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Elastic Scattering of Protons and Neutrons by Helium*
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Proton-alpha elastic scattering experiments at 5.81 and 9.48 Mev are analyzed in terms of phase shifts,
and the results, together with earlier ones at lower energies, are used to compute the logarithmic derivatives
of the wave functions at a radius of 2.9X10 "cm. These logarithmic derivaties, for P1~2 and P3~2 states,
are found to be linear functions of the energy. From the behavior of the logarithmic derivatives the widths
and positions of the P1&2 and P3&2 energy levels are determined, the most striking results being the large
splitting of the two levels and the very broad width of the P1&2 level. These results are compared with
neutron-alpha experiments and are found to be in suKciently good agreement to support the conclusions
about the P1&2 level which differ from those previously expected. Small negative D wave phase shifts are
found in the proton-alpha experiments which also show evidence of an inverted doublet spin-orbit splitting.

I. INTRODUCTION

A CONSIDERABLE amount of experimental
data' ~ on the elastic scattering of nucleons by

alpha-particles has become available in the last few
years. Analysis and interpretation of some of this data
have been presented by Critchfield and Dodder' in
terms of phase shifts and by Adair' in terms of reso-
nances associated with virtual energy levels of the
compound nuclei He' and Li'. From the information
then available it has learned3 that the S wave phase
shifts are very nearly those expected in scattering from
an impenetrable sphere of radius 2.6)&10 " cm, while
the P3/2 phase shifts correspond to a resonance level at
a few Mev positive energy. The experiments did not
make possible a precise determination of the location

of the P1~/2 level or its width, but it was ascertained
that any Pl/2 level must lie at least several Mev above
the P3/2 level.

It is the purpose of this investigation to extend and
amplify the above interpretations by making use of
more recent data, 4' especially to find the position and
width of the Pl~/2 state and to find out something about
the D states.

II. PHASE SHIFT ANALYSIS OF PROTON-ALPHA
ELASTIC SCATTERING

The differential cross section for elastic scattering as
a function of angle scattering, incident energy, and
phase shifts is given by the following expression (the
notation is that of reference 6).

8 ( 8i
k'0(|/) = ——csc'—exp~ ir/ln csc'—~+ P [(1+1)exp(i/l/+) sin8~+

2 2 ( 2j
00

+1exp(it'/~ ) sin8/ j exp(ip/)P/(cose) + P [exp(i8~—
) sinb/ —exp(ib/+) sinb/+]exp(ip/) singP~'(cose) . (1)

L=O

Because of the complexity of this expression when
many angular momenta are included, numerical calcu-
lations were made using the I.B.M. card programmed
electronic calculators available at the Los Alamos
Scientific Laboratory. The criterion used in fitting the
experimental data was the same as that of reference 6;
namely, minimization with respect to the phase shifts
of the sum of the squares of the percentage di6'erences
between the experimental and calculated values of the
cross sections at the various scattering angles. The
method of satisfying this in the present work is diferent,
however, and is the following. Using a set of trial phase

* Work done under the auspices of the AEC.
'Freier, Lampi, Sleator, and Williams, Phys. Rev. 75, 1345

(1949).
2 Bashkin, Mooring, and Petree, Phys. Rev. 82, 378 (1951).
3 R. K. Adair, Phys. Rev, 86, 155 (1952).
T. M. Putnam, University of California Radiation Laboratory

Report UCRL-1447, unpublished.
~ Kreger, Kerman, and Ientschke, Phys. Rev. 86, 593 (1952).
~ C. L. Critchfield and D. C. Dodder, Phys. Rev. 76, 602 (1949),
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shifts, the cross section was computed at each angle
where it was measured experimentally. At the same
time the gradient with respect to the phase shifts of the
sum of the squares of the percent differences between
observed and calculated cross sections was computed.
A new set of trial phase shifts was then selected by
changing the old ones in a direction opposite to that of
the gradient, the magnitude of the change being propor-
tional to the magnitude of the gradient. This iterative
procedure was carried out until the magnitude of the
gradient was a few percent of its value when the
agreement with the data was first of the same order of
magnitude as the given experimental errors. The
calculations were made for three cases: S, Pl~/2, and P3/2
waves only, S, Pg/g P3//g and D waves (the D//~ and

Dg/9 phase shifts were constrained to be identical), and
5 Pl/2 P3/9 D3/2 and D/r//2 waves.

The nature of the method is such that there is
always a possibility that there are solutions which fit
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TABLE I. E=9.48 Mev. S and I phase shifts only.

12.2'
52.0'
94.5'

123.8'
174.5'

rms % dev.

Bp+-
By

k2a calc.

29.27
6.292
1.125
0.7804
2.694

—57.5'
113.8'
61.7'

% dev.

—11.89—6.88—10.28—1.71—4.25
7.94

Bp
+

Bg

k20' Calc.

29.36
6.281
1.123
0.7806
2.692

—57.3'
85.1'

137.2'

% dev.

—11.62—7.04—10.44
1.68—4.32
7.94

Bp+—

k'~ calc.

29.59
6.328
1.134
0.7850
2.701

—90.6'
126,7'
84.95'

% dev.

—10.93—6.34—9.55
1.13—4.00
7.32

Bp+-
By

k'0 calc.

29.61
6.325
1.134
0.7850
2.701

D

—90.6'
101.6'
143.3'

% dev.
—10.85—6.39—9.61—1.14—4.00

7.32

the experimental values within the experimental error
but which were not found because a combination of
trial phase shifts sufficiently close to such a solution
was not used. However, the procedure was started with
a number of initial sets of values of the phase shifts
and always converged towards one of a limited number
of solutions.

The solutions found for the 9.48-Mev case with S
and P waves only are given in Table I. Solutions A and
B are mathematically equivalent' inverted and normal
doublets, as are C and D. In the lower energy work
solutions equivalent to all of these were found, but two
of them, equivalent to the present C and D, were far
worse than the others at small angles. The reasons
that this is not so in the present work are that the low

angles are given weight in determining the solution,
which was not done in the preliminary solutions in the
lower energy work, and that the presence of D waves is
required by the present experiments, preventing any
solution with P waves only from approaching the
observed values too closely. The solutions A and C,
corresponding to inverted doublets, now modified by
the addition of a single D wave phase shift, are given
in Table II. It is seen that the presence of D wave
phase shifts is definitely indicated. In Table III are
given the solutions with D~ii2 and Dy~ phase shifts split.
The experimental results do not definitely require
splitting, but as discussed later, the direction of splitting
indicated is reasonable. In Table IV, for solution A,
the results are given at each angle at which the cross
section was measured experimentally.

At 5.83 Mev the analysis was not as exhaustive.
Initial values of phase shifts used were those given for
S, Pi~i~, and Py2 by Kreger et al. ' Eleven angles were
used to improve their preliminary fit. Table V gives
the result of this. Solutions with a single D phase shift
are given in Table VI, while Table VII gives the results
with all five phase shifts. In the analysis for split D
waves 26 angles were used. It is seen that presence of
D waves, and to a lesser degree their splitting, is
indicated by this experiment.

~ The two solutions are found from the parameters of reference
6 by taking the plus and minus signs in the fo]lowing formulas:
2Bi+= tan 'Lp sinP/(p cosP+3) j

icos 't (p'16p cosP+12)/4(p'+6p cosP+9) &$,

2Bi= sin 'Lp sinP —2 sin2Bi+j.

12.2'
12,8'
19.0'
31.3'
52.0'
63.7'
72.7'
83.8'
94.5'

114.4'
123.8'
149.4'
174.5'

rms % dev.

Bp+-
By

B2

k~0 calc.

31.77
28.39
15.12
10.29
6.341
4.479
3.255
2.045
1.222
0.6251
0.7408
1.889
2.867

—65.4'
106.1'
47.4'

—.7.0'
dev.

—4,37—1.93
2.18—1,22—6.15—7.72

—6.39—1.73—2.51—2.32—6.70—2.96
1.90
4.29

Bp+—

B2

k~0. calc.

30.98
27.78
15.44
10.95
6.787
4.718
3.353
2.027
1.170
0,6473
0.8042
1.891
2.703

—94.9'
117.2'
78.5'

—4.03'

% dev.

—6.73—4.03
4.33
5.09
0.45—2.80

—3.57—2.59—6.73
1.14
1.29—2.89—3.91
3.98

It is difficult to set precise limits on the accuracy of
the phase shifts. First, if.the S phase shift, for example,
is varied while the others are held fixed, it might be
found that it could be changed only by a few tenths
of a degree without destroying the agreement with the
experimental data. However, by changing it together
with the other phase shifts, it might be possible to
change it by say two degrees without damage to the
fit. Second, were the experimental cross sections high
by say 5 percent at all angles, the S wave phase shifts
might be in error, while were the forward angles subject
to experimental error, the D wave phase shifts would
be in doubt. It seems more pertinent to examine a
phase shift as a function of energy for smoothness and
reasonableness. However, as a rough estimate based on
an examination of the changes in the phase shifts as
the procedure described above converged to the final
fit, the P phase shifts are accurate to within 2', while
the 5 phase shifts are somewhat less accurate (5').
Comparison of the results for D wave phase shifts
locked and split shows that they are definitely small
and negative. As discussed later, this seems reasonable,
and even the direction of splitting seems reasonable.
But until experiments are performed at still higher

energies, conclusions about the D states must remain
preliminary, and the values quoted for the D wave

TABLE II. E=9.48 Mev. B(D;„'2)= B(D3/p).
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TABLE III. E=9.48 Mev. D phase shifts split.

8

12.2'
12.8'
19.0'
31.3'
52.0'
63.7'
72.7'
83.8'
94.5'

114.4'
123.8'
249.4'
174.5'

rms % dev.

Bp
+

B1
B +
B2

k~0 calc,

31.48
28.22
15.51
10.83
6.662
4.653
3.339
2.059
1.223
0.6416
0.7737
1.900
2.817

—70.8'
106.2'
53.8'

—5.03'
—8.84'

% dev.

—5.22
—2.52

4.81
3.93—1.41—4.15

—3.98—1.07
—3,31

0.25—2.56—2.41
0.12
3.18

Bp =+-
B1
B2+-
B2

k2cr calc,

30.96
27.77
15.48
10.98
6.808
4.745
3.387
2.067
1.204
0.6506
0.7950
1.899
2.760

—98.9'
115.3'
76.6'

—7.16'
—2.95'

% dev.

—6.81—4.08
4.58
5.44
0.76—2.25—2.57—0.67

—3.98
1.66
0.12—2.44—1.92
3.44

phase shifts should be thought of as correct in little
more than order of magnitude.

simplest choice of boundary conditions defining their
internal wave functions is made. In the case of the one
level approximation the logarithmic derivative is then
a linear function of the energy. Sreit and Bouricius'
have discussed the behavior of V at various radii for
the wave function of the S state of two protons. They
find that it is possible to find radii at which BY/BE
can have a wide range of positive and negative values
which are independent of energy over the energy region
extending up to 3.5 Mev. In the nucleon-alpha P states
it is also possible to find a radius at which BY/BE is

energy independent. However, the range of radii for
which this is possible seems to be less than it is in the
case of the S state of two protons. The radius a used
in the present calculations is 2.9X10 " cm, the same
as that of Adair; a radius of 3.5)&10 '3 cm, on the
other hand, gave an energy dependent BY/BE.

The value of the logarithmic derivative at a radius u

is given in terms of 8, the phase shift, and F and G, the
regular and irregular radial wave functions in the

TABLE V. E=5.82 Mev. S and P phase shifts only.

IIL ENERGY DEPENDENCE OF PROTON-ALPHA
PHASE SHIFTS

The energy dependence of the phase shifts is con-
veniently examined in terms of the energy dependence
of the logarithmic derivative V of the wave function
evaluated at a radius taken equal to, or greater than,
the distance at which specifically nuclear events become
negligible. The logarithmic derivative of a wave func-
tion at a given radius plays a central role in the formal
description of nuclear reactions of signer and Kisen-
bud' being just the reciprocal of their E function if the

TABLE IV. E=9.48 Mev.

16.22'
28.64'
43.32'
55.28'
66.88'
80'
95'

115'
125'
140'
154'

rms % dev.

L50 = —46.6, bt+ =112.5,
k'0 calc.

17.50
8.509
6.186
4.708
3.426
2.233
1.321
0.9196
2.027
1.390
1.809

5& =40.7
% dev.

—3.24
—3.01

1.68
0.43

—0.12—1.62
—1.22
—0.74
—2.37

2.74—2.08
2.01

bo = —70.5, 81+ =105.8', bt =53.3, 5g+ = —3.83, 82 = —8.42
k'a calc. % dev. k'n calc. % dev.

12.2'
'12.8'
15.3
15.9'
18.4'
19.0'
21.5'
25.2'
27.7'
31.3'
33.9'
37.4'
40.0'
43.5'
49.5'
52.0'
62.3'
63.7'
72.7'
80.6'
83.8'
86.1'

30.57
27.27
19.62
18.54
15.55
15.06
13.57
12.18
11.49
10.64
10.09
9.377
8.867
8.196
7.076
6.622
5.025
4.642
3.335
2.385
2.058
1.844

—7.97—5.44
2.21
1.20
0.13
1.79—0.93
2.79
4.42
2.13
2.47
4.09—0.25
0.44
1.65—1.99
0.46—4.38—4.09—0.30—1.13—2.97

94.5'
99.6'

104.7'
206.8'
111.7'
114.4'
116.4'
123.8'
128.3'
132.7'
134.5'
141,.2'
145.4'
149.4'
151.1'
157.3'
159.0'
165.0'
166.7'
172.6'
174.2'

rms % dev.

2.216
0.9530
0.7765
0.7281
0.6682
0.6652
0.6760
0.8032
0.9388
1.105
1.182
2.492
1.699
1.897
1.980
2.264
2.335
2.553
2.604
2.738
2.761

—3.01
1.71—4.02—0.31—0.25
3.94
0.91
1.11

—3.12—3.13—4.05—2.75
3.93—2.55—0.80—2.99—0.79
2.76
3.23
2.04—1.87
2.87

'E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (2947).
See also Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145
(2947).

external field, by the well-known formula

ka kaF'

1+F/G coth F
(2)

(2L+ 1)
aI'= (3)

(2L+1)Cr,'p'ir+iQr, cotBr+Qr Br,

Equation (2) can be solved for Bl,, giving

ka/(F'+ G') p
8g=tan '- —tan '—.

aY—ka[(FF'+GG')/(F'+G')] G

' G. Breit and W. G. Bouricius, Phys. Rev. 75, 1029 (2949). I" in
the present article is equal to Y/r of this reference.

"Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1952). References to earlier work and to
other tables of coulomb functions are given here.

The prime represents differentiation with respect to kr,
where k is the wave number. For the case where the
external field is Coulombic, uI' can be expressed in terms
of functions tabulated by Breit and collaborators, '
and for orbital angular momentum I. one obtains
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g—5.81Mev. DPhase s+ ''~TARSI.E VII. @=

0.96
1,49
2.34
0.56
040
2.19—1.64
0,06
1.28
3.65
1.56
1.75

17.9&
8.643
6.226
4.714
3.416
2.220
1.315
0.9271
1 p29
1.402
1.818

16.22'
28.64
43.32
55.28'
66.88
80'
95'

115'
125'
140'
154'

rms % dev.
0.8

to Y)

ion in the Kigner-
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70
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% dt.v.
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g po calc

o 2 863 $.98

in the one-1evel app
of the 1eve1 and

16.22' 17 9

roximation, jus

—0.58 72.6
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—0.0

1.026
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p 39 125

'124 1 p6

omas" because o e
35 05o 7,448

130'
0.64

evaluated by Thorn
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725. 6802 3.2
sdefining t e
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134o 1 221

f boundary condition
d I

43 32o 6.243
140' ""

1.02
2.34
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5o 1 530
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726 0 81 14
1.674 0.12

s a function o e . . 55.28'
150'
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13 4047 o.44
1.785
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less than or equal to 66.88' '
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"R.G. Thomas, Phys. Rev.v. 80 136 (1950).
W. J. Leland and H. M. Agnevr, P y

'3 %'. K. Titterton and T.A. Brinkley, roc.
A64, 212 (1951).
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IV. NEUTRON-ALPHA SCATTERING

Since the widt o ein
'
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tron ot the total cross section or t e e- e eas
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'
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land Ph s. Rev. 8?, 612 1"Bruce Cork, University o a i ornia

unpublished.
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"J Coon private communication.
ohn Seagrave, private communiunication.
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system on the nucleon-nucleon forces. It is hoped that
such an investigation will be able to explain the ob-
served results. Further experiments at higher energies
should reveal in a similar manner detailed information
about the higher levels.

We are indebted to members of group T-1 of the

Los Alamos Scientific Laboratory for assistance with
the hand calculations. Drs. Coon, Seagrave, Barschall,
Argo, Cork, Putnam, and Kreger furnished us with
experimental data from various laboratories. Dr. Rosen
and Dr. Barschall discussed with us' the reliability
and weights to be assigned experimental results.
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Iterative Procedures and the Helium Wave Equation
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In an attempt to solve the helium wave equation exactly, study of a 180-point mesh shows the need for an
improved difference operator to approximate the Laplacian. Such an operator has been developed, allowing
one to express the value of the function at one point in terms of the values at 26 neighboring points (in
three dimensions).
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where, if rI and r2 are the electron-nucleus distances and
8 is the angle between the corresponding radius vectors,
the coordinates x, y, and z are given by the relations
4x=2rrrs cose, 4y=rr' rs', 4s=2rrrs sin&. (Note —that
s&0.) The radius in this system is r= ,'(rP+rss), an-d

V is the potential energy. If the substitution P= Ws '*

is made, Eq. (1) is transformed into the equation
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' Q. E. Kimball and G. H. Shortley, Phys. Rev. 45, 815 (1934),

S INCE the wave equation for the ground state of the
helium atom is nonseparable, analytic methods for

obtaining a solution have been so far unsuccessful, and
it has seemed worthwhile to try to solve the equation
by numerical methods. If such a solution can be ob-
tained, it will demonstrate whether or not the formula-
tion of the many-body problem of quantum mechanics
is correct. Also, a solution for the first excited state
(ssr) would afford an opportunity to check the theory
of hyperfine structure, using the spectrum of He' I.

Until a successful analog machine for partial differ-
ential equations in more than two dimensions is
developed, it is probably necessary to replace the con-
tinuum of points by a mesh, and the differential equa-
tion by a difference equation. A prototype calculation
was made' in one dimension for the hydrogen radial
wave equation, and we shall show how these methods
can be extended to several dimensions, with prospects
of considerable accuracy.

The wave equation that is to be solved is of the form
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In an attempt to construct an approximate solution
of Eq. (2), the differential equation was replaced by a
difference equation. This was done by equating the
second partial derivative in each direction to the corre-
sponding second partial difference, i.e., r)sW/r)x'=A, W
A coarse mesh consisting of 180 points was chosen as
follows:

x=0, &1, &3, &7, &15; y=0, 1, 3, 7, 15;
z=i, 3, 7, 15.

(W was taken to equal zero for values of x, y, or s equal
to 31.) Then the iterative procedure of Liebmann, '
regarding each point as influenced by its six neighbors
along the axes, was applied, and the solution of the
180-point mesh was obtained. ' The eigenvalue turned
out to be E= —1.14, but this could be lowered to
E= —1.33 by drawing smooth curves through the mesh
points and integrating by planimeter. This indicates
that the procedure is much too crude and that one must
use a better way of approximating the Laplacian. That
this is possible will now be shown.

2 See G. H. Shortley and R. Weller, J.Appl. Phys. 9, 334 (1938).
'This was done on the SEAC, the digital computer at the

National Bureau of Standards by Mr. Joseph H. Wegstein, who
also remarked that Eq. (2) might be simpler than Eq. (1) to solve
numerically,

which is of the type V'u+ f(xys)u=0, where f is singular
along the +x axis and the whole y axis. However, we
expect f to be finite everywhere and, consequently,
W to be zero when z= 0. Also, the solution is to be sym-
metric with respect to exchange of the electron space
coordinates, so that P(—y) =P(y). Hence the boundary
conditions are


