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Note added after completion of the paper: The content of this
paper was presented at the Columbus meeting of the American
Physical Society, March 22, before which time the details of the
paper were worked out. At that meeting, the author obtained a

copy of an unpublished paper by W. Martienssen, "Photochem-
ische Vorgange in Alkalihalogenidkristallen" Lace Z. Physik 131,
488 (1952)j.The suggestion is made in this paper that x-rays gen-
erate vacancies. Martienssen does not, however, examine in detail
the consequences of this idea, nor does he suggest any detail re-
garding the mechanism of vacancy formation. The production of a
strong cx-band at 20'K in KBr reported in this paper (see also W,
Martienssen, Naturwiss. N, 482 (1951))has caused a slight revi-
sion of Sec. IV.
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The production of positive mesons by photons incident on deuterium is calculated in terms of an effective
Hamiltonian containing one term which is independent of and another which depends upon the nucleon
spin. The meson spectrum at a given angle to the incident photon beam is evaluated at high photon energies
by the closure approximation. At low and intermediate energies the closure approximation is not made,
but the neutron-neutron force in the final nucleon state is neglected. These spectra have been integrated
over a bremsstrahlung spectrum. The total cross section is found at high photon energies and near the
threshold for meson production. It is found that the meson spectrum for small angles is sensitive to the
relative size of the spin dependent and spin independent terms.

I. INTRODUCTION

'HE production of mesons by photons on deuterium
is particularly sensitive to the details of the

effective Hamiltonian describing the coupling among
the photon, meson and nucleon fields. Its charge
dependence is revealed by comparing the production of
negative and positive mesons. Its spin dependence
affects the variation of the total cross section as a
function of the energy of the incident photons, the
angular distribution and the energy spectrum of the
mesons produced at a given angle. These last effects are
a consequence of the Pauli exclusion principle' and are
thus particularly important at small angles where the
recoil neutrons have small relative momenta.

On the other hand, the deuteron is the simplest
example of a target with structure. It may therefore
be employed to test some of the approximate results
given earlier for photo-meson production in nuclei.
There are, however, some significant differences from
the case of heavy nuclei inasmuch as the mass of the
residual nucleus is comparable to that of the particle
absorbing the photon.

In the present paper we shall employ the same

*This paper was presented to the American Physical Society.
See Phys. Rev. 82, 324 (1951).' H. Feshbach and M. Lax, Phys. Rev. 76, 134, 689 (1949).' M. Lax and H. Feshbach, Phys. Rev. 81, 761 (1951).

phenomonological treatment as that employed in refer-
ence 2, wherein it is assumed that the meson-photon
interaction with a nucleus may be treated as a sum of
the interactions with the individual nucleons. This
clearly neglects cooperative higher order eGects such
as those given by exchange currents, and the scattering
and absorption of the meson produced by one nucleon
by another. These should be small in deuterium because
of its relatively large structure and the relatively small
nucleon scattering amplitude. ' Once these assump-
tions are made, it is possible to acct all spin sums
and reduce the calculation to quadratures. Further
progress requires some statement on (1) the dependence
of the effective Hamiltonian on nucleon momenta and
(2) on the nature of the interaction of the two resi-
dual neutrons. VVe have omitted both possibilities
for reasons of simplicity. The omission of the 6rst
of these may be of importance in computing the nega-
tive to positive meson production ratio. The second
omission is invalid for final states in which the relative
kinetic energy of the nucleons is small, i.e., near
threshold, at the high energy end of the meson spectrum,
or for msesons produced at small angles. A more precise
calculation is now in progress. 4

A similar treatment of this problem has been simul-

' G. Chew and H. Lewis, Phys. Rev. 84, 779 (1951).
4 Feshbach, Goldberger, and Villars, private communication.
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taneously developed by Chew and Lewis, ' in which,
however, the attention was focused on the distribution
of nucleon recoils whereas our primary interest here
will be in the energy spectrum of the mesons at a given
production angle. Other theoretical investigations have
been made by Machida and Tamura' and Morpurgo. '

II. GENERAL CONSIDERATIONS where

Q.=2 "&'xo~K (~i—~2)~'z )E,

Q.=i2-l('x„.
i
K (e+a )+2Li'x )0,

(Sa)

(5b)

momentum so that after integration over dD' in (1)
one may make the replacement D'= D+» —p.

The matrix elements for the symmetric and anti-
symmetric cases become, respectively,

We, as well as Chew and Lewis, employ a notation
similar to that developed in reference 2. If D is the
initial deuteron momentum, DD= (4M'+D') & its total
energy, and D' the momentum of the center of gravity
of the residual nuclear system, the total cross section
takes the form

d =(2 ) '(1+(D/D, )) ')I )~~Q~'dpdD'dk8(+u,

E=
) ug, .*(k g) cos(ko y)[u(p)/p]dy,

0= fur, ,*(k y) sin(ko y)[u(p)/p]dp,

ko=k(» —t)

(6a)

(6b)

+(0'/M)+ (D"/4M) va —(D'/4—M)), (1)

where t)L is the meson momentum, po its energy, k'/M
the final relative kinetic energy, e is the deuteron
binding energy, vo is the incident photon energy. The
8-function is just the condition for energy conservation.
The matrix element Q is taken between the initial and
6nal nuclear states of the operator:

T Ti+ T2)

T,= ((r, K+L)"exp[i(» p) x—;]7;+.
(2)

K and I.will, in general, depend upon the momentum
and energy of the three particles: photon, m, eson, and
proton. This form, i.e., its representation as a sum of
two terms involving each particle separately, neglects
the possibility that T contain a term which depends,
in a nonseparable fashion, on the coordinates of both
particles, 1 and 2.

~Q~' must be summed over the final and averaged
over the initial spin and isotopic spin states. The initial
deuteron is a spin triple, an isotopic spin singlet:

i i)= 2 '*[p(1)u(2)—p(2)n(1)]'x (u(p)/p) (2s)
Xexp[i(D R)], (3)

where R= (xi+x2)/2 is the center-of-mass coordinate,
y=x~ —x2 the relative coordinate, and 'x is the triplet
spin function, m being the s component of the total
spin.

The final state consists of two neutrons, an isotopic
triplet, with relative momentum k. The Pauli principle
requires separate consideration of the two final states,
one that is symmetric and one that is antisymmetric
in space:

~ f,)=(2ir) 'u(1)u(2)'your, ,(k g) exp[iD' R], (4a)

~ f.)=(2ir) 1u(1)u(2)'x ur, .(k p) exp[iD' R]. (4b)

We now introduce (2), (4a), or (4b) into Q. The inte-
gration over R leads to requirement of conservation of

' S. Machida and T. Tamura, Prog. Theoret. Phys. 6, 57 (1951).
~ G. Morpurgo, Nuovo cimento 7, 855 (1950).

One may already see from (5) that only K is effective
in changing the spin state of the deuteron. Moreover,
it is also clear from (6) that 0 approaches zero at
threshold (k=0), so that the presence or absence of a
spin-Aip term K will be strongly rejected in the energy
dependence of Q.

To proceed further, (Sa) and (5b) are squared,
summed over final, and averaged over initial spin states
with the result

I Q
I'= 3 l

K I'E'+ [(4/3) I
K 12+ 2

]
L )2]02. (7)

The cross section can according to (1) be written in
the form

da. =(2ir) ~(1+D/Do) '(H('dt)),
where

lQI d»,

and

8= 8(e+go+ (k'/M)+ (D+»—y)'-/4M —i 0
—(D'/4M) ).

Since the final states N~ are either even or odd, it is
conventional to carry the integration only over half of
k space. We may extend the integration over all oi I'..
space providing the normalization of the final states is
taken to be

I uf, ))*(k y)ug, ,(k' g)dy=-,'[b(k —k')+b(k+k')];

I ug, ,*(k t))u~, )&(k' g)dg= i2[b(k —k') —5(k+k')].

(Conventional normalization would omit the factor ~i

on the right-hand side of these equations. )

III. DIFFERENTIAL SPECTRUM

High Photon Energies

At high photon energies we might expect (1) the
deuteron cross section to approach the corresponding
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hydrogen cross section and (2) the struck proton to
absorb all the recoil momentum. The second point is
verified, in our calculations by the fact that the matrix
elements E and 0 have a strong resonance near k= ko

=(v—p)/2. If we insert k=kp, D=O, e=0 into the
energy conservation delta-function (8) we obtain the
free proton conservation condition: 8„=8(pp+(v —tp)P/

2M —vp). The delta-function can now be removed from
the integral over k space in (8). The integrals over E'
and 0' can be performed exactly with the help of the
closure properties,

(k t')dk= l[~(p —9')+~(9+9')3,

1.0

0.5

0
0 3 4

I -~l

Fto. 1. The function V(
~

v —tp ~ ) .

"uf,*(,k io)uf, (k y, ')dk=-'[8(y —g') —b(p+g') j.

The resulting "closure" matrix element,

IHI'=([IKI'+ ll-I'3 —LplKI'+ lL I'3v»
where

V= cos(v —p) y[u(p)/p]'dy

the immediate neighborhood of threshold. (This lack
of sensitiveness of the cross section to the choice of
final state arises because a partial closure sum must be
performed. A complete closure is entirely independent
of the choice of final state. )

With the choice (10) E and 0 may be expressed in
the form

2E= C(k—kp)+C(k+kp),
20=C(k —kp) —C(k+ kp)

has a first term exactly in agreement with the corre-
sponding free proton matrix element. The second, "two-
particle" term contains the interference integral U. If
we use the approximate deuteron wave function given
later in Eq. (15), V may be evaluated exactly and is
given in Fig. 1. V decreases rapidly as

I
v —

tp I
increases

so that for a given v the two-particle term can be
important only in the small angle region. It is, therefore,
in this region only wherein the spin dependence of the
eGective Hamiltonian plays a role.

It may be emphasized that the closure results
obtained here do not involve any specific assumptions
concerning the final neutron-neutron state. However,
the resulting closure cross section may be expected to
be an overestimate, since it includes contributions from
final states that are not energetically permissible. It
should be accurate for high photon energies.

C(k) = (2pr) & exp[ik y][u(p)/p]dp.

Referring to (7) and (8), I
Hl' takes the form

IHI'-(I Kl'+ ILI') "Ic(k—kp)l'&dk
J

(12)

—(-,'I Kl'+ lL I') C(k —kp)C(k+kp)bdk. (13)

The deuteron wave function in ordinary space may
be represented by

where C(k) is the normalized deuteron wave function
in momentum space:

Low and Intermediate Photon Energies

In order to obtain an estimate of the cross section at
intermediate or low energies, we must abandon the
closure approximation. To simplify our calculations,
however, we shall neglect the neutron-neutron inter-
action and use final states of the form:

uf, ,(k y)=(2pr) —'cos(k y),

uf o(k' y) = (2pr) & sin(k g).
(10)

This approximation aGects most seriously the high
energy end of the meson spectrum since there the
neutrons part with a low velocity. Its e6ects on the
total cross section is not likely to be serious except in

u(p) = [s—ap e
—Ppj

2pr(1 —np, ).
(14)

C(k) =
pr'(1 —npt) (n'+k') (P'+ k')

(15)

We may now determine the energy and angular
distribution of the mesons. It is most convenient to

where o.'=Me, p~= effective triplet scattering range,
1.74)&10 "cm, and P is given by

(3/p)=pt[1+ (4/9) npt3

The corresponding momentum-space wave function is
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0.5 0.6 0.7

FtG. 2. The function pIJ0I1 for 8=90' and v=2.
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Fro. 3. The function pp0I2 for 8=90' and v=2.
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where

k„'=M( vp
—Iio —p) —kp',

p.'= M(vo —Iio —p)+ n'= M(i'o —iiio),

p p' ——M(vp —
pp

—p)+ p'= M(i o Iio—)+P' n—'

Both I~ and I2 go to zero as k„=0,at which po takes
on its maximum value. This maximum value is attained
when the maximum available relative energy koo/M is
completely converted into meson energy. At this limit,

Mn 2 (P' —n')'
k„, Io/Ii —o 1. (19)

kp ~0' ' ~(1—n~i) P 'Po'

The fraction of the meson energy spectrum for which
these limiting values are valid decreases with increasing
v. Examples' of the functions Ij,poI& and IJ,p,pI2 are given
in Fig. 2 and I'ig. 3.In agreement with the estimate made
in reference 2, I2&&I~, except near the maximum meson

energy, near threshold, and for the smaller angles.
Thus at the larger angles and energies the differential

spectrum is essentially proportional to I I
KI'+ ILI'j.

This combination may also be determined experi-
mentally by measurement of photoproduction of mesons
in hydrogen. However, in the hydrogen case this
information is available at a given angle for a single
meson energy only as given by the Compton relation

2i (po —Ii cosd') =1+2M(& Ijo). —(20)

The experimental results for deuterium are therefore
valuable because they extend our knowledge of the
value of

I
KI'+ ILI' at a given angle to a range of

energies.
At the smaller angles where I2 is appreciable, a

different linear combination of
I
KI' and

I
LI' is meas-

ured so that at the meson energy given by (20) two
different linear combinations of

I K
I' and

I
L I' are now

available, one from hydrogen and the other from
deuterium data. Thus, for meson energies and angles
obeying the Compton relation

I
KI' and ILI' may be

determined separately.
These considerations are somewhat 'academic since

the synchrotron does not provide monochromatic
x-rays. A direct determination of

I
KI' and

I
LI' for a

given photon energy from experiment would require
data obtained with the bremsstrahlung of electrons
with several different energies. The available experi-
mental data are not suSciently accurate to justify such
a direct analysis. We therefore adopt the more realistic
approach in which a reasonable dependence of IKI'
and ILI' on the energy of the photon and meson is
assumed permitting then the integration over a brems-
strahlung spectrum and therefore comparison with
experiment.

A reasonable form for this dependence is suggested

employ the laboratory system. Hence, from (1) and (3),

(«/d&. dI o) =(2~) 'I I oD-I KI'+ IL I')Ii
—(-',

I
KI'+ ILI')Ioj, (16a)

where

I,= i t
I
C(k —ko)

I
'8(o+ pp+ (k'+ kp')/M —i p) dk,

(16b)

Io—— I C(k —kp)C(k+kp) 8(p+ pp

+(k'+ ko')/M —i o)dk,

where C(k) is given by (15). The integrals Ii and Io
may be evaluated exactly:

2'nk„
Ig=

or(1—npi) P~ —4k kp Pp 4k~oko

1 (po' —2k.ko) (p '+2k.ko)
ln

2k„ko(itI' n') (Po—'+2k„kp)(P '—2k„kp).
(17)

Mn is' —n' 1 p '+2k, kp
ln-

2or(1 —api) ko(p '+pp') p
'

p
' 2k.ko—

1 ps'+2k„kp
ln

ppo pso —2k,kp.

7 Tables of the functions IJIIJOI1 and IjpoI~ have been calculated
for 8=26', 30', 45', 90', 135 and for values of v ranging from
1.1 to 2.4. These are available in hectographed form from H.F.



PHOTOPRODUCTION OF MESONS IN DEUTERIUM 513

by the pseudoscalar meson theory in the nonrelativistic
approximation, which gives

P' sin'no[1 —(vo —Po)']
I
K I'-(1/novo) 1—— (»)

2vpo(v —y, costi)o

.40

30

I I I I I I I I I

[n'+ (k„—k,)'][n'+ (k,+kp)']

Ma 1 n'+ (k„+kp)'
ln

2pr kp(k7'4-ko'+n') n'+ (kv —ko)'

(23)

For large v, Ii approaches the free proton value
8v= 8[ vo —po —(v —p) /2M] while Io +0. Both of th—ese
behaviors are apparent from (23). Employing

n/[pr(x'+ n') ]~B(x),
we see that

It~(M/2k )[6(k kp)+ 6(k„+kp)]
= 8[(k„'—kp')/M] = 8v,

which is the expected result if the deuteron binding
energy is placed equal to zero. This derivation indicates
that the free proton value is assumed when

I
v —

to I ))n.
This is, of course, true only in the limit P—vpo. If P is
kept finite, then the deuteron momentum wave function
does not have as great an extension in momentum
space so that the free proton value is assumed somewhat
earlier.

IV. TOTAL CROSS SECTION

The total cross section will be evaluated in two
energy regions (1) photon energies well above threshold

' Lebow, Feld, Frisch, and Osborne, Phys. Rev. 85, 681 (1952).

The dominant term in the energy range of interest is
(1/ppvp) which is simply a normalization factor. For
the purpose of the integration over v we may make use
of the mean value theorem and replace

I K
I' and

I
L

I

'
as follows:

I
K

I
~X /ppvp, I

L
I
~Z /novo. (22)

We have inserted these forms into (16) and assumed a
(dv/v) bremsstrahlung spectrum with a maximum vof
2.4, which is close to currently available synchrotron
energies. These results are given in Fig. 4 and Fig. 5
for several different values of 8. The sensitivity of the
results at small angles to the spin dependence of the
effective Hamiltonian is maintained. Comparison of the
small angle results with the hydrogen cross section or
with the deuterium cross section for large values of the
angle 8 will determine the values of X' and 2'. Experi-
mental evidence' indicates that X'))2', that is, the
spin dependent term of the effective Hamiltonian is
dominant.

Finally we turn to the examination of the spectrum
for v))n and v))I3, respectively. The results are most
easily seen if we consider (17) in the limit P—+~; then

~20

. 0

.IQ

0
I.Q 2.0 2.4

FIG. 5. The integral f&"(pl&/vo)dv

and (2) photon energies near the threshold for meson
production.

Cross Sections for High Photon Energies

A first approximation to the cross section at high
energies may be based on the closure approximation
(9). Comparison with the free proton cross section
gives the ratio

(24)

The second term gives the reduction of the cross section
for large values of v because of the Pauli exclusion
principle and other interference effects.

There is another reduction of the cross section which
enters because of the assumption on the k integration
which was made in obtaining (24). It is only asymptoti-
cally true that the k integration may be extended over
all of k space. Indeed, for energies sufficiently close to
threshold the integration in k space is restricted by
momentum and energy considerations. Vfe may obtain
an estimate of this effect by employing a technique
developed in reference 2. Consider erst the single

2.4I.4 I6 I 8 2.0 2.2+o

Fto. 4. The integral Jj"(yl~/v')dv. To obtain the meson spec-
trum multiply the ordinate by X'+2~ and subtract —',X+2
times the ordinate of the corresponding curve plotted in Fig. 5.
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O.B

0,
Qp

0.6

0.4

0.2

0
b6 l B

I I

2.0 2.2
I

2.4

particle contribution o1. Then from (13),

Fzo. 6. The ratio of the "single" particle contribution to the
total production cross section and the total production cross
section in hydrogen.

about 200 Mev. Integration of (28) yields

o.1 P'+3n' d ——,
' v d+-,' v

m. (1—np, )—= tan —' +tan —'
2 Qf2

u(u'+3P') d ——',v d+-', v

tan ' +tan '
p(p' ~') - p

n 2(d' —-'v'+ n') u'+ (d+-,' v)'
1+ ln

v p' —u' cP+(d ——,'v)'

a 2(d' —-'v'+P') P'+ (d+-,'1)'
ln . (29)

v P2 A2 P2+ (d 1 v)2

A curve giving o.1/o„as a function of v is plotted in
Fig. 6, showing that 90 percent of the high energy limit
is obtained at v=1.3 or at v=180 Mev.

FrOm o.1/o.„WemuSt SubtraCt op aS Obtained frOm

or= (2pr)-' ~ dydk(l K I '+
I
L I')

I c(k—ko) I

'f f
op ——(21r)

—')I (p I
Kl'+

I
LI')I,dip. (30)

Xh(p p+ p+ (7p'+7pp')/M vo). (25—)

We now change the variable of integration to k'= k—ko
and do the p integration first. The result may be
expressed in terms of an integration of

I
C(k') I' over

an effective cross section:

where

dk'I C(k')
I
'o (v, k', v,), (26)

o(v, k', vp)= (2pr) )"dp(l Kl'+ ILI')~(yo+p

y ((k'+ko)'+&o')/M —vo).

o1/o, ~ ~lc(k')I'dk',
v))1 ej

(28)

where the range of integration is limited according to
(27). Roughly speaking, as (27) and (28) show, we are
concerned with the overlap between two spheres in
momentum space, one centered at the origin and of
radius of the order of n, the other centered at (—v/2)
of radius d. The closure approximation will be valid
when these spheres overlap completely, that is, when
d is several times greater than (n+v/2) or for v at

The range of integration on k' is limited by the energy
delta-function to a sphere,

I
k'+ (v/2) I I M(vo —v )]'=d, (27)

where v& is the threshold energy. We note that for
large v, C(k') has a strong maximum at k'=0, so that
o (v, k', vp) may be approximated by o (v, 0, vp), in other
words, by the free proton cross section. Hence,

It was not possible to evaluate 02 analytically. Instead
the following approximate evaluation was employed:

o p o p(closure) R,
where

R= lim(op/op(closure)) as u—&0 and P—+po .
The quantity o p(closure) is given in Eq. (24) as
J'(~pl Kl'+L')VBvdp where V is given in Eq. (9).
Both op(closure) and R may be easily evaluated if
Eq. (22) is inserted for

I
Kl' and L'.

The ratio op(X'+2')/ov(oX'+2') is plotted in Fig.
7. We see that it decreases like a (constant/v) for v

large, rises to a maximum rather near threshold, and
then drops to zero at threshold. We note that o-2 is
much smaller than o~, being at most a ten percent
correction except near threshold for the case of no spin
Rip E=0, and being at most on third of this for L=0.
Hence, in the deuteron the effect of the Pauli exclusion
principle on the total cross section is negligible except
near threshold in accordance with the assumptions
made on reference 2.

Cross Section Near Threshold

We shall only quote the results of our calculations,
since the approximation neglecting the neutron-neutron
interaction is particularly poor here. We And that

(M+1)' (I Kl')
O'D 0 ~~

3~2 (2M+1)' & I K I')+&
I
L I')

x I c(—v,/2) I
'(v —v1) &, (31)

where we have neglected the difference between free
proton and deuteron thresholds. The quantities (I Kl')
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and (ILI') are the averages over angle. Inserting
numerical values, (31) becomes

,~/~„=14.3(v—v):(I Kl'&/(I KI'+ I LI') (32)

We are indebted to G. Chew for many informative
discussions. Ar ote added ie Proof: Calculations similar to
those of this paper are reported by Saito, Watanabe, and
Yamaguchi, Prog. Theoret. Phys. 7, 103 (1952).

APPENDIX

O. l2

0.10

0.08

~ + 0.06
N

C4

8 8' 0.04

002

0
1.0 2.0 2.2 2.4

I'iG. 7. 0.2(X'+Z') /0 „(-',X'+Z')

~ (pI„/v')d v

(do n/dQ„d pp) (dv/v)

A comparison of the experimental ratio of photo-
meson production in deuterium to that in hydrogen
cannot be made directly against the cross-sectional ratio
on/ov. Th'e theoretical cross sections must first be
averaged over a bremsstrahlung spectrum before taking
the ratio. Using the assumption of Eq. (22), the experi-
mental ratio of differential cross sections -is to be Inserting (A5) into (A4) we obtain
compared with

(do v/dQ„dpp) (dv/v)

poi f pp —p cosP) ( 1

I
po—

M)E M )E 2M&

+M 'p[pp —(1/2M)] ', (A6)

where

(pI i/v') d v y(pIo/v—')d v

r
(pI./")dv

the lower limit on the spectrum (A6) is pp=1. The
upper limit is pp = pp'(v, 6) where pp'(v, 8) is the
Compton meson energy obtained by solving (A5) for pp.

[v+ (1/2M)][1+ (v/M)]
& (v/M) cos6[(v+ (1/2M))' —X]l

pp (A7)

~= (-,'X2+ g2)/(X2+ +2), (A2)

I„=b((M'+ (v—1o)')&+pp
—

vp
—M), (A3)

and we have used Eq. (5) reference 2 for the proton
cross section. (A factor (2~) '(X'+2') was cancelled
in simplifying the right-hand side of (A1).

The numerator of (A1) is supplied by Eq. (17) and
Figs. 4 and 5. The denominator can be integrated
immediately:

(pI„/v')d v

= (M+ v pp) p/[(M pp+ p cos6) v,'], (A4)

where v, is the Compton photon energy (20),

where X= 1+2(v/M)+ (v/M)' sin'0 and v is the upper
end of the bremsstrahlung spectrum.

A comparison of the angular distribution in the
deuteron and proton case requires that we evaluate
J'(pI„/v')dvdpp. Expanding (A6) in inverse powers of
M, the result to terms of order M ' is

(pr, /v') dvd p, = ln(p, +p,) (p/p, )—
+M '[(pp+pp '—2) cos8—p

+(3/2) cos '(1/po) —(p/2po')]

+pM '[ppp cos8(pp' pp
'— —

—4» )—k(pl p )—-'(pl p ')] (Ag)

pp —(1/2M)
vc=

1—(pp —p cos6)/M

where po is to be replaced by its upper limit po = po'(v, 0)
(A5) using (A7) with v=v, and p is to be replaced by

(po' —1)'


