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For a linear Einstein-Bose field of large amplitude it is well known that the classical approximation is
quite good for treating certain problems; the validity of this conclusion for the case of a nonlinear field is
investigated here. In order to compare the classical and quantized versions of a nonlinear meson theory, we
consider the problem of calculating the energy of interaction of the field with a given static source distribu-
tion. The quantized theory is treated in such a way that the classical result appears as a first approximation;
the quantum corrections then include infinite renormalizations of the original parameters of the theory plus
finite corrections to the energy. Part of these corrections are estimated and are found to become increasingly
important with increasing source strength, contrary to the usual assumption. Since only a small part of the
total quantum correction can be estimated by the present methods, a complete calculation might give a
value very much larger or very much smaller than that given here; nevertheless, it is possible to conclude
that the nature of quantum corrections is such that they cannot be treated as small perturbations.

I. INTRODUCTION the following Lagrangian density'

~= 2(~4/~t)' 2(V4)' —2~'0' —'~%+f4 (&)

where f(r) is the nucleon source density, which we take
to be time-independent (thus neglecting the dynamics
of the source). We use units in which fi=c=1. From
this Lagrangian density are deduced the Hamiltonian
density and the Hamiltonian

1~2+ i (qy)2+ i ~2'+ i ~2' fy (2)

ECENTI Y Schiff' and Malenka' have suggested
the possibility of accounting for certain nuclear

properties such as nuclear saturation and shell struc-
ture by means of forces derived from a nonlinear meson
theory. In these calculations the meson Geld is treated
classically under the assumption that quantum Ructua-
tions can be neglected because the meson field has a
large amplitude and obeys Einstein-Bose statistics.
Such an assumption is certainly valid for a linear meson
field because a large Geld amplitude in the classical
theory corresponds to the presence of a large number of
mesons in the quantized theory, and quantum Ructua-
tions are unimportant in such a situation. In this paper
we shall be concerned with the energy of interaction of
the field with a static source; for a linear Geld it will be
apparent that this energy is actually the same in the
quantum theory as in the classical theory, independent
of the source strength. In the nonlinear meson theory,
however, new features arise because of the infinities
introduced by the interaction of the field with itself.
From the power series expansion of this interaction, we
know that these infinities lead to renormalizations of
the original parameters of the theory plus Gnite residues
which are taken to be physically meaningful. There
seems to be no a priori reason to expect that finite
quantities obtained in this way should be small com-
pared to the corresponding quantities calculated with
the classical theory. The object of the present paper is
to treat the quantized theory in such a way that the
classical theory appears as a first approximation and to
investigate the relative importance of the quantum
corrections to this classical approximation.

Let us first review brieRy the general features of the
classical theory. We consider as a particular example

H= Ix(dx)', (3)

where vr=B&/Bt is the momentum canonically conju-
gate to p. The wave equation deduced from the La-
grangian or Hamiltonian is
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For a given source distribution f(r), one has to solve
the wave equation to obtain the static field P, (in prac-
tice this may be done only approximately). Inserting
g, into (3), the classical energy associated with the
given source distribution is obtained. By considering
diferent source distributions, information about nu-
clear forces, the potential energy of a nucleon in a
nucleus, etc., is deduced. The present note is concerned
not with any of these particular nuclear problems, but
only with the general method of calculation.

In the next section the field is quantized according
to the usual commutation rules, and by means of a
canonical transformation the Hamiltonian is expressed
in a form which clearly reveals the classical approxima-
tion. Part of the quantum corrections to the energy are
then easily estimated by calculating the zero point

' This particular Lagrangian density has been considered clas-
sically by SchiG in Sl (see reference 1) and by Malenka (see
reference 2); as shown by Malenka (see reference 2) the form of
the nonlinearity in (1) is suggested by the pseudoscalar inter-
action of a quantized nucleon field with a classical pseudoscalar
field. The sign of the nonlinearity in (1) has been chosen so that
its contribution to the energy will be positive definite. This ex-
cludes from our consideration the case in which there is a classical
particle-like solution, as treated by Finkelstein, LeLevier, and
Ruderman, Phys. Rev. 83, 326 (1951).
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energy of the part of the Hamiltonian which is quad-
ratic in the meson variables; this estimation involves
the dropping of infinite ~- and n-renormalizations and
the interpretation of the finite remainder as physically
meaningful. These quantum corrections are found to
increase in relative importance with increasing source
strength, thus showing that quantum corrections are
important and may not be treated as a perturbation.
fn order to see how to calculate higher order corrections
and to show that the renormalization prescription used
in this estimation is correct, we turn in Sec. III to a
proof of the existence of a consistent renormalization
program by means of a power series expansion. The
main result of this program is that the energy is a func-
tional of a variable &0 which obeys a complicated
nonlinear diRerential-integral equation. The energy func-
tional and the equation for $0 are related by the condi-
tion that a solution of the equation minimizes the
energy functional. To the zeroth order in the quantum
corrections, &0 is, of course, the same as p„and the
energy functional is the same as (3). In Sec. IV, the
results of Sec. II are shown to result from summing a
certain subset of the power series expansion. To in-
vestigate whether quantum corrections will be reduced
by including a larger portion o$ the total quantum con-
tribution, we sum the contribution from a somewhat
larger subset of the power series expansion. It is found
that the effect of including this larger subset is to in-
crease the estimate of the quantum corrections, thus
confirming the conclusions of Sec. II.

II. QUANTIZATION OF THE FIELD

The field is quantized according to the usual rules

L7r(x), y(x')] = —ib(x —x'), (~)

where ~ and p are Schrodinger representation operators.
We make a canonical transformation'

The choice of &0 will be discussed in more detail in
Sec. III. In this section we shall make the working
assumption that quantum corrections are small when
the classical field strengths are large. Under this as-
sumption, po is approximately equal to p„ the classical
static field. In the Hamiltonian the term linear in p is
then small and B,.~ is approximately the usual classical
energy. The quantized field interacts with the source
mainly through the dependence of H& and H2 on p(, .
Since we are assuming that po is in some sense large
compared to p, we try to treat H& exactly, with H2 as
a perturbation.

The field equation derived from H& is

82$/Bt2 V2$+—i12$+3nortioorti =0.

In this equation it is seen that 3o.'&0' serves as an
effective potential through which the P field moves.
Considered as a classical equation with periodic bound-
ary conditions, the field equation has fundamental
solutions of the form

exp(&ioi t)y„(x), oi„)0
satisfying

(10)( ~ 2 V2+ ii2+3122y 2)y —0

This enables us to define the operator o&=(—V2+i12

+3a'po')' by the equation

cop„=co„P„.

~=K.(2 .)—:(.~.+ .*e.*),
~=2-(~-/2) '*i(a-*4-*—a-4-),

(12)

where the a's obey the following corgmutation rules

[a, a *]=5 (13)

We may now expand p and x in terms of the complete
set of' functions p„:

S=exp i po(x)2r(x)(dx)3, (6)
Expressing Hj in terms of these expansions, we obtain
the usual result

B1 Q„W„ro„+——2+„oi„, -
S =a„a„, (14)where &0 is a c-number function of position to be speci-

fied later. Under this transformation, the field quan-
tities and the Hamiltonian are transformed in the
following way

S&S*=&3+&, SvrS*= 2r,

SHS~ =H, i+Eii+ H2, (&)

(2(VPo)'+2ii'Po'+or2'Qo' fgo—
+~( V'~o+ "~o+-'~o' 1))(d )', -

f
(1~2+1 (Vy)2+ 1 ~2y2+ 3~2' 2y2) (dx)3

&.=~ (l '~'+ '~~')(&*)'

4 This transformation was used previously by L. I. SchiB, Phys.
Rev. 86, 625 (1952).

where the operators X„have the eigenvalues 0, 1, 2, 3,
~ ~ . The vacuum is defined as the state of lowest en-

ergy: all X„=0. Normally the infinite zero-point energy
(2+or„) is neglected because it is an infinite additive
constant. In the present case, however, the zero-point
energy may not be neglected because it depends on the
source strength through &0, in fact, it varies by an
infinite amount when the source is changed. We shall
show that part of this infinite dependence on the source
can be interpreted as a change in the values of ~ and
a appearing in H, ~. After this renormalization, we shall
have a finite remainder which may be interpreted as
physically meaningful (within the spirit of the usual
renormalization treatment) and compared with terms
already occurring in the classical energy. The zero-



point energy is

-', P op„=-', Tra&

b(x—x ) (—P+«'+ Vo) &b(x —x)2. J
X (dx)'(dx')'

b(x—x')(—V'+«oy V,)-'166» J

Xexp[iit (x—x')](dh)'(dh')'(dk)', (15)

where Vo= 30.24 o2.

We cannot evaluate this expression exactly because
P may act on the Vo under the square root; we ac-
cordingly make the approximation that Vo is a slowly
varying function of position and that we may neglect
its derivatives. Even though this approximation m,ay
not be good in general, we expect it to give us an esti-
mate of the order of magnitude of the correction to the
energy. In the Appendix we use the WEB approxima-
tion to estimate the fUndRmcntRl flcqUcIlclcs for thc
ease of a one-dimensional source distribution and show
that it agrees with the following result except for pos-
sible ambiguities in the renormalization; surface CGects

arising from sharp discontinuities in Vo are also esti-
mated there. With this approximation, the zero-point
energy becomes

(dh)'(dk)'(k'+ «'+ Vp) &

~X'

=lim ~ (dh)o
~

k'dk(k'+«'+Vp)'*
X-woo 4+j

= t (dh)'{A+Bn'y, o+Cn4yo4+
64m

X[(Vo+«')' ln(1+Vo« ')

—«'Vp —1.5Vp']}, (16)

where A, B, and C are in6nite constants, independent
of u and pp. A is the zero-point energy of the field in the
absence of a source and 8 and C give renormalizations
of the ~ and o. appearing in the first line of H, ~. The
finite part has been made unique by the requirement
that its series expansion in powers of po contains no
terms in Po' or Po'. The consistency of this renormaliza-
tion prescription will be discussed in Secs. III and IV.
Interpreting the 6nite part as physically meaningful,
the energy of the vacuum is given approximately by

~o= { (~4 o) + «4'o-+ &4o —f4 o— —

+ [(3n'p +«o')' in(1+3n'goo« ')
64m —3«'n'y '—13 Sa'y '$}(dx)' (l7)

It is easily seen that for small 6eld strengths the new
contribution is unimportant since the leading term in
a power series expansion is proportional to po'. For
large 6eld strengths, however, the logarithmic term
becomes more important than other terms in the en-
ergy. As an example, we take the following parameters
for the interior of a nucleus from Schi6's paper ~= j. ;
o.=7.96, go=0.149. With these parameters the non-
linear term in the energy has the value ~~a'Po' ——0.0078,
while the quantum correction just obtained has the
value 0.023. For larger 6eld strengths, quantum correc-
tions will become relatively more important.

In addltlon to thcsc cncrgy corrections, wc may Rlso
desire to determine the corresponding quantum correc-
tions to the equation which Pp must satisfy. To the
order of approximation of the present section, these
corrections arise from the term n'QoQ' which occurs in
H2. Before this term ean be used in a perturbation ex-
pansion, it is necessary to rewrite it as an ordered
product' plus another term which is linear in g. Because
of (12), the de6nition of the creation and destruction
operators, and hence of the ordered product, depends on
Po. The ordered product is used in the perturbation ex-
pansion, while the other term gives a contribution to
the equations which Po must satisfy. The correction to
the equation of po is

3~'A(4')o= 3~'A 2-(1/'2~. )4.'4-
=(-:) '~o( I(—~'+ "+v.)-'I ). (»)

Now it is easily derived from (10) that

oi„bop„/by p(x) =3n'yp(x) y„~(x)y„(x).

Hence, the corrected equation for @o may be written

~'~o+ "~o+ '~"+-,'b(Z -)/b~o=f. (2O)

From this equation it is apparent that the ~- and e-
renormalizations occurring in the equation for @o are
the same ones that occurred in the energy, Eq. (17).
The renormalization is thus consistent to this order of
approximation. The 6nite correction to the equation
satis6ed by po is obtained simply by taking the func-
tional derivative of the corresponding finite correction
to the classical energy. In the fol'lowing section, this
relation will be seen to be generally true, although it
appears there as a simplifying choice rather than a
necessary requirement.

It ls now cvldcnt that OUr wolklng Rssun1ptlon ls not
valid; for having assumed that quantum corrections
were small, we have found that to a certain order of
approximation they are large. In fact, the quantum
corrections seem to become relatively more important
as the classical 6eld strength increases, contrary to the
usual assumptions that the effect of lack of com-
mutativity may be neglected when the field magnitudes

5 In an ordered product, aO creation operators are @written to
the left of all destruction operators; the use of the ordered product
~as introduced by A. Houriet and A. Kind, Helv. Phys. Acta 22,
319 (j.949).
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are large. We have not actually proved that quantum
corrections are large, because we have not treated the
while Hamiltonian exactly. It is conceivable, although
it seems to be very unlikely, that the net eEect of all
the perturbations we have neglected would be to re-
duce the quantum corrections to a small value. In any
case, we have shown that we Inay not assume at the
start that quantum corrections will be small enough to
be calculable by the sort of perturbation techniques
used here.

III. THE RENORMALIZATION PROGRAM

In the preceding se=tion, q, finite result was extracted
from an infinite quantity by applying a certain pre-
scription for renormalizing the original parameters of
the theory. This renormalization took place with re-
spect to the lowest possible order of the parameter of
nonlinearity. In order that the result obtained in this
way should have a physical meaning, it is necessary to
show that the res~it of the preceding section is the
first stage of some renormalization program which can
be carried through consistently to all orders of approxi-
mation. It must be shovrn, for instance, that each of the
five quantities 0.' appearing in the Hamiltonian will be
renormalized in exactly the same way; similarly for the
three quantities K . In carrying out this demonstration,
it will be necessary to make a power series expansion
of the energy so that the techniques developed for
handling the renormalization of the S-matrix may be
employed. "We shall rely heavily on the results of
Ward's paper~ because the set of interacting fields
treated by him includes, as a special case, the nonlinear
field of this paper. Only the features arising because of
the presence of a source vrill be treated in this note.

Before proceeding, we note that the canonical trans-
formation (6) is time-independent and therefore does
n.ot alter the eigenvalues of II. This means that if we
calculate the energy from (7) using perturbation theory,
the net effect of all contributions involving Qo will be
identically zero; this will be seen explicitly when the
perturbation method is presented. For the quantum-
mechanical calculation, it is therefore simplest to set
$0 equal to zero at the start and proceed with a per-

turbation treatment of the original Hamiltonian (3).
In the perturbation treatment it will be seen that the
various contributions to the energy can be represented
by Feynman graphs. The classical approximation to the
energy is represented by the set of graphs in which
there are no closed loops; the contribution of the last
section is represented by the set of graphs with one
closed loop; etc. The results of Ward's paper' can be
applied immediately, and with a suitable renormaliza-
tion of the source, they lead to a well-defined power
series expansion for the energy. However, because of the
closer connection with the classical theory, we prefer
to make the canonical transformation involving po.
To avoid having all the contributions from $0 cancel
each other out, vre calculate the part of the energy
represented by a small (but infinite) subset of the
Feynman graphs and then choose @~ in such a way that
the remaining contribution vanishes identically. In this
way the quantum corrections appear as a modification
of the classical problem, .

In order to apply perturbation theory, we separate
the Hamiltonian (7) into a free field part Ho and a
perturbation H;

SHS*=Ho+ H, ,

The quantities»', a', f, and &0 appearing in (21) are
not finite but must be related to the corresponding
finite quantities», 2, aP, f„and &0, in such a way that
the final results are unique and finite (aside from any
possible lack of convergence of the perturbation ex-
pansion itself). Notice that Ho contains the finite mass
K

' the last term of II; cancels out mass corrections
explicitly as they arise from the perturbation expansion
of the other' parts of II;. It is easily seen that the mass
corrections for IJ,~ cancel in the same way term by term,
so we shall take no further account of mass renor-
malization.

We are interested in the energy of the state in which
there are no freely propagating mesons present. This
energy is easily calculated by averaging the rate of
change of phase of the U-matrix over a long period of
time and is found to be

2ya

Pre. 1.Types of vertices rvhich may appear in Feynman graphs.

6 F. J. Dyson, Phys. Rev. 75, j.736 (1949).
~ J. C. Nard, Phys. Rev. 84, 897 (1951).

X (d& )' (dx )'I'[H'(&o), H'(x ) H'(& )] (22)

The sum is over all Feynman graphs G which are con-
nected with the point xo and which have no external
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meson lines. The operators occurring in H, (x,) are in-
teraction representation operators; that is, they have
the time dependence of free field operators and reduce
to Schrodinger representation operators at zero time.
P is the usual chronological ordering operator. Since

@p is independent of time, the result of the integrations
in (22) is independent of the time assigned to H;(xo);
for definiteness, we set this time equal to zero.

The types of vertices which may occur in Feynman
graphs are shown in Fig. i. We have used the ab-
breviations:

b. 4
=

o (&4')'+ o &'4ko'+ 4~'4'' f4 o,
—

Lg= (—P+ x,')$o,

~o= n'yo' f— (23)

Terms involving mass renormalizations have already
been dropped. The two types of vertices (b') and (b")
have been distinguished to aid in proving the state-
ment made previously that the net eff'ect of all con-
tributions involving Pp will be identically zero. The
vertex (a) appears in one Feynman graph, consisting
only of itself (n =0)

Corresponding to each line of a graph there is a factor

= [(—j)/(2~) j (pk)4(ko+ x o)
—'

Xexp[ik„(x—y) „j, (24)

Since this replacement takes place independently of
all others, all contributions involving Pp are canceled
out identically. The only contributions which do not
cancel in this way are those which are made up purely
of the perturbation expansion of (—jr+4'u'$4).

In order to make the use of the canonical transforma-
tion (6) nontrivial, it is necessary to choose go in such
a way that the energy may be evaluated from a subset
of all possible Feynman graphs. It may be possible to
choose such a subset in more than one way, but we make

where the contour C is defined by imagining K, to have
a small negative imaginary part which displaces the
poles from the real axis.

It is now easy to show that the net eGect of all con-
tributions involving Pp is zero. Consider a particular
graph which does not contain any vertices of type (b'),
but has the quantity pp occurring a certain number of
times. Any pp may be replaced by a contribution in-
volving a vertex of type (b'), yielding a new graph which
must be considered in the enumeration. The net result
is that if pp occurs at the place x in the original graph,
in the new graph it is to be replaced by

N= —'o( + X

FIG. 2. The two types of primitive divergences.

8A[4o]/84o(x) =0. (25)

We are now ready to discuss the renormalization
program. Except for the terms involving Pp, Ward7
has already discussed a more general case than that of
this paper; and we shall make full use of his results,
which we review briefly. In this theory there are two
types of primitive divergences, self-energy parts and
four-vertex parts, shown in Fig. 2. Every graph G' has
a "skeleton" which may be obtained by omitting all
self-energy and four-vertex parts from O'. Correspond-
ing to a given skeleton there is a whole set of graphs
which may be built up by all possible insertions of
self-energy and four-vertex parts. The net eGect of all
these insertions is to modify the propagation and scat-

the following choice which seems to make the subset as
small as possible, at the expense of complicating the
equation which @p must satisfy. We define the subset
0' to consist of all graphs G' which have the property
that they cannot be bisected by cutting a single meson
line. pp must then be chosen so that the net contribu-
tion from all remaining graphs is zero. This is easily
done, for each of these graphs must contain at least
two subgraphs of the type (P), which have the proper-
ties that they are connected to the remainder of the
graph by a single line and may not be bisected by
cutting a single internal line. The simplest examples of
this type of subgraph are the vertices (b') and (b"). In
order that the net contribution from graphs not in 0'
be zero, we require simply that the sum of all contribu-
tions represented by the subgraphs (P) vanish. This
gives a complicated nonlinear diRerential integral equa-
tion which pp must satisfy; the classical field equation
is the first approximation to this more general equation.

There is obviously a close structural relationship
between the graphs G' and the subgraphs (P); for if we
replace a Po acting at some point in G' by an external
line attached to the point, the result is a contribution
to one of the subgraphs (P). If this is done in all possible
ways, several subgraphs of the type (P) will be obtained
from the same 6', and inspection shows that all these
contributions will have the proper weight factor associ-
ated with them. This graphical process is a representa-
tion of the mathematical process of taking the func-
tional derivative with respect to go(x) of the integral
corresponding to G'. Letting A[go] be the contribution
to the energy arising from graphs in 0', the condition
that the sum'of all contributions from subgraphs of
type (P) vanishes is then expressed by the equation
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tcring of mesons in the following way

6 F (x—x')~Br'(x —x')

—,'n'h(xi —
xm) 8(xi—xa) 8(xi—x4)~

-', n'b(xi —x2) b(xi—x3)8(xi—x4)+X(*i, *2, x3, x4)

=$(xi, x2, xa, x4). (26)

proper self-energy part K*

+i yo(xi)R*(xi, x2)yo(x2)(dxi)'(dx2)'.

Because of the divergences of the theory, these quan-
tities are given by power series with infinite coefFicients.
Ap' and E are called the infinite functions. If at each
stage of the power series expansion we define finite
quantities by the unique subtraction procedure specifmd
in Ward's paper, we arrive at a corresponding set of
finltc fUIlctlons wlilcll wc dcslgnatc 6 Rild X . It then
turns out that the infinite functions, expressed in terms
of n', are simply numerical multiples of the finite
functions, expressed in terms of o.,'.

Z and cP are given by certain power series in n,' (with
infinite coeKcients).

In order to apply these results to the present problem,
we distinguish the various contributions to A according
to the number of times that @p acts in the contributing
graphs; A„[&0]is the total contribution from all graphs
lIl which fp Rcts m times. The cases m= 1, m=2 and
m=4 mhich occur in 8,~ are somewhat special and mill

be discussed last. For m &» 6, Ward's work shows us that

where 3, is defined by inserting the 6nite functions
6, and X, (expressed in terms of n, and ~,) into the
various skeletons of graphs which contribute to A .
From (28), it is obvious that the field strength should
be renormalized in the following way

$0 ~ @pc.

We have to show that (28) is also correct for m=1,
m= 2, and m= 4. To make (28) correct for m= 1, we are
required to renormalize the source strength as follows

This is in agreement with the renormalization of the
meson-nucleon interaction constant in Ward's paper.

The m=2 and m=4 contributions are special cases
because they are primitively divergent. For m=4, it is
obvious from (26) that the total contribution is given by

By virtue of (27), it is obvious that A4 satisfies (28).
For m=2, we may express the result in terms of the

From Ward's paper

Se*(xi, x~) = —,'i(Z —1)Z-'(— '+,')h(xi —x )
+Z '3'..*(xi, x2),

where K,* is the finite part of X*, expressed in terms
of the 6nite parameters. When this is substituted into
the expression for A2, it is found that the result satisfies
(28). This completes the proof of the consistency of the
renormalization program.

We may summarize the results of this section by the
following set of rules for calculating the energy: (1)
calcula, te the functional A, [&o,] by summing the con-
tributions from all graphs of type G' and dropping the
infinite a and o. renormalizations in the manner specified
by Ward;7 (2) minimize this functional by requiring
Qpg to sRtlsfy

Tlils minimum valise of thc fuIlctlonR1 ls thc cneI'gy
associated with the given source distribution.

IV. NEARLY-UNIFORM SOURCE DISTRIBUTION

In this section we shall make the approximation,
used previously in Sec. II, that the source is such a
slowly varying function of position that its derivatives
may be neglected. Such an approximation is probably
not valid in practical problems; nevertheless, features
wlilch Rl.lsc ln such Ril approximation will pIobRbly
have a counterpart in a more exact calculation. Strictly
speaking, the results of this section will apply only to a
source which is independent of position. Because of the
great complexity that graphs of type G' may have„we
shall sum the contributions from only a certain simple
subset of all. possible graphs. The method of summation
is as follows: for suKciently small f, the series expansion
for 3, may converge, defining an analytic function; the
analytic continuation of this function along the real f
axis, if it exists and is unique, is taken to represent the
sum of the infinite series, even outside the original
radius of convergence.

It was mentioned in Sec. II that the quantitys
Vp=30.'pp' plays the role of a potential through which
the @-field moves; we shall now calculate some of the
quantum corrections to this potential. The simplest
type of correction is shown in Fig. 3(b). The potential
Vp must act one or more times on the closed loop be-
cause the graph mith no such interactions corresponds

'In this section we shall drop the subscript c to denote the
finite quantities; infinite quantities will be dropped as they arise
according to the prescriptions of Ward.
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to a mass renormalization which must be dropped. If
Vo acts only once, it yields a renormalization of the n'
occurring in the contribution from Fig. 3(a). It is
obvious that the result of summing all contributions
(including zero interactions of Vp) will be, before re-
normalization, simply the propagation function for a
particle in a potential Vo, which we call Avo. The net
eBect of all these contributions, including renormaliza-
tions, is the following correction to the original po-
tential Vo

V,(x) = (op)n'Avp(x, x)—(-', ) 'nkvd(x x)—

%+V„)

(a) (c)

FIG. 3. Some contributions to the effective potential
for the meson Geld.

(Note that this corresponds to the addition of a term

p Vig' to the Hamiltonian. ) Expressing 6 vp in terms of
the normal mode expansion (12), we obtain

Examination of this recursion relation shows that
for Vt;&0:U (x) =3 'Z. (1/2 .)4-*4-

0&5"0&IV& &F &

Eq. (34) can be evaluated by the methods of Sec. II,
( 3j/4)noU t [gv(x y)]&(dy)4 (32) yielding

W +i——Up+ (3n'/16or') [(z'+W„)
&&In(1+o: 'W„)—W„], (33)

8'p= Vp.

—[3no/2(2or)'] (dk)'(k'+x') &

+[3n'/4(2or)'] (dk')(k'+ ') '*V ( )

This is in agreement with Eq. (18), with the proper
renormalization rule now specified. This shows that the
results of Sec. II correspond to the sum of contributions
from all graphs with one closed loop.

We may now extend this result to a somewhat larger
class of graphs by a simple iteration procedure. For ex-

ample, we may replace the quantities Vp of Fig. 3(b)
in arbitrary ways by the quantities V&, the result will

be the quantity U&, given by an expression like (32),
but with Vp replaced by Up+ Vi. It is obvious that V&

consists of VI plus additional contributions, so the
next step of the iteration procedure is to replace the
quantities Vp of Fig. 3(b) in arbitrary ways by V& (not
Vi+ V&), thus producing the quantity Vo. In this way
we define V„+& in terms of V„, as indicated in Fig. 3(c).
It is obvious that the renormalization procedure is

precisely analogous to that employed in (31), so that
we have the -following recursion relation for
= Vp+V„.

= Vo+-', n'(x~ (—V'+~'
+W„)-:~x) —-'n'(x~ (—V'+~')-

~
x)

+-'n'(x
~ (—V'+ i~') &

~
x)W, (34)

W, = Vo.

So far this is an exact expression for the graphs con-

sidered in the iteration process. In order to proceed
further, we take advantage of the approximation that
the quantity &0 is a slowly varying function of position.
Then the various 5'„will also have this property and

ln(1+ z 'W) = 16or'/3no (38)

and approaches minus infinity when W approaches
infinity. This implies that the iteration process di-
verges when Vo is greater than a certain value, which
is the maximum of the right side of (37)

(Vp), = K'[(3n'/16m') f exp(16ir'-/3no) —1)—1]. (39)

For Vp((Vp), , there are two solutions of Eq. (37);
inspection shows that the recursion relation (35) con-
verges to the smaller of these two solutions.

We may now calculate the energy and the correction
to the classical field equation associated with graphs
of the type shown in Fig. 3. Neglecting derivatives of
po, the corrected field equation is simply

~'go+ n'Po'+to(W Vp) =f. — (40)

Equations (37) and (40) are to be solved simultaneously
for Pp and W. Equation (37) may be used to eliminate

from Eq. (40), thus giving f as an analytic
function of lV. As tV increases from zero, this function
increases from zero to a maximum at a value of 5"
somewhat greater than given by (38), and then de-
creases to zero at the value of 8' for which the right
side of (37) vanishes. The inverse function, which gives
W as a function of f, is obviously analytic from zero

Thus, either tV„approaches a finite limit 8', or it ap-
proaches infinity. In the first case, tV must satisfy the
equation

Vp
——W—(3n'/16m') [(~'+W) ln(1+ ~ 'W) —W]. (37)

If, for a given Vp, no real solutions of this equation
exist, the iteration process is divergent. Considered as
a function of 8", Uo is zero for 5' equal to zero, has a
maximum value when
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to the maximum value of fwhere it has a branch point;
the proper branch is chosen by the condition that g
must vanish when f does. For values of f larger than
this maximum, no real solution to these equations exists
and the contribution from this subset of graphs pre-
sumably diverges. This does not necessarily mean that
the complete power series expansion diverges however,
because if other graphs are included in the calculation
in a suitable way the result as a whole may be finite.

%'e calculate the contribution to the energy by apply-
ing (31) in reverse; we now know a term in the equation
for the classical fieM and wish to 6nd the corresponding
contribution A', which must satisfy

8A'/8&0 =&0(w—Vo). (41)
Assuming

~'= "LB(w)—(-')~'40'3(d*)'

we 6nd
(dB/dW) (dW/d&0) =&0W

But from (37)

6~r'$0= (dw/~0)(1 —(3n'/16'') ill(1+K-'w)]. (43)

Therefore,

dB/dW=(,'~')WP (3~&/1—6~~) ln(1+;~W)~.

Integrating this equation, we find

B= (W'/12a') —(1/64m') L(w' —x') ln(1+ z—'W)
——',W'+a'W]. (45)

This calculation of A' by means of (41) is much simpler
than by the original de6nition of A' because of the
difficulty of properly enumerating the various con-
tributions to A' in the direct calculation.

These results seen to reinforce the views of Sec. II
that quantum corrections to the energy associated with
a source. distribution become relatively more important
as the source strength is increased. It certainly seems to
be unlikely that the net effect of aH the contributions
omitted would be just sufhcient to make the total effect
very small, although such a possibility cannot definitely
be ruled out. In any case, we are justi6ed in saying that
quantum corrections are not so small that they may be
treated as a perturbation. The results of this section
also suggest the possibility that the relation of the
energy to the source strength may be changed quali-
tatively as well as quantitatively. For example, the
contribution of A' to the energy increases with f until
a critical value of f is reached beyond which the prob-
lem can no longer be solved. For this value of f, the
energy is still 6nite, which means that such a source
could be built up without an in6nite expenditure of
energy; if, instead, the energy became infinite as f
approached its critical value, then we would have a
saturation effect which would prevent the source from
being built up. Since we are considering only one class

of graphs out of an in6nite number of classes, it is hard
to predict whether a final complete calculation would
show either of these effects, or possibly other effects
not yet revealed in the calculation to this stage of
approximation; however, we should be prepared to
expect such effects.

Unfortunately the results of this paper do not shed
too much light on the question of convergence of the
power series expansion. The functional A is a power
series expansion in both cP and &0, each power of &0
has a coefficient which is an infinite series in powers of
n', each power of 0.' has a coefficient which is a poly-
nomial in $0. According to Hurst, ' the coefficients of
each power of &0 are divergent series for all values of
0.'. This result is perhaps to be expected because the
whole nature of the physical problem changes when a'
changes sign, and this situation should not be capable
of representation by a power series expansion with
a nonvanishing radius of convergence (compare the
remarks of Dyson" for the case of quantum electro-
dynamics). It is quite. possible that the unusual result
found in the calculation of A' is simply due to the
fact that we have selected out a certain finite part of a
divergent series. This divergent series as a whole may
be meaningless, in which case the theory is meaningless;
or it may be some sort of an asymptotic representation
of an analytic function which is not expandable as a
power series about the origin in the 0.' plane.

The order of magnitude of the corrections given by
(42) is not to be taken too seriously; the particular
form of the odd qualitative features in the calculation
of A' is not to be taken seriously either, although the
existence of some qualitative changes in the relation
between the energy and the source strength does seem
to be plausible. The present results therefore can be
taken only as an indication that quantum corrections
are relatively important for a nonlinear boson 6eld
with a large classical strength.

The author wishes to express his thanks to Dr. J. R.
Oppenheimer for his interest and encouragement in
this work. He is also indebted to Dr, M. Gell-Mann
and Dr. K. V. Roberts for many stimulating discussions
and for constructive criticism of the manuscript.

APPENDIX

It is the purpose of this Appendix to derive Fq, (16)
for a one-dimensional source distribution by means of
the WEB approximation for the normal mode fre-
quencies. Consider such a source leading to a classical
field go(x) which depends only on the x-coordinate,
but not on y and g, and assume periodic boundary
conditions. The normal mode solutions (9) then take
the form

P„=exp(iidninpnph+ikniy+ikn2s)un&(x),

9 C. A. Hurst (private communication).
'0 F. J. Dyson, Phys. Rev. SS, 631 (1952).
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(onrnpnp= (N. +knP+knp'+QnP) (A4)

e.here

[—conynpnp —(d /dx )+knP+knp
+~'+3n'Pp'7u &n(x) = 0. (A2)

The one-dimensional eigenvalue problem for the fre-
quencies is therefore

[—(d'/dx')+3a'ypP]u. (x) = Q.'u. (x) (A3)
with

We further assume that the distance a is so large that
for all except a negligible fraction of the frequencies we
may assume

(0 '—U)»a»1, 0„')U

(U—0 ')»a»1, 0„'&U.
(A11)

Under this assumption the phase shifts P„ for 0„')U
will average out in a more or less random fashion,
while those for 0 &U will not. Distinguishing the
phase shifts for even and odd functions of x, we find
for 0 2&V

If the period of the functions is L, the zero-point en-

ergy is P..„=-2 tan- [0„/(U—0„)]»,
(A12)

p. ..=—pr+2 tan —'[0„'/(U —0„')]».(Li
p p Mn pi i

dkpdkp p (IP+kp+ kp +0 ) (A5)' pn the averagei2~) e

The WEB approximation to the frequencies is

J
dx(Q„' 3n'pp—')'+p„= 27ru, (A6)

where E is the region of integration for which 0)3u'Pp'. P„ is a phase factor which must be introduced
if there are classical turning points for the given value
of 0„'. If @0' is a slowly varying function of position in
the region of the turning point, the effects of p„will be
averaged out and P„may be neglected in (A6). We
shall treat this case first, and later modify it for the
case in which there are discontinuities in &02. From
(A6), the number of states in a range dQ„ is given by

P =—pr/2+2 tan '[0 '/(U —0„')]». (A13)

From (A6) we see that each D„used in calculating the
zero-point energy must be shifted by an amount 60
given by

0„80„
I dx +P„=0.

(0 '—U)»
(A14)

X080(~'+k '+k '+0')» (A15)

Combining these results, we obtain

The resulting shift in the zero-point energy itself is then

L2 p$

p' Q Ro„= It dkpdkp ifdx ~t DdQ(0' —U)»

2
du= t dxQ dQ (0 '—3a'y')»

(2n-) J u

The zero-point energy accordingly becomes

L2 00
~

00

—,
' P &on=

I

dkpdkp ' dx QdQ

(A7)
—', Q 8am=i

—
)

lim I kdk I QdQ
i2~) ~-- J,

0'
X —2 tan 'i

i (p."+k'+0')-». (A16)
2 ( U—0')

Carrying out the k integration and using the fact that
X (~'+k, '+k '+0')»(0' —3a'Q ')—» (AS)

With the change of variable,

kP = 0'—3u'Pp',

this is seen to be identical with (16):

L2 00

,
"dx t dk, dkpdk,

2(2s)P&

X (~'+kP+k '+k '+3n'P ')» (A9)

We now turn to the case in which there are dis-
continuities in the function &0. For simplicity, we
assume

3u'ypP = 0 L/2 &x& a;— —

we find

( 0'

J
QdQ ——2 tan 'i

)
=0,

0 2 & U—0')

(Lq' po»
-,'+8(o = —

i
—

i
I QdD

(2s) J p

QP

X —2 tan 'i
)

' (g'+0')». (A1,7)
2 &U—0')

Making the substitution,

0= U» sin( —,'8+ p's.),
we find after some simple manipulations

—a&x&a;
=0, a&x&L/2.

(A10) (LqP UP
—,'g 8'„=

i
—

i
—

I' 8 cos8I(sin8)d8, (A18)
(2pr) 8 J ip
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For U»»', I(sin8) reduces to

I(sin8) = (2/U) ' sin(8/2),

—,
' Q 8a&„=(I./2m)'(~U&/32)(0. 806). (A20)

Under this condition, the surface energy per unit area
is then approximately

(0.806/27m) U'= [(3n')'(0.806)/2~7r]go'. (A21)

I(sin8) = sin8/La'+-' ,U+ —', U sin8) l

+(~'+ —'U ——',U sin8) '*].
~ ~

From the form of I(sin8), we are able to place the fol-
lowing upper and lower bounds on the change in the
zero-point energy

) I. g'~U'
-'(~'+ U/2):.

(A19) Since in actual practice &0 will not have sharp dis-
continuities, the actual surface energy will be somewhat
less than (A21).
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The Angular Distribution of Prompt Neutrons Emitted in Fission
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The angular distribution, relative to the direction of motion of the fragments, of the prompt fast neutrons
emitted in the thermal neutron fission of U"",U ",and Pu2" has been measured. Collimated fission fragments
were selected in energy in a gridded ionization chamber and coincident prompt neutrons in a given direction
were counted by proton recoils in an electron collecting chamber filled with methane. The distributions
obtained selecting only light fragments have been compared with curves computed on the basis of the
evaporation of the neutrons from the moving fragments of the most probable mode. Reasonably good agree-
ment is obtaine'd if one postulates that in the fission of each of the three nuclides studied, the neutron emission
probability is about thirty percent greater for the light fragment than for the heavy one. An upper limit of
4)&10 '4 sec following fission may be placed on the time of emission of the neutrons.

I. I5TRODUCTION
' 'N 1945, Wilson' measured the correlation between the
~ - direction of the prompt neutrons and the fragments
in the fission process. The results were consistent with
the view that the neutrons are evaporated isotropically
in the frame of reference of the moving fragments.

The angular dependence of coincidences between
6ssion neutrons has been studied by De Benedetti et, al. ,

'
who concluded that there are twice as many neutron
pairs emitted by opposite fragments than by the same
fragment.

Prior to the work of Leachman' on the ionization
yields of hssion fragments, it was suggested by Bruoton
and Hanna4 that preferential emission of neutrons from
one group of fragments may contribute to the disagree-
ment between the distributions in fission fragment mass
derived from the ionization and chemical yield measure-
ments. This discrepancy has been shown recently by
Leachman' ' to be due to a variation in ionization yield

' R. R. Wilson, Phys. Rev. ?2, 189 (1947).
~ De Benedetti, Francis, Preston, and Bonner, Phys. Rev. 74,

1645 (1948).
3 R. B. Leachman, Phys. Rev. 83, 17 (1951).
4 D. C. Brunton and G. C. Hanna, Can. J. Research A28, 190

(1950).
~R. B. Leachman, Los Alamos Report LADC 1058 (revised,

unpublished).

with fragment mass and to a dispersion arising from
instrumental errors and poor resolution,

The experiment to be described, essentially an exten-
sion of Wilson's experiment, was designed to investigate
the possibility of preferential emission of neutrons by
one of the fragments. It was also found possible to place
a much lower limit on the time of emission of the
neutrons than the figure of 8&10 ' sec given by Snyder
and Williams. 6

IL APPARATUS

A. The Fission Chamber

A cross section of the fission chamber is shown
schematically in Fig. j.. A layer of 6ssile material,
approximately 180 pg/cm' thick was deposited on a
2.5-cm diameter nickel or aluminum plate which was
then cemented to the cathode. Over the source was
placed a 0.081-in. thick Dural plate with —,', -in. holes
drilled in an hexagonal array to act as a collimator. The
average angle of emission of the fragments was, there-
fore, approximately 9' from the normal. The position of
the neutron counter was such that the angular uncer-
tainty of the neutron direction was equal to that of the
fission fragments passing through the collimator. A

' T. M, Snyder and R. W. Williams, Phys. Rev. Sl, 171 (1951).


