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In order to interpret the properties of the tetragonal crystal ND4sD,PO, (deuterated ADP) a thermo-
dynamic treatment has been developed which relates the observed crystal structure change and the di-
electric constant change at the transition temperature to the appearance of spontaneous polarization. For
an antiferroelectric crystal, the average spontaneous polarization is zero, being oppositely directed for ad-
jacent layers, but the square of the spontaneous polarization is large. This results in quadratic strain com-
ponents which cause a change in the crystal structure below the transition temperature. It is shown that
the change observed is consistent with an antiferroelectric arrangement with one of the a axes being the
antiferroelectric axis. The dielectric constants in all three directions suffer a large drop below the transition

temperature.

N order to evaluate the possible mechanical distor-

tions, the relations between the dielectric constants
and the changes in specific heat capacities to be ex-
pected in the tetragonal crystal ND,D,PO,! that be-
comes antiferroelectric below a definite transition
temperature ®,, a phenomenological development of
the strains, electric fields, and entropy has been made
in terms of the independent variables stresses, electric
displacements, and temperature ©. Since as the tem-
perature decreases through the transition temperature
0Oy, the measured changes are strains, remanent po-
larizations, and entropy changes, this type of formula-
tion is the most useful one for discussing the transition.
This requires the use of one of the Gibb’s potentials
G, given in terms of the internal energy function U, by

Gle—SijTij_0'®, (1)
where S;; are the strains expressed in tensor form, 7%;

the stresses, o the entropy, and © the temperature. In
rationalized mks units the differential form is

dG1= "‘Sideij‘*“ EmdDm— Jd@,

TasLE 1. First-order derivatives of the potential G, and
their physical significance.

2
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riva- between de-

tive rivatives Symbol Name

N p,e Elastic compliances at con-

aTwu Siik™®  stant displacement and tem-
perature

Si; —8°G, —OE . .

49—1):1, = ﬁ‘:,a—Dl,. =3T‘ii—m Liin Piezoelectric constants

4S;; _ —d*G,_ 9o B Ten}perature expansion co-

00  aT;00 oTy ™Y efficients

OE, Dielectric impermeability

oD, Brmn coefficients

aE,,. aGl 60‘ .

30 ~3D.00- oD, qm Pyroelectric constants

do pCT:D Density times specific heat

30 ® per unit mass at constant

stress and electric displace-
ment divided by the abso-
lute temperature ©

1 The data for ND,D,POy are given by W. P. Mason and B. T.
Matthias, preceding paper [Phys. Rev. 88, 477 (1952)].

and hence,
Sij=—0G1/9Ty; En=0G1/dDn; o=—0G/90, (3)

where E, and D, are, respectively, the electric fields
and the electric displacement components.

Developing the strains, electric fields, and entropy
in a Maclaurin series about the points of zero stresses,
zero displacements, and temperature ®,, we have up
to second derivatives of the stresses and temperatures,
but higher derivatives of the electric displacements:
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TaBLE II. Second-order derivatives of the potential G; and their physical significance.

Relationship between

Derivative derivatives Symbol Name
3%S;; —assumed Change of elastic compliances with stress
aTkza Tq,- Zero
828 3G, . . . s
3TwoD. =— 6-——————Tﬁ Twd Dn.: neglected Change of elastic compliance with electric displacement
_ 8%Fn
3T w0 T4
325;,' 6361 . . .
3Tad® =TT TR0 Tsijm Rate of change of the elastic compliances with temperature
_ 3,
aT,'iaTkz
92555 3G d?2E . .
5D (,;b = _aT--aDlaD ==3T -E)nD Qiino Quadratic strain components
n o %] n (] %) (3
2555 3G I?E, . . .
3D (;’® ==3T3 Dl 36- 3T.06" Tgijn Rate of change of piezoelectric constants with temperature
n! 2 n 1
_ 0%
8T:0Dn
92S; __ 0G _ d% o Rate of change of temperature expansion coefficients with
3602 T T OT;00 8T;00 i temperature
PEn &G & s I
D96 =303 Dl 36= 3D gD TBmn Rate of change of dielectric impermeability with temperature
a2E aBG 02
6—6;" =D 6l®2= 3D ; ® Tamn Rate of change of pyroelectric constants with temperature
% 9 [(pCT© Rate of change of temperature derivative of entropy with
@2 a0\ B temperature
do T do D do 0— 0, a piezoelectric constant relating the strain and the elec-
(6—00)= wt oD t a_é( =) tric displacement. Table I shows all the first-order
kt " derivatives, their relationships, the symbols given them,
1 &% 28% and their names.
——["_""-—Tleqr_l__ TiD,, Similar relationships and names for the second de-
20T 40T 4r 0T19D,, rivatives are shown by Table II.
992 5 All second derivatives involving two differentiations
+ i Ty(O— O)+ v D.D by stresses are neglected as being very small. Also
o . . . .
T 00 0D,dD, " neglected is the change in elastic compliance constants
with electric displacement since no measurements have
o% DO &% 0 ) been made of this effect.
t 536 (0= o)+ =(0=60) The higher derivatives of interest are third, fourth,
n'

1 o
—————D.D,Dpyt--.
319D,0D,0D,

In the differentiations, the conditions for partial dif-
ferentiation are not written but are understood; for
example,

8S:i/0T 1= (0S:;/9T 1) b, 0, (5)

i.e., the electric field and the temperature are held con-
stant during the differentiation.

In these equations there are some equivalences be-
tween the partial derivatives because of the fact that
the order of differentiation can be inverted. For example,

65”/6Dn= —(9261/6T1,(3Dn= —aEm/aT“= gijn, (6)

fifth, and sixth rank tensors representing the additions
to the G function due to third, fourth, fifth, and sixth
power products of the dielectric displacements. These
have been given the designations

’E,, BE.,
— = n0y """"——'"'_:Kmnop,
9D,dD, 9D.9D0D,
04K, X d°E,,
9D,0DADBD, " 8D.D0DADD,
= Dmnopst. (7)

With these symbols, the three equations representing
the strains, fields, and the entropy can be written in
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the forms

Si=
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Hence, as the temperature increases from below the
transition temperature where D, and D, are positive
to above the transition temperature where D,=D,=0,
an increase in entropy (i.e., a decrease in order) takes

—I' 2T0klnTlen_ TﬁmnDnDa]'

place as long as Tgnx is positive.

These equations can all be derived from a potential

G given by
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Applying the differentiations of Egs. (3) to this func-
tion, the equations of (8) result.

For tetragonal symmetry Dyq(42m) it is well known
that the tensors up to the fourth rank have the matrices

Q11 O O
gn=0; &j; Bun; |0 a1 0 |;
0 0 o33
0 0 0 8123 0 0
8ijm 0 00O 8123 0 ;
00 00O 0 gs12
0 0 0 Kip3 O 0
Kmm,= 0 O 0 O K123 O 5
00 0O 0 K23
Sir Suge Suss O 0 0
S22 Suur Suss O 0 0 .
P Suss Suss Szass O 0 0 .
TR0 0 0 Sazes 0 0o |’
0 0 0 0 S2323 0
0 0 0 0 0 S1212
le Quae Quss O 0 0
QOn2e Quu Quss 0 0 0
Qijno= Qssi1 Qssin Qasss O 0 0 .
10 0 0 Qs O 0P
0 0 0 0 Q2323 0
0 0 0 0 0  Quo
K Kuge Kuss 0 0 0
Kiee Kun Kiss 0 0 0
Kiis3 Kuss Kasss O 0 0
Knnor=10"" 0" 0 Kuw 0 0 (10)
0 0 0 0 Kz 0
0 0 0 0 0 K190

The fifth rank tensor Kynnop, for the symmetry (42m)
can be determined by applying the two conditions

g=—g; x=7v; y=%x: x=x; y=—y; g=—z (11)

and the equation of tensor transformation

0%m 0%y 0%, 0%p 0%,

The results of applying these two conditions to the
tensor Kumnops 1S that all terms are zero except

K11125= K12993 (12)

with all permutations of these terms being equal since
all of the D components can be interchanged. Hence,
fifth rank terms enter only if polarization exists along
all three axes.

For the sixth rank tensor the nonvanishing com-
ponents when all the subscripts can be interchanged are

and K 12333,
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for the two conditions

Kx11111= K222222 5 K111122= K112222; K111133 = K222233,
(13)

and hence the energy terms added by the sixth rank
tensor are

K*1nu[ D%+ D8 ] K*33333: D%+ K* 111100

X [D41D22+D21D42]+K*111133[D41D23+D42D32]
+ K*112233D21D22D23+K*113333[D21D43+D2zD4],

K113333= K 23333 3 K112933 3 K333333;

(14

where the stars indicate that the term is multiplied by
the number of different combinations that can be ob-
tained by interchanging the subscripts and dividing
by 6!

One fact that is obvious from the form of the quad-
ratic strain constants Q. is that if the spontaneous
polarization were along the z or 3 direction, the change
along x given by Q1133 has to equal the change along y
given by Qss33= 1133, and hence the crystal will still be
tetragonal. On the other hand, if the polarization lies
along either x or y, the changes introduced by the
quadratic effects are different for all three axes and
hence the crystal can change from tetragonal to ortho-
rhombic as observed experimentally. We can rule out
the possibility that antiferroelectric polarization occurs
simultaneously along both x and z by the fact that no
shear displacements of the type generated by terms of
the form Q2393 are observed.

If all the stresses are zero and we consider only the
electric displacements, all the energy terms are repre-
sented by the 8 and K terms. To determine the dielec-
tric constants for small fields we need consider only
large spontaneous terms along x and small electric
displacements in addition along x, ¥, and z. We neglect
all products of small terms above the second, and hence
the only remaining terms are

Gi= %[ﬁn"}“ Tﬁn(®— @o)][(ch+AD1)2+ D22]
+ E333+ Tﬂ33(®— @0) ]D23+ K*nu[(DlH‘ AD1)4]
+K*1122[D102D22:]+K*1133[ch2023]+ K*hun
X[ D14 AD 5+ K*111192[ D1,D% ]
+K*111133D23ch4+G0-

In a manner similar to that discussed by Kittel,? the
polarization along the antiferroelectric axis can be
calculated by requiring that the value of G shall be
the same below and above the transition temperature
and that the first derivative of Gy by Dr—which equals
the field—shall also be zero. This results in two equa-
tions:

(15)

Bu+2K*1111D12+2K* 11111 D14 =0, (16)
But4K*unD1 246K D=0, (17)

Solving these equations simultaneously, we find
D12=—Bu/K*un; K*unn=Kun*/28u. (18)

2 C. Kittel, Phys. Rev. 82, 729 (1951).

483

For any temperature, since Eq. (17) is valid, we find

2 Bu 2 PBu

D12= J— —_—
3 K*llll 3 K*llll

3 Tﬁu(@— ®o) d
35
4 Bu

Tﬂu(@"®o) ¥
= )] 19)

3
=2ZD12+ %Dlﬁ[l—;(l—!—

Hence the spontaneous polarization increases below
the transition point.

The dielectric constant along the x axis for small
applied fields is given by

AE=[Bu+ T511(0— Bg) ILD1o+AD;]
+4K* 1111 D1*+3D10*AD1 ]

+6K*111111[D105+5D104AD1]. (20)

Since
[Bn‘f‘ Tﬂu(®— ®0) ]D10+4K*1111D103+ 6K*111111D10xi
is zero for all temperatures, then

ADy/AE; = e={[ Bu~+ Ts11(O— Op) [+ 12K*1111D1¢

+30K* Dt} (21)
Just above the Curie temperature ©,,
D1y=0 and eyt=1/Bu. (22)

Just below, introducing the values of D1.? and K*111111
from (18),
e =1/4B1,

and the dielectric constant drops to % the value just
above the Curie temperature. This is a somewhat
arbitrary result which depends on the sixth power term
furnishing the potential to limit the increase in po-
larization. If this term varies as the nth power of D it
is readily shown that the dielectric constant below the
transition drops to 1/(z—2). For ND,D,PO; the ratio
along an @ axis is about 8 to 1.

The dielectric constants along the y and z axes (i.e.,
the two nonantiferroelectric axes) can be calculated
in a similar manner and are

€90 { [511+ Tﬁ11(® - @o)]+ 2K*1122D1
+2K*111122D104}_l;

ezs= {[Bast+ T833(O— Op) J+2K*1133D10>
4+ K*111133D10*} 7

Hence the dielectric constants along y and z will also
drop below the transition temperature by amounts de-
pending on the values of the K constants. Along z the
drop is about 4 to 1.

An approximate value of the spontaneous polariza-
tion of ND4D,PO, can be obtained from the heat of

(23)

(24)
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transition measurements' AH of Stephenson and Zettle-
moyer® and the temperature coefficient of the dielectric
impermeability constant along the x axis determined
from the dielectric measurements of Fig. 2 of the com-
panion paper.! The heat of transition AH has been
found to be AH=15445 calories per mole for normal
ammonium dihydrogen phosphate. From Eq. (8), the
decrease in entropy due to ordering is in cgs units

Ac= (4r/2)Ts:11.P?, (25)
where P, is the polarization per square centimeter.

3 C. C. Stephenson and A. C. Zettlemoyer, J. Am. Chem. Soc.
66, 1405 (1944).

MASON

The heat of transition in calories per mole is equal to

OoAcM 27 T80 O P M

H= = y
4.187X10%  4.187X 107

(26)

where M is the molecular weight and p the density.
From Fig. 2 of reference 1, T's;,=0.000065, M =115.08,
p=1.804, and since AH =154 calories per mole the in-

dicated spontaneous polarization per unit area is
P,=232,000 cgs units/cm?, (27)

which is about twice that measured for potassium di-
hydrogen phosphate.
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A variational principle is presented for the phase shifts §; of a central force scattering problem. This gen-
eralizes the principles of Schwinger and Hulthen for S-state scattering in that (a) it is applicable to states
of higher angular momentum, and (b) it depends explicitly on the “inside” wave function only. The Born
approximation may be obtained with the choice of an appropriate trial function. Illustrative calculations
have been made for the S- and P-state scattering states for an exponential well nucleon-nucleon interaction
potential. A simple one-parameter trial function was utilized. The results are in excellent agreement with

previously given exact calculations.

INTRODUCTION

HE theoretical prediction of the scattering cross
section for a two-body nuclear scattering process
may be reduced, as is well known, to the evaluation of
the phase shifts. These are obtained from the solution
of the radial part of the Schrédinger wave equation.
In general, this may be a tedious numerical task, and
in recent years variational procedures have been in-
troduced by both Schwinger! and Hulthén? for the case
of S-wave scattering which reduce the amount of labor
involved. Hulthén’s principle involves the phase shift
explicitly, requiring an iterational procedure in solving
for k cotdp. Hulthén has reformulated his method?® so
as to avoid this difficulty, but at the expense of intro-
ducing a nonstationary element into the calculation.
In the present paper a variational expression is intro-
duced for the phase shift which utilizes what may be
called the “inside’” wave function whose value is essen-
tially nonzero only within the range of the potential
well under consideration. This expression is stationary
and does not involve any explicit dependence upon the

* Supported in part by the joint program of the AEC and ONR.

! J. Schwinger, Phys. Rev. 78, 135 (1950); 72, 742 (1947).

2 L. Hulthen, Kgl. Fysiograf. Sillskap. Lund, Forh. 14, No. 21,
257 (1944); Den 10. Skandinaviske Matematiker Kongres 1946,
Copenhagen, 201 (1947).

#L. Hulthén, Arkiv Mat. Astron. Fysik 35A, 25-1 (1948).

quantity sought. Because of its explicit rather than
implicit dependence upon the inside wave function the
present principle is an improvement over Schwinger’s
formulation.

Variational Principle for & cots;

The radial part (u/7) of the Schrédinger wave func-
tion satisfies the equation

Su/dr+[ R —10+1)/7+U(r) Ju=0, (1)

B=2mE/l, U)=—Qm/B)V (). @)

Here, m is the reduced mass of the two-particle system
under consideration (in the case of nucleon-nucleon
scattering, m equals 3 mass of a nucleon) and E is the
energy in the center-of-mass system. The variable 7 is
the interparticle distance and V(r) is the interaction
potential. As usual, the constant / is the orbital angular
momentum quantum number.

For scattering, the boundary conditions on u(r) are

1#(0)=0,
u( )= cotd; sin(kr— ilr)+ cos(br—ilr).

with

©)

The problem under consideration is to determine the
constant coté; from the solution of Eq. (1) consistent
with the above boundary conditions.



