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Properties of a Tetragonal Antiferroelectric Crystal
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In order to interpret the properties of the tetragonal crystal ND4D2PO4 (deuterated ADP) a thermo-
dynamic treatment has been developed which relates the observed crystal structure change and the di-
electric constant change at the transition temperature to the appearance of spontaneous polarization. For
an antiferroelectric crystal, the average spontaneous polarization is zero, being oppositely directed for ad-
jacent layers, but the square of the spontaneous polarization is large. This results in quadratic strain com-
ponents which cause a change in the crystal structure below the transition temperature. It is shown that
the change observed is consistent with an antiferroelectric arrangement with one of the a axes being the
antiferroelectric axis. The dielectric constants in all three directions suffer a large drop below the transition
temperature.

De-
riva-
tive

as;;
a Tkl

Relationship
between de-

rivativess

Symbol

s;;wD 8

Name

Elastic compliances at con-
stant displacement and tem-
perature

aS;; —a'Gg —aEm

aD„aT;;aD. aT;;
aS;; —a'G ao
a0 aTgaO aT 7.

aE
aD„ Pm

aE aG, a~
a0 aD aO aD„

Piezoelectric constants

Temperature expansion co-
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~ The data for ND4D~PO4 are given by W. P. Mason and B. T.
Matthias, preceding paper t Phys. Rev. 88, 477 (i952)j.

' 'N order to evaluate the possible mechanical distor-
t - tions, the relations between the dielectric constants
and the changes in specific heat capacities to be ex-
pected in the tetragonal crystal ND4D2PO4' that be-
comes antiferroelectric below a definite transition
temperature 00, a phenomenological development of
the strains, electric fields, and entropy has been made
in terms of the independent variables stresses, electric
displacements, and temperature O. Since as the tem-
perature decreases through the transition temperature
00, the measured changes are strains, remanent po-
larizations, and entropy changes, this type of formula-
tion is the most useful one for discussing the transition.
This requires the use of one of the Gibb's potentials
G&, given in terms of the internal energy function U', by

Gi= U—S,,T,,—o-0 (&)

where S,, are the strains expressed in tensor form, T,;
the stresses, 0- the entropy, and 0 the temperature. In
rationalized mks units the differential form is

dGt = S,,d T;,+E dD —odO, —
TABLE I. First-order derivatives of the potential G& and

their physical significance.
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and hence,

S,,= BG—&/&T, , i E„=t7G&/&D~) p = —BG&/80) (3)

where E„and D„are, respectively, the electric fields
and the electric displacement components.

Developing the strains, electric fields, and entropy
in a Maclaurin series about the points of zero stresses,
zero displacements, and temperature 00, we have up
to second derivatives of the stresses and temperatures,
but higher derivatives of the electric displacernents:
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TABLE II. Second-order derivatives of the potential G& and their physical significance.
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Change of elastic compliances with stress

neglected Change of elastic compliance with electric displacement

Rate of change of the elastic compliances with temperature

Quadratic strain components

Tg'jn Rate of change of piezoelectric constants with temperature

Rate of change of temperature expansion coefficients with
temperature

Tpmn Rate of change of dielectric impermeability with temperature

Rate of change of pyroelectric constants with temperature

pC " Rate of change of temperature derivative of entropy with
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In the differentiations, the conditions for partial dif-
ferentiation are not written but are understood; for
example,

O'E $3E

aD„aD. aD„aD,BD,

a piezoelectric constant relating the strain and the elec-
tric displacement. Table I shows all the first-order
derivatives, their relationships, the symbols given them,
and their names.

Similar relationships and names for the second de-
rivatives are shown by Table II.

All second derivatives involving two differentiations

by stresses are neglected as being very small. Also

neglected is the change in elastic compliance constants
with electric displacement since no measurements have
been made of this effect.

The higher derivatives of interest are third, fourth,
fifth, and sixth rank tensors representing the additions
to the G~ function due to third, fourth, fifth, and sixth
power products of the dielectric displacements. These
have been given the designations

BSg/8Tp( (BSg/8Tp)) D, 8, ——
84E O'E

i.e., the electric field and the temperature are held con-
stant during the differentiation.

In these equations there are some equivalences be-
tween the partial derivatives because of the fact that
the order of differentiation can be inverted. For example,

BSg/BD„= O'Gg/BT;;dD„= —BE„/BT,,=g;,„, (6)—

BDnBDpl3DyBDg BDnBDpBDyBD88D $

= &mnnps( (&)

With these symbols, the three equations representing
the strains, 6elds, and the entropy can be written in
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-the forms
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Applying the differentiations of Eqs. (3) to this func-
tion, the equations of (8) result.

For tetragonal symmetry Dsz(42212) it is well known
that the tensors up to the fourth rank have the matrices
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Hence, as the temperature increases from below the
transition temperature where D„and D, are positive
to above the transition temperature where D„=D,=O,
an increase in entropy (i.e., a decrease in order) takes
place as long as Tp „is positive.

These equations can all be derived from a potential
G1 given by
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0
0
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0 0 0
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The fifth rank tensor E„„.p, for the symmetry (42228)

can be determined by applying the two conditions

z= —z; x=y; y=x: x=x; y= —y; z= —z (11)
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XT;,(0—8p)+ qm+ D (0—Op)
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and the equation of tensor transformation

BÃm BX„ BXo BX„ BX,~t
&& mnoys Emnoye.

8$ Bx 8$ 8$y Bx

The results of applying these two conditions to the
tensor E „,„,is that all terms are zero except

XDmDnDoD, + D D.D.D,D.+
5! 6! E11123 E12223 and E12333 (12)

pC 8 1 oj j'C
X D. . . .D,+ +-

Oo 288 E Oo

X(0—8p) L8—Op]. (9)

with all permutations of these terms being equal since
all of the D components can be interchanged. Hence,
fifth rank terms enter only if polarization exists along
all three axes.

For the sixth rank tensor the nonvanishing com-

ponents when all the subscripts can be interchanged are
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pll+2E 1111Dlc +2E 111111Dlc 0)

pll+4E 1111Dlc +6E 111111Dlc

Solving these equations simultaneously, we And

».'= —PII/E*IIII, E*111111 E1111 /2P11

~ C. Kittcl, Phys. Rcv. 8$, 729 (1951).

(16)

(17)

(&g)

for the two conditions

+111111 +222222 j +111122 +112222 j +llll88 +222288'

E118383 E228888 ) E112238 ) Essssss ) (13)

and hence the energy terms added by the sixth rank
tensor are

111111[D1+D 2]+E 838388D 8+E 111122

X[D'ID'2+D'ID'2]+E*IIIIss[D'ID'8+D'2Ds'7
+E 112288D 1D 2D 3+E 113333[D 1D 8+D 2D ]) (14)

where the stars indicate that the term is multiplied by
the number of diferent combinations that can be ob-
tained by interchanging the subscripts and dividing

by QI

One fact that is obvious from, the form of the quad-
ratic strain constants Q,;„, is that if the spontaneous
polarization were along the s or 3 direction, the change
along 2; given by Qllss has to equal the change along y
given by Q2233 ——Qllss, and hence the crystal will still be
tetragonal. On the other hand, if the polarization lies
along either x or y, the changes introduced by the
quadratic CGects are diGerent for all three axes and
hence the crystal can change from tetragonal to ortho-
rhombic as observed experimentally. We can rule out
the possibility that antiferroelectric polarization occurs
simultaneously along both x and s by the fact that no
shear displacements of the type generated by terms of
the form Q2323 are observed.

If all the stresses are zero and we consider only the
electric displacements, all the energy terms are repre-
sented by the p and E terms. To determine the dielec-
tric constants for small 6elds we need consider only
large spontaneous terms along x and small electric
displacements in addition along x, y, and s. We neglect
all products of small terms above the second, and hence
the only remaining terms are

GI= 2[PII+ I'sll(e —Oo)][(».+~DI)'+D'2]
+[J%8+T138(O Oo)]D 8+E 1111[(Dlc+EDI)]
+E 1122[Dlc D 2]+E 1188[Dlc D 3]+E llllll

+[Dlc+~DI] +E III)22[DI D2]c
+E 111138D 8Dlc +G0 (1~)

In a manner similar to that discussed by Kittel, ' the
polarization along the antiferroelectric axis can be
calculated by requiring that the value of Gl shall be
the same below and above the transition temperature
and that the erst derivative of Gl by Dl—which equals
the Geld—shall also be zero. This results in two equa-
tions:

Fol' ally tclIlpcl'a'tul'c slllcc Eq. (17) ls valid wc find

P11 2 Pll
D 2—

3 ( T'sll(O —Oo) ) '
1—-! 1+

44 Pll

TSII(O—Oo) )
!= 8DI,'+8DI,' 1—-! 1+

4E p„

[PII+2 Ill(e O0)]D10+4E llllD10 +6E llllllD10

is zero for all temperatures, then

ADI/AEI 0 {[pll+Tsll(O 00)]+12E llllD10

+30E*111111D10j . (21)

Just above the Curie temperature Oo,

D10=0 and oII+= 1/PII. (22)

Just below, introducing the values of Dl,' and E*llllll
from (18),

oil 1/4pll

and the dielectric constant drops to 4 the value just
above thc Curie temperature. This is a somewhat
arbitrary result which depends on the sixth power term
furnishing the potential to limit the increase in po-
larization. If this term varies as the eth power of Dl it
is readily shown that the dielectric constant below the
transition drops to 1/(28 —2). For ND8D2PO8 the ratio
along an a axis is about 8 to 1.

The dielectric constants along the y and s axes (i.e.,
the two nonantiferroelectric axes) can be calculated
in a similar manner and are

022 {LP11+TPII(H O0)]+2E 1122D10

+2E 111122D10 j
24

oss= {[Pss+2'8 83(e—o. o)]+2E*IIss»0'
+E*IIIIss»0'j '.

Hence the dielectric constants along y and s will also

drop below the transition temperature by amounts de-

pending on the values of the E constants. Along s the
drop is about 4 to 1.

An approximate value of the spontaneous polariza-
tion of ND402PO4 can bc obtaUlcd from thc heat of

Hence the spontaneous polarization increases below
the transition point.

The dielectric constant along the x axis for small
applied 6elds is given by

~R= [PII+&sll(e —Oo)][»o+~DI]
+4E*IIII[DI0'+BDI0'EDI]

+6E 1lilll[D10 +5Dlo )-IDl]. (20)
Since
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transition measurements' AH of Stephenson and Zettle-
moyer' and the temperature coefficient of the dielectric
impermeability constant along the x axis determined
from the dielectric measurements of Fig. 2 of the com-
panion paper. ' The heat of transition AH has been
found to be AH=154+5 calories per mole for normal
ammonium dihydrogen phosphate. From Eq. (8), the
decrease in entropy due to ordering is in cgs units

Ao.= (4zr/2) Tpt tPP, (25)

where P& is the polarization per square centimeter.

~ C. C. Stephenson and A. C. Zettlemoyer, J. Am. Chem. Soc.
66, 1405 (1944).

The heat of transition in calories per mole is equal to

0'pdo M 2zr TsttO~pP'tM

4.187)&10'p 4.187)&10 p
(26)

where M is the molecular weight and p the density.
From Fig. 2 of reference 1, Tpll ——0.000065, &=11.5.08,
p=1.804, and since AH=154 calories per mole the in-

dicated spontaneous polarization per unit area is

Pt ——32,000 cgs units/cm', (27)

which is about twice that measured for potassium di-
hydrogen phosphate.
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A Variational Principle for Scattering*
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A variational principle is presented for the phase shifts 8~ of a central force scattering problem. This gen-
eralizes the principles of Schwinger and Hulthen for S-state scattering in that (a) it is applicable to states
of higher angular momentum, and (b) it depends explicitly on the "inside" wave function only. The Born
approximation may be obtained with the choice of an appropriate trial function. Illustrative calculations
have been made for the 5- and P-state scattering states for an exponential well nucleon-nucleon interaction
potential. A simple one-parameter trial function was utilized. The results are in excellent agreement with
previously given exact calculations.

INTRODUCTION

HE theoretical prediction of the scattering cross
section for a two-body nuclear scattering process

may be reduced, as is well known, to the evaluation of
the phase shifts. These are obtained from the solution
of the radial part of the Schrodinger wave equation.
In general, this may be a tedious numerical task, and
in recent years variational procedures have been in-
troduced by both Schwinger' and Hulthen' for the case
of S-wave scattering which reduce the amount of labor
involved. Hulthen's principle involves the phase shift
explicitly, requiring an iterational procedure in solving
for k cotbo. Hulthen has reformulated his method' so
as to avoid this difficulty, but at the expense of intro-
ducing a nonstationary element into the calculation.

In the present paper a variational expression is intro-
duced for the phase shift which utilizes what may be
called the "inside" wave function whose value is essen-
tially nonzero only within the range of the potential
well under consideration. This expression is stationary
and does not involve any explicit dependence upon the

* Supported in part by the joint program of the AEC and ONR.' J. Schwinger, Phys. Rev. 78, 135 (1950); 72, 742 (1947).
2 L. Hulthen, Kgl. Fysiograf. Sallskap. Lund, Forh. 14, No. 21,

257 (1944); Den 10. Skandinaviske Matematiker Kongres 1946,
Copenhagen, 201 (1947).

z j.Hulthen, Arkiv Mat. Astron. Fysik 3SA, 25—1 (1948).

quantity sought. Because of its explicit rather than
implicit dependence upon the inside wave function the
present principle is an improvement over Schwinger's
formulation.

d'u/dr'+ [0' l(t+ 1)/r'+ U(r) ]u =—0,
with

k'= 2mE/O' U(r) = —(2m/k') U(r). (2)

Here, nz is the reduced mass of the two-particle system
under consideration (in the case of nucleon-nucleon
scattering, zrz equals —,

' mass of a nucleon) and E is the
energy in the center-of-mass system. The variable r is
the interparticle distance and V(r) is the interaction
potential. As usual, the constant / is the orbital angular
momentum quantum number.

For scattering, the boundary conditions on u(r) are

zz(0) =0,
u(~) =cotbt s~n(kr —tshr)+cos(kr —tsar).

(3)

The problem under consideration is to determine the
constant cotb& from the solution of Eq. (1) consistent
with the above boundary conditions.

r

Variational Principle for k cotS~

The radial part (u/r) of the Schrodinger wave func-
tion satisfies the equation


