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Proton-alpha elastic scattering experiments at 5.81 and 9.48 Mev are analyzed in terms of phase shifts,
and the results, together with earlier ones at lower energies, are used to compute the Jogarithmic derivatives
of the wave functions at a radius of 2.9X 10718 cm. These logarithmic derivaties, for Py and Py states,
are found to be linear functions of the energy. From the behavior of the logarithmic derivatives the widths
and positions of the Pz and Py energy levels are determined, the most striking results being the large
splitting of the two levels and the very broad width of the Py, level. These results are compared with
neutron-alpha experiments and are found to be in sufficiently good agreement to support the conclusions
about the Py, level which differ from those previously expected. Small negative D wave phase shifts are
found in the proton-alpha experiments which also show evidence of an inverted doublet spin-orbit splitting.

I. INTRODUCTION

A CONSIDERABLE amount of experimental
data!=® on the elastic scattering of nucleons by
alpha-particles has become available in the last few -
years. Analysis and interpretation of some of this data
have been presented by Critchfield and Dodder® in
terms of phase shifts and by Adair® in terms of reso-
nances associated with virtual energy levels of the
compound nuclei He® and Li%. From the information
then available it has learned® that the .S wave phase
shifts are very nearly those expected in scattering from
an impenetrable sphere of radius 2.6X 107 cm, while
the Pg, phase shifts correspond to a resonance level at
a few Mev positive energy. The experiments did not
make possible a precise determination of the location

0

of the Py, level or its width, but it was ascertained
that any Py, level must lie at least several Mev above
the P3/2 level.

It is the purpose of this investigation to extend and
amplify the above interpretations by making use of
more recent data,*® especially to find the position and
width of the Py, state and to find out something about
the D states.

II. PHASE SHIFT ANALYSIS OF PROTON-ALPHA
ELASTIC SCATTERING

The differential cross section for elastic scattering as
a function of angle scattering, incident energy, and
phase shifts is given by the following expression (the
notation is that of reference 6).
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Because of the complexity of this expression when
many angular momenta are included, numerical calcu-
lations were made using the I.B.M. card programmed
electronic calculators available at the Los Alamos
Scientific Laboratory. The criterion used in fitting the
experimental data was the same as that of reference 6;
namely, minimization with respect to the phase shifts
of the sum of the squares of the percentage differences
between the experimental and calculated values of the
cross sections at the various scattering angles. The
method of satisfying this in the present work is different,
however, and is the following. Using a set of trial phase

* Work done under the auspices of the AEC.
( 1 Fgeier, Lampi, Sleator, and Williams, Phys. Rev. 75, 1345
1949).

2 Bashkin, Mooring, and Petree, Phys. Rev. 82, 378 (1951).

3 R. K. Adair, Phys. Rev. 86, 155 (1952).

4T. M. Putnam, University of California Radiation Laboratory
Report UCRL-1447, unpublished.

5 Kreger, Kerman, and Jentschke, Phys. Rev. 86, 593 (1952).

6 C. L. Critchfield and D. C. Dodder, Phys. Rev. 76, 602 (1949).
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shifts, the cross section was computed at each angle
where it was measured experimentally. At the same
time the gradient with respect to the phase shifts of the
sum of the squares of the percent differences between
observed and calculated cross sections was computed.
A new set of trial phase shifts was then selected by
changing the old ones in a direction opposite to that of
the gradient, the magnitude of the change being propor-
tional to the magnitude of the gradient. This iterative
procedure was carried out until the magnitude of the
gradient was a few percent of its value when the
agreement with the data was first of the same order of
magnitude as the given experimental errors. The
calculations were made for three cases:.S, Py, and Py
waves only, S, Py, Psys, and D waves (the D2 and
Dy; phase shifts were constrained to be identical), and
S, Pl/z, P;;/'_), D3/2, and D5/2 waves.

The nature of the method is such that there is
always a possibility that there are solutions which fit
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TasLE I. E=9.48 Mev. S and P phase shifts only.
A B C D

50 = —57.50 50 = —-57.3° 50 = —-90.60 30 = —90.60

51+= 11380 51+= 85.10 51+= 12670 51+= 1016°

6 = 61.7° 6 = 137.2° 6, = 84.95° 0 = 143.3°
[/ k2o calc. % dev. k%o calc. % dev. k%0 calc. % dev. k20 calc. % dev.
12.2° 29.27 —11.89 29.36 —11.62 29.59 —10.93 29.61 —10.85
52.0° 6.292 — 6.88 6.281 — 7.04 6.328 — 6.34 6.325 — 6.39
94.5° 1.125 —10.28 1.123 —10.44 1.134 — 9.55 1.134 — 9.61
123.8° 0.7804 - 1.71 0.7806 — 1.68 0.7850 — 1.13 0.7850 — 1.14
174.5° 2.694 — 4.25 2.692 — 432 2.701 — 4.00 2.701 — 4.00
rms 9, dev. 7.94 7.94 7.32 7.32

the experimental values within the experimental error
but which were not found because a combination of
trial phase shifts sufficiently close to such a solution
was not used. However, the procedure was started with
a number of initial sets of values of the phase shifts
and always converged towards one of a limited number
of solutions.

The solutions found for the 9.48-Mev case with §
and P waves only are given in Table I. Solutions A and
B are mathematically equivalent” inverted and normal
doublets, as are C and D. In the lower energy work
solutions equivalent to all of these were found, but two
of them, equivalent to the present C and D, were far
worse than the others at small angles. The reasons
that this is not so in the present work are that the low
angles are given weight in determining the solution,
which was not done in the preliminary solutions in the
lower energy work, and that the presence of D waves is
required by the present experiments, preventing any
solution with P waves only from approaching the
observed values too closely. The solutions A and C,
corresponding to inverted doublets, now modified by
the addition of a single D wave phase shift, are given
in Table II. It is seen that the presence of D wave
phase shifts is definitely indicated. In Table III are
given the solutions with Dy, and Ds/, phase shifts split.
The experimental results do not definitely require
splitting, but as discussed later, the direction of splitting
indicated is reasonable. In Table IV, for solution A,
the results are given at each angle at which the cross
section was measured experimentally.

At 5.83 Mev the analysis was not as exhaustive.
Initial values of phase shifts used were those given for
S, Pyje, and Py by Kreger et al.’ Eleven angles were
used to improve their preliminary fit. Table V gives
the result of this. Solutions with a single D phase shift
are given in Table VI, while Table VII gives the results
with all five phase shifts. In the analysis for split D
waves 26 angles were used. It is seen that presence of
D waves, and to a lesser degree their splitting, is
indicated by this experiment.

" The two solutions are found from the parameters of reference
6 by taking the plus and minus signs in the following formulas:

26, =tan"[p sinB/(p cosp+3)]
F=cos™[(p?+4-6p cosB+-12) /4(p*+6p cosB+9)1],
26;=sin"1[p sinB—2 sin28,*].

It is difficult to set precise limits on the accuracy of
the phase shifts. First, if the S phase shift, for example,
is varied while the others are held fixed, it might be
found that it could be changed only by a few tenths
of a degree without destroying the agreement with the
experimental data. However, by changing it together
with the other phase shifts, it might be possible to
change it by say two degrees without damage to the
fit. Second, were the experimental cross sections high
by say 5 percent at all angles, the .S wave phase shifts
might be in error, while were the forward angles subject
to experimental error, the D wave phase shifts would
be in doubt. It seems more pertinent to examine a
phase shift as a function of energy for smoothness and
reasonableness. However, as a rough estimate based on
an examination of the changes in the phase shifts as
the procedure described above converged to the final
fit, the P phase shifts are accurate to within 2°, while
the .S phase shifts are somewhat less accurate (5°).
Comparison of the results for D wave phase shifts
locked and split shows that they are definitely small
and negative. As discussed later, this seems reasonable,
and even the direction of splitting seems reasonable.
But until experiments are performed at still higher
energies, conclusions about the D states must remain
preliminary, and the values quoted for the D wave

TaBLE II. E=9.48 Mev. 8(Ds2) =8(Dss2).

A C

50 = —65.40 50 = —94.9°

ait= 106.1° st= 117.2°

8”= 474° 6~= 78.5°

52 = ‘—7.0° 52 = '—4.030

[ k2 calc. % dev. k2o calc. % dev.
12.2° 3177 —4.37 30.98 —6.73
12.8° 28.39 —1.93 27.78 —4.03
19.0° 15.12 2.18 15.44 4.33
31.3° 10.29 —1.22 10.95 5.09
52.0° 6.341 —6.15 6.787 0.45
63.7° 4.479 —7.72 4.718 —2.80
72.7° 3.255 —6.39 3.353 —3.57
83.8° 2.045 —1.73 2.027 —2.59
94.5° 1.222 —2.51 1.170 —6.73
114.4° 0.6251 —2.32 0.6473 1.14
123.8° 0.7408 —6.70 0.8042 1.29
149.4° 1.889 —2.96 1.891 —2.89
174.5° 2.867 1.90 2.703 —3.91
rms %, dev. 4.29 3.98
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TasLE III. E=9.48 Mev. D phase shifts split.

A C

8 =—70.8° 8 =—98.9°

61+"—' 106.2° 51+= 115.3°

5-= 53.8° sim= 76.6°

52+= —5.03° 62+= —7.16°
8= —8.84° 8y~= —2.95°

[} k2 calc. % dev. k2o calc. % dev.
12.2° 31.48 —5.22 30.96 —6.81
12.8° 28.22 —2.52 27.77 —4.08
19.0° 15.51 4.81 15.48 4.58
31.3° 10.83 3.93 10.98 5.44
52.0° 6.662 —1.41 6.808 0.76
63.7° 4.653 —4.15 4.745 —2.25
72.7° 3.339 —3.98 3.387 —2.57
83.8° 2.059 —1.07 2.067 —0.67
94.5° 1.213 —3.31 1.204 —3.98
114.4° 0.6416 0.25 0.6506 1.66
123.8° 0.7737 —2.56 0.7950 0.12
149.4° 1.900 —241 1.899 —244
174.5° 2.817 0.12 2.760 —1.92
rms %, dev. 3.18 3.44

phase shifts should be thought of as correct in little
more than order of magnitude.

III. ENERGY DEPENDENCE OF PROTON-ALPHA
PHASE SHIFTS

The energy dependence of the phase shifts is con-
veniently examined in terms of the energy dependence
of the logarithmic derivative ¥ of the wave function
evaluated at a radius taken equal to, or greater than,
the distance at which specifically nuclear events become
negligible. The logarithmic derivative of a wave func-
tion at a given radius plays a central role in the formal
description of nuclear reactions of Wigner and Eisen-
bud?® being just the reciprocal of their R function if the

TaBLE IV. E=9.48 Mev.

A: 8= —70.5° &% =105.8°, 51~ =53.3°, 82F = —3.83°, 62" = —8.42

[ k2a calc. % dev. 0 k2o calc. % dev.
12.2° 30.57 —7.97 94.5° 1.216 —-3.01
12.8° 27.27 —5.44 99.6° 0.9530 1.71
15.3° 19.62 2.21 104.7° 0.7765 —4.02
15.9° 18.54 1.20 106.8° 0.7281 —0.31
18.4° 15.55 0.13 111.7° 0.6682 —0.25
19.0° 15.06 1.79 114.4° 0.6652 3.94
21.5° 13.57 —0.93 116.4° . 0.6760 0.91
25.2° 12.18 2.79 123.8° 0.8032 1.11
27.7° 11.49 4.42 128.3° 0.9388 —3.12
31.3° 10.64 2.13 132.7° 1.105 —-3.13
33.9° 10.09 2.47 134.5° 1.181 —4.05
37.4° 9.377 4.09 141.2° 1.492 —2.75
40.0° 8.867 —0.25 145.4° 1.699 3.93
43.5° 8.196 0.44 149.4° 1.897 —2.55
49.5° 7.076 1.65 151.1° 1.980 —0.80
52.0° 6.622 —-1.99 157.3° 2.264 —2.99
61.3° 5.025 0.46 159.0° 2.335 —-0.79
63.7° 4.642 —4.38 165.0° 2.553 2.76
72.7° 3.335 —4.09 166.7° 2.604 3.23
80.6° 2.385 -0.30 172.6° 2.738 2.04
83.8° 2.058 —-1.13 174.2° 2.761 —1.87
86.1° 1.844 —2.97 rms 9, dev. 2.87

8 E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
?ee ;;so Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145
1947).
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simplest choice of boundary conditions defining their
internal wave functions is made. In the case of the one
level approximation the logarithmic derivative is then
a linear function of the energy. Breit and Bouricius®
have discussed the behavior of ¥ at various radii for
the wave function of the S state of two protons. They
find that it is possible to find radii at which 6V /9E
can have a wide range of positive and negative values
which are independent of energy over the energy region
extending up to 3.5 Mev. In the nucleon-alpha P states
it is also possible to find a radius at which 9Y/dE is
energy independent. However, the range of radii for
which this is possible seems to be less than it is in the
case of the S state of two protons. The radius a used
in the present calculations is 2.9X10™8 cm, the same
as that of Adair; a radius of 3.5X10™ cm, on the
other hand, gave an energy dependent dY/9E.

The value of the logarithmic derivative at a radius e
is given in terms of ¢, the phase shift, and F and G, the
regular and irregular radial wave functions in the

TaABLE V. E=5.81 Mev. S and P phase shifts only.

o= —46.6°, &1t =112.5°, 51~ =40.7°
[} k%o calc. % dev.
16.22° 17.50 —3.24
28.64° 8.509 —-3.01
43.32° 6.186 1.68
55.28° 4.708 0.43
66.88° 3.426 —-0.12
80° 2.233 —1.62
95° 1.321 —1.22
115° 0.9196 —0.74
125° 1.017 —2.37
140° 1.390 2.74
154° 1.809 —2.08
rms % dev. 2.01
external field, by the well-known formula
ka kaF’
= F—. 2

- e
1+F/Gcots F

The prime represents differentiation with respect to k7,
where % is the wave number. For the case where the
external field is Coulombic, ¢V can be expressed in terms
of functions tabulated by Breit and collaborators,*
and for orbital angular momentum L one obtains

bt @L+1)
¢ (LAH1)C2pMH¢.2 cotd+ 10

©)

Equation (2) can be solved for 8, giving

ka/(F*+G?) F
tan—l—.

a¥ — ka[ (FF'+GG')/ (F*+G) ] G

9 G. Breit and W. G. Bouricius, Phys. Rev. 75, 1029 (1949). ¥ in
the present article is equal to ¥ /7 of this reference.

10 Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1951). References to earlier work and to
other tables of coulomb functions are given here.

dr=tan™!
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Using the simple boundary condition in the Wigner-
Eisenbud formalism, Y= 1/R,and the ¢¥ term becomes,
in the one-level approzimation, just (a/v)%) (Ex—E)
where E, is the characteristic energy of the level and
v,? is the reduced width of the level; the term
—ka(FF'+GG")/(F*+G?) becomes aAy/v)\? where A, is
the level shift. This Ay differs by v,?L/a from that
evaluated by Thomas! because of the different choice
of boundary conditions defining the E, and the resulting
different relationship between R and Y.

Graphs of aV as a function of the center-of-mass
energy for the Py, and Py, states in Li° are given in
Fig. 1. The points for energies less than or equal to
3.5 Mev were obtained using the phase shift analysis
of Critchfield and Dodder.® The two most noticeable
features are the markedly different slopes, corresponding
to sifferent reduced widths, ¥,% and the large splitting
between the E,’s for the two states. This is much
greater than that previously indicated, and these
results may be hard to reconcile with experiments
showing two sharply defined P levels a few Mev

TaBLE VI. E=5.81 Mev. §(Ds/2) =8(D3y2).

So=—47.6°, &t =112.1°, §~=39.9°, §2=—0.52°
[ ko calc. % dev.
16.22° 17.91 —0.96
28.64° 8.643 —1.49
43.32° 6.226 2.34
55.28° 4.714 0.56
66.88° 3.416 —0.40
80° 2.220 —2.19
95° 1.315 —1.64
115° 0.9271 0.06
125° 1.029 —1.28
140° 1.402 3.65
154° 1.818 —1.56
rms %, dev. 1.75

apart.’?1® The best values of Ey and %)% are: Pys:
Ey=2.7 Mev, ¥\?=85X10"8 Mev cm and Pyy:
E\=—3.3 Mev, v»2=20.0X 10" Mev cm. The Pg; Ey
is different from that of Adair because of the different
A, .Figure 2 is a corresponding graph for the S waves. It
is seen that due to the large uncertainties in the values
of the points, it i$ hard to determine exactly the energy
dependence of V.

Wigner and Eisenbud have shown that under very
general assumptions regarding the interaction in the
internal region, R=3") v,¥/(Ex—E). From this it is
seen that 0V/9E=(d1/R)/IE is always a negative
quantity. The graph for ¢V for the .S wave shows
either an approximately constant value or a slightly
negative slope. This is to be interpreted that the S wave
scattering is nearly that expected from an impenetrable
sphere and that there is no evidence for a nearby §

11 R. G. Thomas, Phys. Rev. 80, 136 (1950).

2W. J. Leland and H. M. Agnew, Phys. Rev. 82, 558 (1951).

13 W. E. Titterton and T. A. Brinkley, Proc. Phys. Soc. (London)
A64, 212 (1951).
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TaBiLE VII. E=35.81 Mev. D phase shifts split.

do=—48.2° &t=112.3° 617 =39.8° &t=—0.42° 42~ =—1.7°
[ k2 calc. % dev. [ k2 calc. % dev.
16.22° 17.98 —0.58 72.6° 2.863 —1.98
18.70° 13.82 —1.14 80° 2.230 —1.75
21.80° 11.20 —0.50 85° 1.870 —1.42
24.93° 9.747 —0.18 95° 1.326 —0.85
28.64° 8.675 —1.12 105° 1.019 —2.14
31.11° 8.145 —0.02 115° 0.9317 0.57
35.05° 7.448 0.39 125° 1.026 —1.54
37.25° 6.802 -3.20 130° 1.124 1.06
43.32° 6.243 2.62 134° 1.221 0.64
49.30° 5.463 2.63 140° 1.384 2.34
55.28° 4.726 0.81 145° 1.530 —1.02
61.13° 4.047 0.44 150° 1.674 —0.12
66.88° 3.426 —0.12 154° 1.785 —3.36
rms %, dev. 1.58

resonance level. This agrees with the conclusion of
Adair.

At both of the present energies the D wave phase
shifts are small and negative and show a splitting, the
Dy;; wave being less negative than the Dy, The
potential scattering associated with a radius of a=2.9
X107 cm is small and negative, and any nonpotential
effect caused by an inverted doublet type of effective
spin-orbit forces similar to those acting in the P states
would make the Ds, phase shift more positive than
the Ds/o. The apparent agreement with this picture is
not conclusive, however, since a distant level with a
large width could produce more effect at a given energy
than a closer one with a narrow width, and the fact
that the widths can be quite different is seen from the
P-state widths.

The D:; state in the mirror nucleus He® is also
effective in producing the resonance in the D-T reaction

0.8,
faY)
0.4 ]
AT 1T
0 _I_j‘J_ 1\1 P =]
\\1-
-0.4

P%\
T~

o LO 2.0 3.0 4.0
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5.0 6.0
Ecu(MEV)

F16. 1. Logarithmic derivative times radius evaluated at a
radius of 2.9X107% cm for the P states in proton-alpha elastic
scattering as a function of center-of-mass energy. For points
below 3.5 Mev, the errors are those of reference 6. Above 3.5 Mev,
an error of =4=1° is shown.
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F1c. 2. Logarithmic derivative times radius evaluated at a
radius of 29X 107 cm for the S state in proton-alpha-elastic
scattering as a function of center-of-mass energy. For points
below 3.5 Mev, the errors are those of reference 6. Above 3.5 Mev,
an error of #2° is shown.

cross section at 165-kev triton energy, which can be
identified with a state of J=23/2 and even parity."* The
values of E, and of the reduced widths which agree
with the energy dependence of the D-T cross section
are not uniquely determined; however, the range of
values of E, and the neutron width v,? are in agreement
with a small deviation from potential scattering for the
n-He*' Dy, phase shift at energies corresponding to the
5.81 and 9.48 p-He* energies. If the Dy level does lie
lower there should be a resonance associated with this
state lying between 10 Mev and 22 Mev, the energy
corresponding to the D-T reaction resonance. This
could be detected either by an experiment measuring
the total cross section for #-He? elastic scattering as a
function of energy over the region, or by an angular
distribution of the elastic scattering of protons or
neutrons by helium at an energy sufficiently close to
the resonant energy. A dectermination of the proton-
alpha angular distribution at 32 Mev has been made!s
and is now being investigated.

IV. NEUTRON-ALPHA SCATTERING

Since the width of the Py, level is quite different
from the one chosen by Adair, the predicted contribu-
tion to the total cross section for the n-He! elastic
scattering from this level at energies above 2 Mev would
be somewhat different. Using Adair’s assumptions that
the Ey’s differ for the mirror nuclei by about 1 Mev,
the difference being chosen so that the Py, phase shift
for the n-He* scattering will be 90° near the maximum
cross section, and that the v,2 are the same for the two
nuclei, the n-He? elastic scattering total and differential
cross sections were computed as a function of energy.

4 Argo, Adair, Agnew, Hemmendinger, Leland, and Taschek,
Phys. Rev. 87, 205 (1952); Argo, Taschek, Agnew, Hemmen-
dinger, and Leland, Phys. Rev. 87, 612 (1952).

15 Bruce Cork, University of California Report UCRL 1673,
unpublished.
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Figure 3 shows the total cross section together with the
experimental points and Adair’s® calculated total cross
section. From this it is clear that the experiment is in
better agreement with the broader Py, level, corrobo-
rating the results from the p-He! scattering. The
calculations at 14.1 Mev, using S and P phase shifts
obtained from extrapolating the lower energy values,
assuming the Dj/; phase shift to be that due to potential
scattering, and assuming the Ds phase shift to be
zero, gives a total cross section of 1.05 barns as com-
pared with an experimental value of 1.0240.03 barns.!®
The angular distribution is in qualitative agreement
with preliminary experiments of Seagrave.!” The choice
of zero for the Dy, phase shift was made assuming that
the effect of a Dg2 level would just cancel the potential
scattering effect at this energy. This is in rough agree-
ment with the trend shown by the p-He! experiments
at 5.81 and 9.48 Mev.

V. CONCLUSION

It is seen that the experiments on the elastic scatter-
ing of protons and neutrons by He* are very well
explained on the basis of the resonance theory of
nuclear interactions, and afford considerable informa-
tion on the level scheme of the He® and Li® compound
nuclei. Due to the wide spacing of the levels they can
be studied almost individually, and due to their large
widths their shapes can be investigated. These seem
so far to be quite well described by the expressions of
Wigner and Eisenbud and others. The widths of the
P state levels are of particular interest, the Py, level
being just about as broad as expected from the single
particle model, and the Py, level being surprisingly
broader as if due either to some type of “surface”
reaction where the internal wave function is concen-
trated closer to the boundary than is a particle in a
potential well, or to a much smaller internal region for
the interaction. Fortunately it does not seem impossible
to investigate the dependence of the five nucleon

8,

o EXPERMENTAL PONTS
I—CALCULATED FROM PRESENT Ef & Ey*
----CALCULATED FROM ADARS EX & E,*
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\.\.\.
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/ S

o 4 5
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Fic. 3. Neutron-alpha total elastic cross section as a function of
neutron energy in the laboratory system.

16 T, Coon, private communication.
17 John Seagrave, private communication.
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system on the nucleon-nucleon forces. It is hoped that
such an investigation will be able to explain the ob-
served results. Further experiments at higher energies
should reveal in a similar manner detailed information
about the higher levels.

We are indebted to members of group T-1 of the
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Los Alamos Scientific Laboratory for assistance with
the hand calculations. Drs. Coon, Seagrave, Barschall,
Argo, Cork, Putnam, and Kreger furnished us with
experimental data from various laboratories. Dr. Rosen
and Dr. Barschall discussed with us the reliability
and weights to be assigned experimental results.
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Iterative Procedures and the Helium Wave Equation

James H. BARTLETT
Department of Physics, University of Illinois, Urbana, Illinois
(Received July 16, 1952)

In an attempt to solve the helium wave equation exactly, study of a 180-point mesh shows the need for an
improved difference operator to approximate the Laplacian. Such an operator has been developed, allowing
one to express the value of the function at one point in terms of the values at 26 neighboring points (in

three dimensions).

INCE the wave equation for the ground state of the
helium atom is nonseparable, analytic methods for
obtaining a solution have been so far unsuccessful, and
it has seemed worthwhile to try to solve the equation
by numerical methods. If such a solution can be ob-
tained, it will demonstrate whether or not the formula-
tion of the many-body problem of quantum mechanics
is correct. Also, a solution for the first excited state
(3S1) would afford an opportunity to check the theory
of hyperfine structure, using the spectrum of He? I.
Until a successful analog machine for partial differ-
ential equations in more than two dimensions is
developed, it is probably necessary to replace the con-
tinuum of points by a mesh, and the differential equa-
tion by a difference equation. A prototype calculation
was made! in one dimension for the hydrogen radial
wave equation, and we shall show how these methods
can be extended to several dimensions, with prospects
of considerable accuracy.
The wave equation that is to be solved is of the form

1oy 1
VY- —+—(E—V)y=0, (1)
z 0z 4r

where, if 71 and 7, are the electron-nucleus distances and
6 is the angle between the corresponding radius vectors,
the coordinates x, y, and z are given by the relations
4x=2r17s cosb, dy=ri>—r? 4z=2r1r,sinf. (Note that
22>0.) The radius in this system is r=2%(r247?), and
V is the potential energy. If the substitution =Wz
is made, Eq. (1) is transformed into the equation

E

-V 1
¥

VW + (
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1 G. E. Kimball and G. H. Shortley, Phys. Rev. 45, 815 (1934).

which is of the type V2u- f(xyz)#=0, where f is singular
along the 4« axis and the whole y axis. However, we
expect ¥ to be finite everywhere and, consequently,
W to be zero when z=0. Also, the solution is to be sym-
metric with respect to exchange of the electron space
coordinates, so that y(—y)=y(y). Hence the boundary
conditions are

W=0, 2z=0,
oW /dy=0, y=0,
W—0, r—o

In an attempt to construct an approximate solution
of Eq. (2), the differential equation was replaced by a
difference equation. This was done by equating the
second partial derivative in each direction to the corre-
sponding second partial difference, i.e., 8*W/9x*=2A . W.
A coarse mesh consisting of 180 points was chosen as
follows:

x=0,41, £3, £7, £15; y=0,1,3,7,15;
z=1,3,7,15.

(W was taken to equal zero for values of «, ¥, or z equal
to 31.) Then the iterative procedure of Liebmann,?
regarding each point as influenced by its six neighbors
along the axes, was applied, and the solution of the
180-point mesh was obtained.? The eigenvalue turned
out to be E=—1.14, but this could be lowered to
E=—1.33 by drawing smooth curves through the mesh
points and integrating by planimeter. This indicates
that the procedure is much too crude and that one must
use a better way of approximating the Laplacian. That
this is possible will now be shown.

2 See G. H. Shortley and R. Weller, J. Appl. Phys. 9, 334 (1938).

3This was done on the SEAC, the digital computer at the
National Bureau of Standards by Mr. Joseph H. Wegstein, who
also remarked that Eq. (2) might be simpler than Eq. (1) to solve
numerically,



