz,' is derived, from which the line center and shape may be calculated to any
desired accuracy. The method is illustrated by two examples: the elastic scattering of photons by a one
electron atom in its ground state and the emission of photons by the same type of atom following thermal
excitation.

INTRODUCTION

'HE shape of atomic spectral lines has been dis-
cussed by Weisskopf and Wigner. ' Their results are

inconclusive in three respects. In the first place, the time
dependent formalism which they use leaves some doubt
as to the correct choice of boundary conditions in a
decay problem in which the excitation of the system (by
electron bombardment, for instance, as in a discharge
tube) is considered to be an independent, unspeci6ed
process. In the second place, although the line width
found by these authors is finite and in agreement with
experiment, the line center is shifted by an infinite
energy, obviously corresponding to the infinite self-
energy of an electron interacting with its own radiation
field. Finally, within the Weisskopf-Wigner formalism,
it would be extremely difficult to calculate a next
approximation. This might conceivably be of some
practical interest in an experiment such as the Lamb
shift, where the accuracy of the measurement is a small
fraction of the line width, and where it is not at all
clear, beyond the lowest order, what the measured
"energy" of the excited state corresponds to in the
language of quantum-mechanical perturbation theory.

In order to discuss the problem in such a way that all
our results will be finite we will make use of the com-
putational techniques of Feynman' and Dyson. ' The
experiment which we shall discuss is the elastic scat-
tering cross section for photons of frequency k of a
one-electron atom in its ground state fp, that is we shall
calculate radiative corrections to the Kramers-Heisen-
berg dispersion formula. The emitted line shape can be
obtained from this calculation by replacing the incoming
photon by a time dependent external field whose fre-
quency distribution corresponds roughly to that of the
mode of excitation preceding the measured emission of
photons.

The two questions that are of primary interest con-
cern the symmetry of the line shape and the position
of its center. The line center ko is here defined as the
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frequency corresponding to the maximum cross section
in the neighborhood of a resonance E . In first approxi-
mation, of course, any line is symmetric about this
point. One may, however, introduce, as a measure of
asymmetry, the quantity

8 = [o(kp+ P) —o (kp —P)]/o(kp),

where 1 is the half-width of the line.
A convenient unit of an experimentally measurable

order of magnitude is the Lamb unit, 2 n222(E —222)—
=o.~s4m. In general, I'—2 for all but metastable states.
We shall find that up to (but not including) terms of
order n's'2, the line center ko is shifted only by Lamb-
shift-like effects, and that to this accuracy all the
terms contributing to the shift (before renormalization)
are in one to one correspondence with those predicted
by stationary state perturbation theory, even though
the "energy" of the "state" is only defined to within
r=z, .

I. THE KRANERS-HEISENBERG DISPERSION
FORMULA

We shall begin by deriving the Kramers-Heisenberg
dispersion formula within the framework of the
S-matrix theory of Feynman and Dyson. This will
immediately make it clear how radiative corrections
must be calculated.

We shall work in the Furry4 interaction representa-
tion; that is all electron operators f have their time
dependence given by the external field A„', which we
assume to be time independent:

[y„(B/Bx„2eA„'(x))+—222]$=0 (1).

The stationary solutions of (1), f„(x)e 'E"', con-
stitute a complete set of spinor functions of x at any
one time.

The Feynman Green's function for the external field
is given by

S28(X1$ X2) SF8(X1i X2'tl t2)

= (t, t)&l"I~34(x)4(x)]ll'), (2)

where
~
V) is the exact vacuum state of the external

field, p(t„ t2) =+1 according to whether ti) t2 or ti(t2,
' W. Furry, Phys. Rev. Sl, 115 (1950).
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(a) (b) (C)

Flo. 1. (a) and (b'): Krarners-Heisenberg scattering.
(c):Delbritck scattering.

and. 8 is Dyson's time ordering operator. Wc note, Using

(2), tha, t

(2«r) «e« t' s '"'*
s.=- ~(k-k)Zj 0 -'-,

kj Z„—Z,—k i
X(I«j ~.6e'"'*jo)
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= —p p (xt)it (x«)e-'s"("-'«) for It&4
(3)

(0j (I 8),'e
—'"'."

j e)(N j
(«-Pie'" *j0)

EI'= trig E„—EQ—k

(Oje e),e'" *j««)(«sj(r 8),'e 'k"jo)
d'~pit() (tI- tm)

4"(x )4-(~ ),
2«rs ~ E„(1 se)+e—)

where e is to approach zero after the ~ integration has
been done. FinaBy, 5p, satis6cs the integral equation:

Sp, (1,2) =Ss (1,2)— Ss (1,3)ey„A„'(3}ss,(3, 2)Chs. (4)

The 5-matrix clcIQcnt from R StRtc %'1th R photon of
four-momentum kq k to one of four-momentum k ~ k ~

thC Rtorll lCnlRllllllg 111 its ground State lpe, ls

(—s)" t"
(k' Ojsjk 0)=g Ch Cg

n=o

x(k', ojzja, (x,)" z,(~„)]jk,o), (5)

In nonrelativistic approximation (I is replaced by p/te
in the sum over positive states. The negative energy
sum 1CRds 1Q well-known fashion to the noQI'clRtlvlstlc
A' term in the scattering cross section.

We may anticipate later results at. this point to ask
for the CG'cct of nonresonant terms on the line shape
QcR1 R lcsonRncc z» whelc thc energy denominator ln

(8) must be replaced by

E~ EQ k E~ EQ k $1 gg

One 6nds that the effect of a nonresonant level E is
to shift the line center by

and to distort the line shape by 8 ~e's'. These orders
of magnitude are the same whether or not the level E
18 rcIQovcd from z~ 4y R inc structure spllttlngq since
in that case the matrix element will be sma11.er by 0. s',

X) ~~~-—
Q(oj(r 81'e '"''*ji«)(««j n P1e'a'*jo)

(kk")& ~

t g~(ty —t1)

Bl(a)=j„(a)A„(x), (6)

with j„(x)=«eg(x)y„f(x). The first nonvanishing ap-
proximation to (5) is represented, by the three Feynman
graphs, Figs. 1(a), (b), and (c), where of course the
electron propagates from x& to x2 according to Sp„not
Ss. Figure 1(c) corresponds to the scattering of light
by the external 6cM A~' and will not be discussed here.
Thc B1R'tl'lx clcIllcIl'ts of 1(R) RIld 1(b) RI'c

2«res
Se= - —

' CXICX«CHIC/«fe(x«)8 ' '*«7sss'
(kk)i& „

(g g )~ e eis.xzy (x )ei(E«+p)««e i(E«+s)iz-
2x'8

C( C( &((xo+s')ll& ((s«+s)I«-
2«r«(E„+a))

(g.) (b)

FIG+ 2. VG,CQUIQ POIRT1KRtloll COVTCCtjoI18 to SCa,ttCFIQg«
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exactly comp&nsating the smaller encl'gy difference ln
the denominator.

The CGcct of the frequency variation of the matrix
element

H'= (OJ n cg exp(ik x) fl)

is even smaller, since parity allows only even or odd
terms to appear for a given transition. One 6nds a shift

bkp=u's'(E —Ep) =n'z42

together with an asymmetry 8=e's'. Both of these cor-
rections are much too small to be of interest at present. FIG. 4. (a}:Radiative corrections to Sg,'. (b}:Vacuum polariza-

tion contribution to Z,. (c}:I omest order dynamic contribution to
Z,.

When the photon frequency approaches any excita-
tion energy of the atom (8) breaks down; for k= E Ep-
the scattering it predicts is infinite. We must therefore
recalculate graph 1(a) together with its radiative cor-
rections. These corrections can be of four types.

(1) Corrections due to vacuum polarization by the
incoming and outgoing photons, such as shown in
Figs. 2{a) and (b).

Aside from an unobservable renormalization of the
photon wave functions, these graphs produce correc-
tions considerably smaller than those discussed in I.

(2) Corrections to y„, such as shown in Figs. 3(a) and
3(b). These are also small, and the same remarks apply
as those of the preceding paragraph.

(3) Corrections to the incoming or out-going atom
as in graph 3(c). These are important, but require no
calculation. They replace p, (x)e-'Ep' by {s~lkII(x) ~g)
=Zp'fp(x) e '~", where /II is a Heisenberg repre-
sentation operator,

~
V) is the exact vacuum state and

~g) the exact ground state of the atom, including ail
radiative corrections; Zsl is the infinite (or zero)
renormalization of probability amplitude discussed by
Dyson. 'Ipg Is flllitc wllcil lt Is expressed as a fllllct1011 of
the renormalized mass and charge; once this is done it
differs from Pp by small corrections which are no longer
of interest since they affect the resonant behavior even
less than those discussed in I. In the future we shall
therefore disregard these graPhs and write /pe 's" for

thc Inco111111g, /pe' 4 fol' tllc olltgoIIlg atom, I'cIllcnlbcl-

ing that Ep is the exact ground-state energy (which is
of course a well-defined number).

(4) Finally we have corrections of the type shown in
Fig. 4(a).

We note that these can bc calculated in exactly the
same manner as (k'~Sg~k) in I, except that Sp, must
be replaced by Sg,', where

SI,"(xi, zs) = e(1, 2) (0~ EL&II(zi) ijiI(zs) j[0),

and where ~0) is the exact vacuum state and /II is in
the Heisenberg representation.

III. CALCULATION OP 8y, '

Dyson has shown that for A„'=0, Sp' satisfies an
integral equation

Sp'(1 —2) =Sp{1—2)

+~I S,(1—3)Z(3—4)S,'(4—2)d(34). (9)

In fact it is in terms of the kernel of this equation,
Z(3—4), that his renormalization procedure is defined.

When an external field is present, we may still write

Sp, '(1, 2) =Sp, (1, 2)

+ SI,(1,3)g,{3,4)SF,'(4, 2)d(34), (10)

(c)

FIG. 3. (a) and (b): Radiative corrections to y„.
(c}:Radiative corrections to p0, p0 and E0.

where g, is no longer a function of the difference

x3 Ã4q but of xaq x4 and f3—f4.

P, will contain a whole new series of diagrams arising
from vacuum polarization by the external field, of
which the lowest order is shown in Fig. 4(b), and. ,
after renormalization, is givenbyg„=sA„"(zp)8(xs —z4),
where

A„e™(e'/154rIII')c}'A '/8x, s

as shown by Schwinger. s

Otherwise the diagrams appearing in g, will be
precisely those appearing in P, and can be renormalized
appropriately.

' J. Schwinger, Phys. Rev. 76, ?90 {1949}.
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p„(X3)p,(x3, x4, t3—t4)p (x4)dx3dx4 H„„(t3 t4),J
y„S—p, (x3, x4)y„Dp„„(x3 x4)—,

Dp» ——(0~8[A„(x3)A„(x4)7~0), (11) (12) becomes

For instance, in lowest order one has, corresponding or if we call
to the diagram of Fig. 4(c)

or, using (4),

Q,=y„Sp(xt x4)y—„Dp(x3 x4)—

—
J

"y„Sp(x3—x3)ey„A„'(x3)

xSp(x3+x4) y„Dp(x3 x4)dx3—

+ pi Sp(3 5)ey„A—„'(S)Sp(5 6)—

etn(t1 t»d~—f (~)

where

p do)e'"(" t»

f-(M)+
Z

Z H. (—)f.(),
E„+(0 mntn

H„„((o)= dte'"'H„„(t),

gus(t1 —tg) g d ~sot (t1—tg)

.H„„(—~)
E„+(0 3 J E +or

Xy„A„'(6)Sp,(6, 4)yt Dp(3 4)dx3dx—3,
or Anally

in which the divergences have been isolated in the
erst two terms, to which known methods apply. The 1 1 H„( (u)f„((u)—
last term is Gnite, and contains no renormalization.

~ ~ ~ ~ no+=
En (tt 3 En+ M

The saIDc nmthod can in principle be applied to any
term in Q„so that we may take p, (x3, x4) to be 6nite
and known.

The equation we have to solve is thus

1 H„( (0)f„„(co)—
(14)j man E„+(tt

~I deaf„„(44)e*"(" t»
2+~ ~To solve (10) we set

By taking the inner product with P„P P(t, we

Sp,'(1, 2)=Sp, (1,2)+J/Sp, (1,3)g,(3, 4)Sp, '(42)d(34). obtain a second equation:

(10)

Sp,'(1, 2) =- Q ~fd(0fnn((o)e'"(" tt'fn(xi)ttt n(X3)
( 1 $ ( d(d3

etn'(" '»d(tt e'"3('4 '»
(23r4) J E.+ ~i

~ dttdt4[H„„(t3 —t4)f ((e3)

where f„„(a&) and f„(a&) are to be determined so that
(10) is satisfmd. So far (11) involves no approximations,
since the tlat„'s form a complete set.

Substituting (11) into (10) we find, using (3), and
taking the inner product with ip„(xi)p ~ pf„(X3),

e(GI(tl tt) 1 ( dtd etc01(tt t»
d(4+

27ri J (e+E„2~3& E„+(ei
g'4032 (t4—t2)

dt3dt4dx3dx4lPn(X3)
W„„=4H„„(—&o)

—g
4H„„(—a))3H„„(—44)

Ent+ (0

~ ~ ~
)

f-(~)= -[H-(-~)f-(~)
En+ (tt

+ Z H.n( —~)fp-(~)7 (16)
yefe

In principle (16) and (14) determine Sp,', and can be
solved to any desired accuracy. In particular, if we
neglect quadratic terms in H„(43/ttt), corresponding
to neglecting higher order Lamb shifts (but not higher
order radiative corrections), we obtain a very simple
solution of the expected type:

f = 1/[E +(e+W ( (0)+ 7, —
where

~ P.(X3, x4, t3—t4) fP (x4)f ((o3)
&Hen

+ Z 4'm(X4)fntn((e3)&& (12) =[E + +W ( )7[E + +W ( )7'
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IV. RESONANCE SCATTERING

We may now rederive Kq. (7). S, becomes, if we
neglect f„compared to f„(aneglect corresponding to
a line shift bko= n's'hE= n's'g and asymm, etry

&os4)

2me2

cx Icxpc)iciplpp(xp)e 'rvep
(kk')& ~

.S),'(xl, xp) y„e„e'"'*'pp(xi)

renormalization. This is most easily done using the
conventional sum over states which can easily be
derived from (21). The Feynman prescription for going
around poles will give an imaginary contribution to the
sum from each state that has lower energy than E„,
this colltl'iblltioll being i/2 t1111cs tile fl'Rllsltloll plob-
Rblllty pcl' lllllt tlnlc fl'0111 tile s'tRtc f to thc state 111

uestlon.

V. EMISSION LINE-SHAPE

Xe&«o+&') &Ie—&«0+&) &2

(2~e)' (oI u el'e "' *ln)(nl ~ ele'" *Io)

E Eo k+ l—vv..(—Eo+k)

%'e replace the incoming photon by an effective
thermal excitation potential V(x, )!)= J'I((p)e ' 'C(p V(x).
Then the probability of radiation of a photon of fre-

(19) quency k with the atom in its ground state is
I (klSI0) I'

where

and the resonance scattering is given by

Co„=(e'/In)'CQI (ol e e),'e-" *In)(nl n e),e'" *lo) npl'

1/L(E„—Eo—k+ ()E„(Ep+k))'+ I"„'(Eo+k)], (20)

in the neighborhood of k= E„—Eo, where hE„and —ij.',
are the real and imaginary parts of W„„(Ep+k).

The line shape and center are therefore electively
determined by the energy denominator in (20). In the
fourth-order term,

iH„(Ep+k)4H„„(Ep+ k)

E —Eo—k

one may set k+Eo—E„and obtain a shift of order of
magnitude

)(2or ) &
t
"

(k I Sl 0)= el —I, CxICx&ChICh, gp(x, )&k) ~ „
&(e-*" *py„e„Sp,'(x„x,)pv(x))I((p)C(p

)('y (x )e((so+o)txe—iso(pe —i~(p (21)

P(ol e ele '"'*In)(nl v(x)lo)
(k)& .

X ' d~cd~2dardve'«o+

4(EO+vv) &peiv(&1—&4)1(pp)

22
( )

()ko=sono(E —Eo) =sa'Z.

The fourth-order renormalization term obtained by
expanding

I(k) (olcx e),e ' *In){nl V'IO)

(k)'* ~ E Eo k+V)'„„(Ep—+k)—
(23)

iH..(Eo+k) =iH .(E.)
+(Eo+k E„)(8/BE„)iH—(E ),

leaves the line shape symmetric but shifts its center by

l)kp= s4ao(E.—Ep) =s'uPZ.

To within present experimental accuracy, therefore, the
entire observable effect arises from the term iH„„(E„).
This term is a power series in e' (but not in p/e as were
the off-diagonal and renormalization terms). The first
approximation in e' corresponds to the conventional
Lamb-shift calculations. The shift due to the second ap-
proximation to P.is of order eV. and has been calculated
by Berson, Kroll, and Weneser. Finally, the imaginary
part of iH„„(E„)is different from zero, and in lowest
order is unaffected by the renorrnalization subtractions,
which are real: i.e., the self-mass and the Z2 renor-
malization, which subtracts a real multiple of E„—Eo—k
from iH„„(Eo+k), change iH„„by a real number, so
that —iF„may be computed in lowest order without

and the probability- of radiation of a photon of frequency
kis

II(k) I' (Ol~ 'le '" *ln){nlVIO) '
P(k) = (24)

k n E„Ep k+VV„„(Ep+—k)—
When k E„Eo=o,1/W—„„=—1/Ls'no(E„—E())J. Thus,
if one of the terms in the sum is large, the others are
very small, so that

II(k) lo (olH'In)(nl vlo)
E(k)= , (»)

k o (E„—Ep—k+bE )'+I' '

where each term contributes only when k is very near
resonance. If I(k) is such as to excite many states, but
varies slowly over the line width, this is the expected
result.
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