
NUM BER THEORY

number theory correction terms for Eq. (48) are

5V(E,)i „=R(ai „)

R
~ J

t'
exp[2'lri (lnq+ mn2+ nn, )]

E~~ B(ni, no, n3) &Ea

Xdngdn&dn& I, (49)

where the number of states less than E, is G(E,)= V(E )
+Z&, , „a& „.It would appear that to compute Eq. (49)
by analogy to Kq. (47) one might proceed as follows. In
Kq. (49) dn; is replaced by dp, dq;/h and n; is replaced by

n ;= dp, dq, /h=n, (E., Lp, g] ), (50)
II(~, ~) «.

i.e., by the area of the p,q, cross section of the surface

H(pq) =E, in phase space. ([p, q] means the set of p's
and q's except p, , q,:.) Since this is subsequently to be
integrated over all phase space by Eq. (49), in Eq. (50)
when substituted into Eq. (49), E, is again replaced by

H(pq). Thus Eq. (49) becomes, computed in analogy
to Eq. (47),

~tmn= exp{2vri(tn~(H(p, rl) [p, q]q')
4 &(P, a) &&.

+mn, (H(p, q)Lp, q],')

+nn, (H(p, V)Lp, 0],'))} dp, dA/h', (51)

where the rs; in the exponent are the cross sections as
given by Kq. (50).

This scheme has been applied to give exact results
for the simple problem of the particle in a box and the
harmonic oscillator. Its success, or some modification
of it, when applied to problems where the variables are
not separable or there are several particles with inter-
action remains to be determined. One may expect that
the critical point method. , and the methods of com-
binatorial analysis will find application in spch problems.

It is a pleasure to acknowledge the benefit of numer-
ous discussions in the course of this work with M. C.
Steele.
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The methods of number theory are used to find the magnetic
properties of a free electron gas. The mathematical procedure
which connects number theory to quantum mechanics is given in
detail since the same or a similar method may be useful in other
problems of solid state and nuclear physics.

The magnetic moment calculation is given in three parts. For
the case in which surface states are not considered the results
obtained are in agreement with those of previous workers. But
when the use of a finite container (rectangular box) to hold the
electrons is considered, it is no longer possible to neglect surface
states. Through the use of the WEB approximation it is found
that the surface states give rise to new size-dependent terms in
both the oscillatory and nonoscillatory parts of the magnetic

moment. The oscillatory corrections are generally negligible com-
pared to the usual de Haas-van Alphen eRect. However, the non-
oscillatory correction, which is diamagnetic in character, can be
larger than the Landau diamagnetism for properly chosen mag-
netic field strengths and containter sizes.

The calculation is concluded with a consideration of the eRect
of the electron spin. It is found, in agreement with other workers,
that the only eRect of spin on the oscillatory part of the magnetic
moment is to introduce a phase change of &7r in alternate terms.
The "surface" diamagnetic correction due to a finite container is
found to be independent of electron spin.

Details on the use of the method of critical points for evaluating
integrals asymptotically are given in the appendix.

I. INTRODUCTION

'HE extension of Landau's' original work on the
diamagnetism of free electrons has already been

undertaken by several different methods. Landau'
himself showed that in addition to the nonperiodic
diamagnetic susceptibility the electron gas should ex-
hibit the de Haas-van Alphen' effect. Sondheimer and

*Based on a thesis presented for the degree of Doctor of
Philosophy at the University of Maryland, June, 1952.

' L. Landau, Z. Physik. 64, 629 (1930}.
2 D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939},

(quoting L. Landau).
3 W. J. de Haas and P. H. van Alphen, Proc. Acad. Sci. Amster-

dam BB, 1106 (1930).

Wilson4 have recently confirmed this result by an
elegant use of the density matrix. However, neither of
the above-mentioned papers attempted to find the
effect brought about by using a finite container to hold
the electrons. It is well known' that the absence of
diamagnetism of free electrons in classical theory is
dependent upon the behavior of the electrons on the
surface of the container. The preceding paper in this

4 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A208, 173 (1951).

'See, for example, J. H. Van Vleck, Theory of Electric and
Magnetic Susceptibilities (Oxford University Press, London, 1932),
p. 100.
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issue by M. F. M. Osborne deals at great length with
the relation between the classical and quantum theo-
retical results for a cylindrical container. In the present
paper, we shall deal with a rectangular box as the con-
tainer. Although this choice of geometry has the
drawback of not allowing the boundary conditions to
be satisfied on all the surfaces, it has the advantage of
permitting an analytical solution for the surface eGects.
On the other hand, Osborne's geometry only allowed
an order of magnitude calculation. At first we shall
neglect the surface sects and show how number theo-
retical methods can be used to obtain a result which is
in complete agreement with other workers. "Following
this we shall extend the problem to take into account
the finite size of the box. This calculation will use both
the WEB approximation and number theory. Finally
we shall indicate how the electron spin aGects the result.

G. PRELIMINARY FORMULAS AND THEIR RELATION
TO NUMBER THEORY

A. Free Energy

The free energy Of a system of E noninteracting
electrons is

F=iVE0 kT Q, l—og(1+eisa E''i"r), (1)

where Eo is the Fermi energy, k is Boltzmann's con-
stant, T is the absolute temperature, and E; are the
energy. levels for any one of the electrons. Eo and S are
related .through the normalizing condition

ill'= Q; 1/(1+e's' E0»'r). (2)

Both Eqs. (1) and (2) are derived on the assumption
that there are only electrons of one value of spin
present in the system. When both values of spin are
allowed, all sums are multiplied by two if E still refers
to the total number of electrons. ' We now assume the
existence of an energy distribution function p(E), where

G(E)= " p(E)dE (3)

represents the number of states having energies equal
to or less than E.Then the sums in Eqs. (1) and (2) can
be replaced by integrals. The free energy can then be
written

~
00

F=1UEO—kT p(E) log(1+e'~' s&i~ )dE, (4)

where E~ is the lowest energy level of the electron. In-
tegrating by parts gives

F=SEO —kTG(EI) log(1+e's—' ~~"~~)

+)" G(E)f(E)dE (5)
El,

~ This is true when the spin interaction with applied fields is
not accounted for. When spin energy is included, one has two
independent sums to consider,

where f(E) is the Fermi function

f(E) 1/(1+ s(z zy—)/kT) (6)

so that

M = (BF/8H—)zo —(d(F ——NEO)/BH—)Ep. (10)

C. Relations to the Theory of Numbers

From Eq. (10) it is clear that we must find F before
computing M. But Eq. (5) which is the desired ex-
pression for F shows that our immediate aim is to
evaluate the function G(E). For the particular problem
of the diamagnetism of free electrons, Landau' used
the Euler-Maclaurin formula for getting G(E). In the
course of repeating Landau's calculations, the present
author found that the results obtained by using the
Euler-Maclaurin formula depended not only on the
order of summation over quantum numbers but also on
the particular form of the formula. Since it was believed
that the theory of physical phenomena should be
independent of order of summation, a detailed study
was undertaken to resolve the difFiculty. It was at this
stage that the. concepts of number theory were first
employed.

Let us suppose that for a particular problem the
solution of Schrodinger s equation gives rise to an eigen-
value relation in which the energy levels are expressed
as explicit functions of quantum numbers. ' Then by
fixing the energy parameter at E the eigenvalue relation
will describe some surface in quantum number space.
Now the computation of G(E) resolves itself into the
problem of counting the number of quantum states
within or on the particular energy surface. This
counting is completely analogous to the number theory
problem of finding the number of lattice points within a
closed surface located in a grid of discrete unit cells. (A
lattice point is defined as a point having integers for

'This formulation of the magnetic moment follows the de-
velopment given in Mott and Jones, Properties of 3fetuls and
ALLoys (Oxford University Press, London, 1936).

8 It will be shown later that the use of the WEB approximation
will allow the computation of G{E) even when the eigenvalues
are not known as explicit functions of the quantum numbers.

B. Magnetic Moment

In all the work that follows, the magnetic moment
will be obtained from the formula'

M = (BF—/BH)r, i,
where M is the magnetic moment, H is the magnetic
field intensity, and V is the volume. We shall only
consider systems in which E is held constant so that
Eo(X, H) and H can be considered as the variables
that determine M. Then Eq. (7) can be written as

M = —(aF/aH) zo —(aF/aEO) Ir(dEO/dH). (g)

But from Eqs. (1) and (2) we have

(BF/BED) ir E p; 1/——(1+—e&s* ~0»"r)=0 (9)
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coordinates. ) The discreteness of the quantum numbers
is sufIicient to indicate that there will be corrections to
the result obtained by merely computing the volume
enclosed by the energy surface.

Lattice point problems have been considered in great
detail by mathematicians. The problem of the lattice
points of a circle has received particular attention since
it is considered the most fundamental as well as the
most interesting. Generally the mathematician is more
concerned about finding the order of magnitude of the
corrections to the number of lattice points than actually
getting an explicit relation for the desired total number.
Although order of magnitude relations are of value in
solid state problems, it was felt more desirable to strive
for explicit relations in all cases. Unfortunately we shall
see that even in relatively simple quantum-mechanical
problems the task of getting an explicit representation
for G(E) becomes quite formidable. Number theorists
have used a variety of methods in solving lattice point
problems. The particular procedure to be used through-
out this paper follows closely the work of Kendall' on
the number of lattice points inside a random oval.
Details of the method as applied to quantum mechanics
will be given in the text that follows.

III. NO SURFACE EFFECTS (SPINLESS ELECTRONS)

We first consider the magnetic properties of a spinless
electron gas enclosed in a box of dimensions L, L„, L,.
This calculation will be restricted to such magnetic
field strengths and dimensions of the container as to
avoid (seemingly) the need for considering the effect of
surface states.

if we assume periodic boundary conditions in the z di-
mension. With this assumption, the quantum number
n, takes on all positive and negative integer values
(including zero).

We will now use the WKB approximation to solve
for the eigenvalue E&, since this is the method which
will be subsequently applied to estimate the effect of
surface states. Equation (13) is the Schrodinger equa, -
tion of a one-dimensional system with a classical Hamil-
tonian of the form

where

3'. =p'/2m+ U =Et)

1 fhn„e
2m EL„c

(16)

(17)

Inserting the value A„=Hx, the classical turning points
of the motion become

che„c
x= a (2mEr) &.

eHL„eH
(18)

(For symmetry it is convenient to set the origin of
coordinates such that the walls are at +L,/2. ) Using
these turning points in the WKB quantum condition

pox= (n+-', )h (19)

field is clearly that of a free particle so that we can
immediately write. the eigenvalues as

E2=h'n '/2mL '

A. Schrodinger Equation
leads to the eigenvalue relation

If the applied magnetic field H is along the z axis,
the Schrodinger equation for an electron in the box can
be written as

(2o)Et =2PH(n+-,'),

e'A„' 2ek B—h'V'+ — A„—f=EP,
c2 ci By2m

where H=V)&A and we choose A=(0, Hx, 0). This
equation can be separated into two ordinary differential
equations if we assume a solution of the form

(12)lt =4(x)t (s)e"'""l".
Substituting Eq. (12) into Eq. (11) and introducing
separation constants gives

—h' d'p 1 jrhn e—-Ay
~

E, y=o, (13)—
2m dx' . 2m E L„c

and —h' d'f'
E2i =0, —

2m

where E=Er+E2. The motion in the direction of the
' D. G. Kendall, Quart. J. Math. (Oxford) 19, 1 (1948).

where P =eh/2mc, the Bohr magneton. These levels are
recognized as the energy values of a simple harmonic
oscillator having a frequency of eH/27rmc. From Eq.
(18) we see that the equilibrium position of the oscillator
(center of the orbit) is chn„/eHL„and the "orbit
radius" is (c/eH)(2mEr)&. The eigenvalues given by
Eq. (20) are highly degenerate because of the multitude
of n„values that can be assigned (n„ takes on the same
range of values as n,) in the orbit center. In fact, the
degeneracy will be fixed by the maximum value that
can be assigned to n„and still have the parabolic
potential determine the turning points. For

~ n„~ greater
than this critical value, Eq. (20) will no longer be
applicable, since one turning point will then be fixed
at +L,/2, where the potential is assumed to be infinite.
We will now obtain an explicit expression for this
degeneracy since this will clarify the approximations
to be made. If we fix the value of E~, the harmonic
oscillator solution, Eq. (20), will fail when the condition
U=E& is satisfied simultaneously with the condition
that one of the turning points is at +L,/2. This leads
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D=eHL L„/ch. (22)

to the restriction

~ sv~ &
~
eHL, L„/2ch (L—„/h)(2mEt)'~

on e„.The total degeneracy of the level E& is therefore

(eHL L„/ch) (2L„—/h) (2nzEi)'*. (21)

If e„ is allowed to take on values outside of the above
range, we would have to obtain a new expression for
the eigenvalues. "The states resulting from this exten-
sion in e„are our so-called surface states. At this point,
we follow Landau' in specifying that for suSciently
strong magnetic fields and/or large enough L, we can
neglect the second term in Eq. (21) and designate the
degeneracy, D, of the oscillator levels by

problem of finding the number of lattice points within
such a cylinder bounded by the m=0 plane. Since the
degeneracy is independent of E we need only consider
the two-dimensional lattice point problem in the e, m,

plane. In that plane Eq. (24) describes a parabola
which is cut oG by the line e =0. The particular number
theory problem of computing the lattice points under
such a curve had not been considered at the time this
work was initiated. But following the work of Kendall'
it is possible to obtain here an explicit representation
for the number of lattice points. A detailed account of
this calculation is given below, since the method em-
ployed may be of value in other problems.

Let us allow the parabola in the e, m, plane to be
randomly located but with its axis parallel to the m axis.
Then we can write the equation of the parabola as

This specification is equivalent to saying that the orbit
radius corresponding to energies of the order of the
Fermi energy is small compared to the dimension I.,
When E& is of order 1 electron volt, this requires

where
E A(=e, irs)—'+B(tt+ ,' n-i)—,

A =h'/2 rLis' B=2PH.

(25)

HL„))2c(2mEi) */e 10. (23)

This condition is satisfied even for relatively low fields
if we use macroscopic dimensions.

Before proceeding with the calculation of the free
energy it should be noted that, in treating the magnetic
susceptibility with a classical model, omission of the
surface states under any circumstances would lead to a
huge diamagnetism. ' The question therefore arises as
to the legitimacy of our neglecting the surface states
in the quantum-mechanical case. At this stage, we

merely indicate that some compensation was made for
omitting the surface states when we increased the
degeneracy of the interior states from Eq. (21) to Eq.
(22). If this compensation happens to restore the effects
of the neglected states, then we have justified the use
of the increased degeneracy. Detailed calculations given
later in this paper will show that the compensation is
fortuitously exact, but without such calculations it is
not at all obvious that Landau's argument for neglecting
the surface states is valid. An elaboration of this point
was believed to be in place since there has appeared in
the literature" a somewhat misleading qualitative
physical explanation to justify Landau's approximation.

Calcllatiort of G(E) arid the Free Ertergy

combining of Eqs. (20) and (15) gives

E=h'ts '/2mL '+2PH(ri+-', ). (24)

This level is degenerate in the quantum number m„ to
the extent D given in Eq. (22). Equations (24) and (22)
describe a parabolic cylinder in quantum number space.
Our calculation of G(E) is therefore equivalent to the

' The quantum number n„can actually take on all integer
values in the range [ a„~ &~~ ePL,L„/2ch+(L„/h) (2mE&) i

~
. We will

deal with the complete range further on in this paper."See, for example, F. Seitz, Modern Theory of SoHds (McGraw-
Hill Book Company, Inc. , New York, 1940), p. 585.

G(E) D g P o es~i(sal+kas) (26)

The Fourier coefFicients a„, ), depend upon the parameter
E as well as the factors A and B.Before proceeding with
the determination of a„,& we must examine the question
of where the parabola should be cut off. In the final
analysis we must set n~ ——n2 ——0, in order that the
parabola given by Eq. (25) be correctly oriented in
accordance with the quantum-mechanical requirement
specified by Eq. (24). Further, the lowest value of rs is
supposed to be zero. However, by setting a& ——0 and
leaving the cutoG of the para, bola at n =0, the Fourier
series will only count one-half of the states along the
n =0 line. This would be due to the large discontinuity
experienced by the number of lattice points as one
slides the parabola (along the e axis) so that the cutoff
passes through an integer value of e. The Fourier series
would then give the average of the two values on either
side of the discontinuity. Since the discontinuity would
correspond to the number of states along n=0, we
would be undercounting the states by one-half the
amount along that line. In order to avoid this difhculty
and still maintain the requirement a~ ——+2=0, it is
convenient to move the cuto6 from n=0 to e= —-', .
This shift of the cutoR' increases the area enclosed by
our closed curve but it does not change the number of
lattice points. The particular choice of e = —

~ for the
cutoG may appear to be arbitrary at this stage, since
we could have chosen any value in the range

—1&m&0

Now the number of lattice points under this parabola
(cut off by the line ri = nt) will be periodic in ni and crs

with a periodicity of a single lattice spacing (unity)
along either the m or e, axes. We can therefore represent
G(E) as a doubly periodic function in a Fourier series,
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where c(u, v) =unity or zero according as (u, s) does or
does not fall in the range

Av'+73u E, u—0. (28)

The summation in Eq. (27) is extended over all lattice
points but only a finite number of these contribute non-
zero terms. From Eq. (26) and the periodicities in n&

and 0.2, it follows that

~l ~1 G(E)
&
—2m i(aa1+Xa2)d'& d& (29)

If we now make the transformation

without changing the number of lattice points. We
shall see that the value m= ——,

' simplifies the problem
considerably.

Let G(E) also be represented by the sum

G(E) =D P c(u, n—o, m+2 —ni), (27)

where

2DB& P),(—1)"+, 2 Z . 4(~, y) (38)
A~~ )=o.=i (2g)i

can be expressed as

R(a„, ),) = (—1)"BlU)(w, y)/A4. (2~)',
where

w =4m.E/8, y =2or7 (E/A) l, (36)

and U, (w, y) is the —', order Lommel function of two
variables discussed by Watson" in his Bessel function
treatise. For ~=0, we have

R(ao &) =E'A lj)(y)/mBXl, - (37)

where J, is the ~ order Bessel function of the first kind.
From the results given above, G(E) can be explicitly
expressed as

Efg k

G(E) = +2D Z,~:(y)
3BA& ) =& gBXz

I=eW2 —Q.I, v =m, —n2,

and use Eq. (27), we get

(30) 1 for X=O

2 for ) /0.

a ( 1)c,r eowi(au+xv)dud&

Au2+Bu& Z

(31)

Since n~ and n2 will both be set to zero and the cutoff
will be at I=—~o, it follows from Eq. (30) that the
limits of integration in the I, v plane will be

u: from 0 to E/8;
v: from —(E/A)l to (E/A)l.

The free energy can now be given formally by sub-
stituting Eq. (38) into Eq. (5). It is noted that by
shifting the cutoff to e = —

2 we have changed Eg
from PH to zero. This is very convenient in Eq. (5),
since G(Ez) then becomes zero. In fact, this is the
second advantage of having chosen e = ——', instead of
some other value for the cutoff. If we now take into
account the factor of two due to spin degeneracy, and
require Ep»kT, the free energy can be expressed as

From Eq. (31) we have

a„~=(a-;-~)*; a„, g=(a „,),)*, and a„, g ——a„, )„

so that G(E) can be written as

G(E)=D Z a;x=DLao, o+2& R(a., o)

+2+ R(ao, g)+4 P R(a„,g)] (32)
«, )=1

(where R denotes "the real part of"). Utilizing the
symmetry of our boundary curve with respect to v, it
follows from Eq. (31) that

F—/ED=
—16vrV(2m)&E ol'& 5x'f'IoTq '

1+
15k' 8 (Eo )

~ 4L,L„(2m)'4
E'~:(y)f(E)«-

L,'h'X& ~
D

2Ve(2m) tPtH'~'

2h2 Sj2

df(E)
X I' Hl(w, y) dE (39)"

~o

B. Magnetic Moment

R(a„, ),)= (—1)") cos(2orzu) cos(2orho)dud~. (33)

ao, o =4E~/3&A '*. (34)

(This is the first advantage of having chosen u= ——,
'

as the cutoff. ) For «WO, the general coefficient R(a„,~)

A@2+Be~&

The coeKcient aD, D which corresponds to the area of the
closed curve is found to be simply

The magnetic moment is obtained by substituting
Eq. (39) into Eq. (10), and carrying out the indicated
differentiation. Since the integrated term and the single

~ G. N. Watson, Treatise on The Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1944), pp. 537—550."It is noted that the terms with ~NO have been transformed
so as to obtain the derivative of the Fermi function under the
integral. The introduction of the 5/2 order Lommel function
arises from the relation

J'U-, (zv, y)dE='J3Us(m, y)/2~~,
which is encountered upon partial integration.
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(—1)"2 Ve(2m) &P&

3E —Q QPg
~2jg2gKS/2Oa 1

5 I." df(F)
X Ht -~ U&(w, y) dE

~o dE

2rcH—& t" df(E)
X ~t UI(w, y) dE

p ~o

sum on )I, in Eq. (39) do not contain H explicitly, they
do not contribute anything to the magnetic moment.
Differentiating the double sum gives:

We now impose the condition

E,»pH (42)

in order to allow the use of the asymptotic expansion
of the Lommel function U„(w, y).

1. Terms with X=O

For purposes of later discussion it is now convenient
to break up the sum of Eq. (40) into parts, i.e. X=0
and X/0. For X =0, we have the asymptotic expansion"

(w v2r)
U.(w, 0) cosl ——I++ (—1)'

E2 2)
—2r2X2pH212 t

" df(E)
Upo(w, y) dE . (40)

KA ~O
'

dZ

(W ~
2p —v+2-

I'(~—1—2P) I
—

IE2)
(43)

The last two integrals in Eq. (40) arise from the relation

aU„,(w, y)/aH = mzEU I (w—, y)/PH
7PU»—2(w, y)/. a. (41)

Equation (40) is an exact representation of the mag-
netic moment. But in order to obtain an answer in
integrated form, we have to impose some restrictions
on the relative magnitudes of E and pH. In addition,
we will limit ourselves to the low temperature region.

for lwl large. In our case, Eq. (42) expresses the con-
dition lwl large. Since the series in Eq. (43) is rapidly
convergent, we need only retain the 6rst term of the
sum. Thus we have

(42roE p (22rirE 2v2r )
U,I,0 I-.o.

l8 ) (PH 2)
++2—v/[I'(p —1)(22rgE)2—vj (44)

This gives rise to the sum

(—1)'2Ve(2m)&P& 5 t
" (22r~E 52rq df(E)

v=1 2rok2CK212 2 vl o & 8 4 ) dE

4g&H " df(E)
E& dE

p& Jo dE

2rirH& J.
" (22rzE 32r) df(E)

cos
I

——
I

dE (45)pJ, &a 4)dE
in the value of M. The second integral of Eq (45) is a
standard type Fermi-Dirac integral. At low tempera-
tures we have

df(E) 2r2 ( kT) '
E~ dE= E,*

1——
l

I—, (46)
dE 24 (Eo )

so that this part of the sum becomes

8Ve(2m) &PHEo& 2r' (kT ~
' ~ (—1)"

(47)
2rokoe 24 &Eo ) .-i g2

But since
~ (—1)' —2r'

who investigated the temperature dependence of the
Landau diamagnetism.

The two other integrals of Eq. (45) give terms in M
which are periodic functions of the magnetic field.
These integrals can be evaluated by means of contour
integration. It is found that their contribution to M is

(2rzEo
52roirkTH2 COSI

~ (—1)'2Ve(2m)&P2 0PH 4)
2P& sinh( ~k2Tr/PH)

a~1 K2 12
Eq. (47) becomes

—2Ve(2m)&PEo&H 2r2 (kT) '
(49)

3hoe . 24 EEo )
This part of the magnetic moment is not periodic in H.
In fact, it is identical to the ordinary Landau' diamag-
netism with the correction due to temperature. The result
obtained here agrees with the previous work of Stoner'4

"E.C. Stoner, Proc. Roy. Soc. (London) A152, 672 (1935).It
is noted that Stoner expresses his result in terms of ep, the Fermi
energy at T= O'K and H =0, whereas the Ep used in the present
work is a function of T and Z. Ep can be expressed as a function
of 6p, T, B, to bring the two results into coincidence.

(2rzEo 32ri
2r2irkTH& Sin

l

EPH 4)
P sinh (2ro~k T/PH)

( kT l (2r«o
2r4~2(kT)2 coshl 2r'"

I
sin

PH) & PH 4)
P'H& Sinh'(2r'xkT/PH)

(2rtrEo 32r)
2r2~2kTEo cos

E pH 4)
P2H

& Sinh (2r2ak T/PH)
(50)
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If we now invoke our conditions:

E »kT and Eo»pH,

tribution to M from these terms is

(—1)'4m kTVe(2m)'*P'iH&

we can neglect the first three terms appearing in the
brackets of Eq. (50) compared to the fourth. The sig-
nificant contribution to M from the terms with X=O
therefore becomes (using the definition of P, the Bohr
magneton, to transform the nonperiodic term)

X=1 a=~L, (H, X)

(xliEO 2+X'mPL. 'H 3m l
cos

(2X'mL, 'P ~EO ) ( PH lych' 4 )
xi

gh~ pH'p sinh(~'-xk T/PH)—4irU(2m)1P'E, &H- m2 (kT ~
'-

3h' 24 CEO )
(54)

where liz(H, X) is the integral part of

XL,(2m) &PH/hEoi.(vrKEp 3m)
(—1)"2mkTUe(2m)'Eo cos~

00 &PH 4) C. Discussion of the Magnetic Moment
(51)

~'*h'eP lH l sinh(m-'1~k T/PH)

2. Terms mth XNO

For the case Eo»pH, the magnetic moment is the
sum of Eqs. (51) and (54). We have already discussed
the nonperiodic term. The remaining terms are all
periodic functions of II.We shall separate the discussion
of the single sum in Eq. (51) and the double sum in Eq.
(54), but we identify the totality of these sums with
the experimentally observed de Haas-van Alphen effect.

Consider now the single sum on ~. If we express our
result in terms of the magnetization, M/U, then both
the amplitudes and frequencies of all the terms in this
sum are independent of the dimensions of the box.
These terms are identically those found by Landau'
in his theory of the de Haas-van Alphen effect.

We now examine the double sum in Eq. (54). The
fundamental difference between these terms and those
of the single sum is that the amplitudes and frequencies
are now functions of the dimension L, We will now
propose an argument" to show that the contribution of
this double sum can be neglected. Suppose there is an
uncertainty 8L, in the dimension L,. Then in order for
the cosine term to have a definite value (when H is fixed),
we require that 8L, should not change the phase by
more than m./2. This leads to the condition:

Before obtaining the contribution from the terms
with XWO, we must examine the relative magnitudes of

y and m appearing in the argument of the Lommel func-
tions. For X/0, we find that y x when E=EO and
H)10 gauss (if L, is of order cm). Therefore, if we
require ~w~&)1 in our asymptotic solution, we must
simultaneously require

~ y ~
&&1. This situation arises

from the physical parameters which determine the
argument of the Lommel functions. Unfortunately it
also means that we cannot use (without caution) the
asymptotic development for U„(w, y) given by Watson, "
in which only ~w~)&1. When both ~y~))1 and ~ui~))1
we can use the method of critical points (see the
appendix) to get the asymptotic development of
U„(w, y). The result is dependent upon the relative
magnitudes of y and m. The three expansions for
U~(w, y) are given below:

(w y' 3~q (2q l w&cosy
cosl + I+ I I y&

E 2 2(v 4 ) Em i (w' —y"-)
bL, & ah'/SX'mPL, H. (55)

1 ( 7P 'l cosw
U~ (w, y) ~c —cos

~
w ——

~
+, y = 'ie

2 E 4) 24'w'

(2) & w&cosy
y&m.

. En.) (w' —y')

The singular case of y =@ is not of great physical sig-
nificance, since it only occurs at a specific value of H.
We are more concerned with the other cases since there
H can take on continuous values. Before proceeding to
the moments resulting from XWO, we note that y &zo
requires that (for E=EO)

If we set X =1 and ~ equal to the lowest possible value
compatible with Eq. (53), this condition becomes

bL. &2~h/Sm~E, ~. (56)
(52)

If we use the free electron value for m and Eo as 1 ev,
this requires

X & l~hEp&/L, (2m)'PH. (53)

After carrying out the calculation to get the magnetic
moment it is found that only those terms arising from
the condition y&m are significant. The specific con-

BL.&3X10 ' cm.

This severe restriction on the uncertainty in L, cannot
be met in a laboratory specimen. Therefore, the cosine
term in the double sum will average to very nearly
zero. However, as f~: grows, the restriction on 6L, becomes
less severe. In fact, the above argument fails completely
when ~&&X. Under such circumstances we have another
factor which will nullify the significance of the double

"The author wishes to thank Professor M. H. Johnson for
suggesting this argument.
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sum. It is the damping factor

1/sinh(2rpiikT/PH).

For ~ large the damping factor will make the amplitude
of the oscillations negligible. As a result of this analysis
we can completely neglect the double sum given by
Eq. (54). This is equivalent to saying that the "Landau"
counting of states leads to no significant size effect in
the magnetic moment. This conclusion is consistent
with the fact that we did not include any surface states
in this part of the calculation.

IV. SURFACE EFFECTS (SPINLESS ELECTRONS)

The results given in Sec. III are dependent on the use
of an eigenvalue degeneracy given by Eq. (22). We have
already indicated that there is no a priori reason for
believing that this degeneracy takes proper account of
the surface states in a finite container. In this section
we will determine the effect of surface states by means
of the WEB approximation and number theoretical
methods.

A. Distribution Function G(E)

The method we shall follow here is different from
that used in the previous section where we utilized an
eigenvalue relation with an assumed degeneracy. To
find the effect of the surface states with such a method
would first require an appropriate eigenvalue relation.
Although it is possible to accomplish this by means of
the WEB approximation, the resulting expression does
not give the energy as an explicit function of the three
quantum numbers. Because of this difficulty, it is
easier to leave the quantum number m in phase integral
form and express G(E) as a triply-periodic Fourier
series in the quantum numbers. We shall show that
such a procedure will allow us to draw certain general
conclusions about the magnetic moment of an electron
gas in a finite container.

We start with the WKH quantum condition for the
motion in the x direction

Pdx= (n+-', )I2.

is made about a degeneracy. If the counting is done
properly, all questions of degeneracy will be auto-
matically answered. Let G(E) be represented by a
triply-periodic Fourier series

G(E) —p p p a e2ai(say+ka2+pap) (60)

where nl, o.2, a3 correspond to translations along the
e, e„, e, axes, respectively. In order to avoid a discon-
tinuity in G(E) when i2&, np, np are all set to zero we

will move the lower limit of e from 0 to ——,. This is
done to count all the states in the e„n„plane. Leaving
the cut-oG plane of the surface at n =0 would result in
counting only one-half the states in the e„e„plane.

Following the methods in Sec. 3 we find that

G(E)= ap, p, p+ 2 P R(a„,p, p) +2 g R(ap, y, p)

+2 QR(ap, p, ~)+4 P R(a„,y, p)
p=l «, X=1

I

+4 Q R(ao, x, ,)+4 P R(a„o,p)
X,p=1 K, Jib=i

+8 P R(a„g „), (61)
Kthtg=1

where
fO

R(a„,~ „)= (—1)"
i cos(22riin) c os(2 2)rn„)J46

(e)
)& cos(22rpn, )dndn„dn„(62)

and the integration" is over the volume r(p), throughout
which p is a real number This volume will include both
the harmonic oscillator states of Sec. III and our surface
states. Consider first the principal coefficient ao, o, o

which corresponds to the volume of our energy surface.
This coefficient will be by far the largest term in the
expansion of G(E). The other terms will represent the
number theory corrections to the replacement of a sum

by an integral.

&. The ao, o, o Term

From Eq. (62) we have

If we suppose xl and x~ are the classical turning points
for a given orbit with energy Ei, we have

ao, o, o=R(ao. o, o) = &Ldsvds (63)

where, for our problem,

(58)
Integrating first over e, using the upper limit

2
pdx

p = L2mEi (hn„/L„eHx/c)2]'——
E= (hpng2/2mLP)+Ei.

(59)

Our number theory problem is now to count the lattice
points within or on the energy surface E in the three-
dimensional quantum number space. No assumption

and the lower limit zero, gives

2 f
h~ ~

~'(P)

(64)

'6 The lower limit for the I appearing in Eq. (62) is zero. This
results from the shift in cutoB as explained in Sec. III.
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where r'(p) is the volume in x, n„, m, space throughout
which p is real. It is now more convenient to integrate
over n„ first. The limits on e„are determined by the
condition p =0. This gives the upper (u) and the lower

(l) limits

(m„)„=eHL„x/hc+ (L„/h) (2mEi)**,

(r/„) i =eHL„x/hc (L„/h—)(2mEi)».
(65)

The limits on x are determined by the extreme values
of the classical turning points. By assuming an infinite
potential at the walls of the box, these limits become

(x) =2L„(x)i= ,'L, . —— (66)

2. The u„, p, p Terms

Although the two methods of counting give the same
total volume term, it is evident that the corrections will

be different. Qualitatively, the energy surface will

approach that of Sec. III as H becomes large, since the
harmonic oscillator states then comprise the greatest
part of the volume. Under such conditions, one might
expect that G(E) would be given by Eq. (38) plus higher
order corrections. This conclusion could be made still
more plausible by allowing the dimension L to be
large. However, the situation for low fields and finite L
does not oKer any obvious conclusions. Under such
conditions the eKect of the surface states is emphasized.

From the results given in Sec. III we know that to
compute the magnetic moment we need only consider
those correction terms in which the frequency of the
oscillatory part is not a function of the dimensions of
the box. In the present Fourier expansion, this corre-
sponds to using only the terms R(a,, o, 0). Our immediate
task is therefore to calculate those coe%cients. It seems
plausible that the results of Sec.IIIshould be identifiable
in such a calculation, In this sense we have some control

Finally, the limits of n, are obtained directly from Eq.
(59) with Ei set to zero. This gives

(e,)„=L,(2mE) '/h, (e,) i = L,(—2mE)»/h (67. )

Having thus defined r'(p), we carry out the integration
of Eq. (64) in the order e„, x, n, Thi.s gives

ao, 0, p =4s V(2mE) '/3h
&

which is exactly the number of states for free electrons
in a box without a magnetic field. In fact, Zq. (68) is
identical to the result obtained in Sec. III when we
modified the degeneracy to eliminate the need for
calculating the eKects of surface states. - To this extent
the calculation given here is a justification of Landau's
argument. From a physical point of view, our calcula-
tion shows that Landau's overcounting of the harmonic
oscillator states exactly compensates his neglecting the
surface states.

on the validity of the analysis. From Eq, (62), we have

Now we break the integral into two parts corresponding
to the oscillator states and the surface states. The
division is determined by the value of e„.In Sec. III we
found that for

0=/~„/
eHL,L„L„——(2mE,)'

h2hc

we had oscillator states, but for

eHL,L„Ly——(2mEi)»
~
n„~

2hc h

eHL,L„L„
+—(2mE, )» = ~r~

h

we got surface states. For the oscillator states the
turning points x&, x2 are given by the equations

xi ——(hcn„/eHL„) (c/eH) (2mE—i)»,

x2 = (hcN„/eHL„)+ (c/eH) (2mEi)».

For the surface states we have (the subscript s denotes
surface)

1 T
~2, »»

Thus Eq. (70) can be written as

2( 1)a )(Lg/h)(2tnE)»

R(a„,p, p) =
~p

(4xz
)~ sin(

~"
pdx )d~„j

(4n'e ( *' '
sin~ l~ pdx ~de„dN, . (71)"

Eh &.,„ i
If we now impose the restriction Ep))PH, it is possible

to obtain the asymptotic value of R(a, o, p). The evalu-
ation of Eq. (71) is dependent on the use of the method
of critical points recently io troduced by van der
Corput. ' With a plausible interpretation of this method

"The factor of 2 appearing in Eq. (71) results from using
the symmetry properties of the integral with respect to n„and n,
to change the limits appropriately."J.G. van der Corput, Proc. Acad. Sci. (Amsterdam) Sl, 650
(1948).

f l f

R(aq, 0, 0) = (—1)"
~

cos(2n. ~n)dnde„dn, (6. 9)

(@)

Integrating first over e, and inserting the limits, gives

(—1)" ( ( /'4m a
R(a„,p, p) =—

~ ~ sin
(

~ pdx
~
dm„dN, . (70)

27rii & E h ~*, )
"(e)
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it is found that

R(a., p, p) ( 1)"D—BiU)(w, 0)/Ai~(2 i~)t

(—1)"L„L,2mE&B &

~2&~&h'

t' w 3m'
cos

B. Magnetic Moment

With the restriction Eo))PH, the magnetic moment
resulting from R(a„,o, o) is

—4wV(2m)&P'E, &H t' m' ( kTy '~

3k' & 24&ED) )

(—1)"L„L,2mE~B& (r(5/3) I'(11/12) ~*3 i
q ~

+ (72)
k'ic"' 4 1 (17/12)4'" )

The symbols in Eq. (72) have the same values as in
Sec. III. Details on the use of the method of critical
points for the evaluation of Eq. (71) are given in the
appendix.

exactly the Geld condition below which our solution
fails.

The additional nonoscillatory correction is note-
worthy since it varies as H &. It is a diamagnetic effect
which (for specimen dimensions of order cm) is com-
parable to the Landau diamagnetism at fields below
1000 gauss. Further discussion of this term will be
delayed until after we have considered the eR'ect of
electron spin.

V. SURFACE EFFECTS (ELECTRONS WITH SPIN)

In the previous sections we accounted for the electron
spin by merely introducing a degeneracy of two in the
Fermi summations. Actually, the spin will alter the
eigenvalues and give rise to the spin paramagnetism.
Ke now co~piete the present calculation with a con-
sideration of the inQuence of both the electron spin and
the surface states due to a finite container.

A. Distribution Function G(E)

Assuming that the total wave function is separable
into a product of a spin function and a spatial coordinate
function, we can write the electronic eigenvalues as

E=Ae, '+Ei&PH.

The function G(E) must now be written as
(—1)"27rkTVe(2m) &Eo cos(m «ED/PII 4~)—

+Z
x=1 i(~k eP2IIl sinh(7r t(kT/PH)

( 1)"2xkT—L„L,2mEpt cos(7riiEO/PH 4m.)—
g~k'iPtHt sjnh(~2gkT/PH)

L L,2mEO'i P' 2~ ( kT~ 2-

k'H& 27 &E, )

~ r(5/3) r(11/12)xl3'"i.(5/3) (2&—1))
xi (73)"

2»'I (17/12)

where i (5/3) is the Riemann Zeta-function of argument
5/3. The first and second terms of Eq. (73) give exactly
the result obtained in Sec. III (Eq. 51).This identifica-
tion serves to confirm our conjecture that the size eGects
might appear as a correction to the previous results.
The third and fourth terms of Eq. (73) give the eRect
of the finite size of the box. It is seen that both the
oscillatory and nonoscillatory parts of the moment are
affected by size.

The two oscillatory parts of Eq. (73) become of the
same order of magnitude when

H =H, 2e(2mEO) ~/eL, (74)

(where H, denotes a critical field strength). This is

"The condition Ep»PH imposes an upper bound on the mag-
netic field strength. However, it must be emphasized that the
result given by Eq. (73) is also dependent on H having a lower
bound. Our use of the WKB approximation has not considered
states which have turning points determined by the infinite
potentials at both walls simultaneously. This imposes the restric-
tion that H&2c(2mEp) &/eL for the applicability of Eq. (73).

G(E) =G+(E)+G-(E), (76)

where the & subscripts refer to the eigenvalues ob-
tained from Eq. (75) with TPH, respectively.

1. G+(E)

If we move the cut-oR plane to e= —-', (just as for
the spinless case in Sec. IV), we get identically the
number theory problem considered in Sec. IV with E
replaced by (E+PIX). By designating the spinless dis-
tribution function as G„, (E), we can write.

G (E) =G„, (E+PH), (77)

where G .(E) is given by Eq. (61). It must be noted
tha, t the minimum value of E for which Eq. (77) holds
is PH In ot—her w. ords G+( PIX) =0. —

2. G (E)

Following the above reasoning, we can write

G (E) =G„, (E PH), —(78)

if we move the cutoff again to m = —-', . In Eq. (78) the
minimum value of E is PH since G (PH) =0.

B. Free Energy

The free energy for this c.ase is given by

G.«u(E)dE+ G (Eu(»~E I
-(7»( t"

E& p~ ~pa )
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We transform the first integral by the substitution

E+pH =a+,

and the second integral by the substitution

E pH=—e .

This gives

terms, we find that the magnetic moment is

47rV(2m)&P Ep'iH ( 1 /PH) s' (kT)
k' ~ 24(EO) 24&ED) )

47rV(2m)lP'E, lH ) s-' pkTq 2q

1——
3k' E 24 LEO) )

F NEp ——
~

1 G+(e+ PH)f—(e+ PH)d—e+
E&p

+ t G (e +PH-)f(» +PH-)d~ ~. (»)

~ 27rkTVe(2m) lL&'0 cos(mgEO/PH . 4ss)—
+2

~lb'cp&H'* sinh(s-'~k T/pFI)

~ 2mkT(2m)L„L, EO& cos(s~EO/PH 4s)—
K*k P'*H& sinh(s. zkT/PH)

However, from Eqs. (77) and (78), we have

G~(e+ pH) =G. .—(e+)

L,L,(2m)E,41'p&' 8 ppHy ' 2s' f'kTq '
1+-I

h'H& 9 (Eo) 27 ~Eo )
and

G (e+PH)=G . (~ ),
(I'(5/3) I'(11/12) s.&3"'f(5/3) (2&—1)y

X (83))2'I'I'(17/12)
so that we can write

We shall now identify and discuss each of the five
terms which comprise this magnetic moment.

1.The first term is the Pauli spin paramagnetism with
higher order temperature and field corrections. (It is
noted that the explicit dependence upon temperature
and field could be obtained if Ep were given explicitly
in the variables T and II. This could be accomplished
through the use of the normalizing condition Eq. (2).)

2. The second term is the ordinary Landau diamag-
netism with higher order corrections.

3. The third term is the usual de Haas-van Alphen
effect obtained when no surface states are included. It
is noted that this part of the moment differs from the
spinless case (Secs. III and IP) by having a phase differ-
ence of &m for terms with ~ odd. This result is in agree-
ment with the work of Akhieser, " Sondheimer and
Wilson, ' and Dingle. "

4. The fourth term is the surface state correction to
the de Haas-van Alphen effect. It differs from the cor-
responding term found in Sec. IV by a phase difference
of &m when ~ is odd. This correction becomes com-
parable to the usual de Haas-van Alphen effect when

F NEp —
~

—' G . (c+)f(e+ PH—)de+

+ ~ G, (» )f(e +PFI)de (. (81)
o

In Eq. (81) there is no need to distinguish between e+

and e since they are both integration variables. Hence,
we have finally

If we again restrict our interest to the terms ap, p, p

and E(a„,o, o) in G„, (E), we can obtain th. e asymptotic
value (when Eo))PH) of the free energy. The methods
used for evaluating Eq. (82) have been described in the
previous sections and the appendix.

C. Magnetic Moment

F NEp= —J~ —G„(c)[f( PeH)+f(c+PH)7de (82).
p

After differentiating the resultant expression for the
free energy to get the magnetic moment one encounters
many factors of the form

(E,~PH) «,

where p takes on the values 1, 3, 4, 5, while q is 2 or 3.
(The combinations occur in such a way that p and q
do not contain common factors. ) These factors can all

be expanded in power series with (PH/Eo) as the
variable, since in our asymptotic region PH/Eo«1.
After performing these expansions and combining

H =H. 2c(2mEO) ~/eL, . (84)

"A. Akhieser, Compt. rend. acad. sci. U.R.S.S. 23, 874 (1939).
~' R. B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952).

It is re-emphasized here that Eq. (84) expresses the
field condition below which the entire solution fails.

5. The fifth term is a nonoscillatory diamagnetic
effect arising from the surface states. Since it was also
found in Sec. IV we can say that this effect is indepen-
dent of electron spin. In light of this circumstance we

will now focus our attention on this "surface" diamag-
netism. For a free electron gas with Ep of the order of
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1 electron volt, the "surface" (s) magnetization is

(M/V), ~—10 '/L~',

gives

2(—1)" r ~r ~"~&2™B&'(eHL.L„L„——(2rnE~)'
IJ, 2hc h )

(85)
«1

(m ~Egq
Xsin~ ~dn, . (A2)

i PH J(M/V) ~10 'H

while the remaining (r) nonoscillatory magnetization
from the Pauli and Landau terms is

For the assumed value of Ep, we also have

H,~10/L . . (87)

Now consider the first part of this integral. Setting

y =hn, /L, (2npE) l (A3)

( 1)"eHL—,L„L,(2rnE) & r ' neE.
sin (1—P') dP. (A4)

m~h'c "p PH
II =Hp 3X10'/Ls~ (88)

From Eqs. (85) and (86) we hand that the
~
(M/V),

~
is transforms this part to

about equal to
~
(M/V),

~

when

VI. APPENDIX. The Asymptotic Value of R(a„,0, 0) as
Obtained from the Method of Critical Points

A. Transformation of Eq. (71)

We designate by Ij and I2 the 6rst and second in-
tegrals, respectively, of Eq. (71). Substituting

8 =hn„/L„eHx/c—(A1)

In order to comment on the feasibility of finding the
surface diamagnetism experimentally, we shall now
examine the above quantities for real specimens.

(a) If L, is of order cm, H, is of order 10 gauss while

Ho is of order 300 gauss. For 1 cc of material at 300
gauss we would have to be able to measure a magnetic
moment of about 10 ' cgs unit in order to observe the
surface diamagnetism. Although this is feasible experi-
mentally, it is not an easy task.

(b) If I., were of order 10 ' cm, H, would be of order
10' gauss, while Hp would be of order 6&(10' gauss.
Now we would need to measure moments of about
5X10 ' cgs unit in order to observe the surface dia-
magnetism. Such moments can be measured accurately
without elaborate arrangements.

The analysis given above suggests that experiments

may be performed to test the theoretical prediction of
surface diamagnetism. It would be desirable to use a
monovalent metal, such as Cu, Ag, Na, or Au, for such
an experiment since these metals are most closely
represented by a free electron model. The specimen
could be in powder form with individual particles elec-
trically insulated and having dimensions of the order
10 ' cm. Finally, the experiment could b performed at
room temperature, since even at T=300'K the cor-
rections to the moment are small compared to the
temperature-independent terms.

The author wishes to thank Professor R. D. Myers
for his guidance in this work, and M. F. M. Osborne
not only for suggesting the problem but also for many
stimulating discussions.

The evaluation of this integral will require the use of
the method of critical points.

With appropriate transformations, I2, the second
part of Eq. (71) can be put into the form:

4(—1)'L„L,rnE
( — ')'

w (s'
X»n —(1—$')~ +f(r)

~

dr—dQ
2~ &2 )

where

W t'1I
Xsin —(1—g')~ f(r)

~
drdy —(A7)

2~ (2

f(r) = r(1—r')&+si nr.

We shall use the method of critical points to evaluate
both of the double integrals in Eq. (A7).

B. Details of the Method of Critical Points

Consider the general integral

I=
J g(x) e' ~&*&dx,

a

The value of the integral in Eq. (A4) is given by
Watson. "In terms of our previously used symbols, Eq.
(A4) becomes

(—1)"DB&U)(w, 0)/A4 (2~)'. (A5)

If we again use the substitution given by Eq. (A3), the
second part of I~ becomes

—4(—1)"L„L,rnE p' w
(1—g') sin —(1—y') dy (A6).

~~jg2 2

into I~ and carrying out the integrations over 0 andn„where a, h, f(x), and g(x) are independent of the
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where

g' '(f) m! '/" (s/m)!
C,=

(s 1) ( fm(t) s(—1)~/

i(m+ s/m)! ~
(m+a)/m

(~+s) ( i)(m+s)/m i fm(() j
g" '(~)f""-"(~)-xP (A10)'4

«n«(p —1)!(m+s—p)!

Let us now apply this development to the integral
Ii, 2 appearing in Eq. (A6). To put it into the desired
form, we write

I

IL2=~- ~ g(4)s'""d4, (A11)

where

g(~) =(1-~')' f(~) =-', (1-~')
and 8 denotes "the imaginary part of." The critical
points are 0 and 1. The point 0 is a stationary phase
point as well as an end point. From Eq. (A10) it is
found that the residue at the point 0 is

(k) '(2!)' (2!)'(2)!
(Res),=e' "

w&3(i) &

(A12)

Since the function g(p) cannot be expanded into a
Taylor series around the point 1, we must make an

~ This condition on f(x) and g(x) is weaker than the require-
ment that f(x) and g(x) be infinitely often differentiable in the
closed interval a~x~b. In practice we use the weaker condition
for the evaluation of integrals.

~Van der Corput gives this form for the residue without
showing the explicit values of C1, C2,

'4In getting Eq. (A10) we have assumed that g is the lower
bound of the interval. If g were an interior point or the upper
bound of the interval, the value of C, would be changed to the
extent of a factor of 2 or the inclusion of a negative sign.

parameter w. It is further assumed that f(x) and g(x)
are infinitely often differentiable in the closed interval
a=x b.—We seek the value of I for

~
w~ &&1. Van der

Corput" asserts that the asymptotic character of I is
completely determined if the behavior of f(x) and g(x)
is given in the vicinity of the critical points. " These
points are the end points u and b and the points between
a and b where the phase wf(x) is stationary. The con-
tribution of each critical point is called the residue at
that point. The residue at a critical point ( can be
developed asymptotically in ascending powers of 1/wi/",
where m is the smallest positive integer such that the
m'h derivative of f(x) at $ is not zero. To establish the
nature of the residue at $ we expand g(x) and f(x) in
Taylor series around $. It can be shown that the com-
plete residue at $ may be expressed as

C,
(Res) t ——e'~~&&i + + ~ ~ + + ~, (A9)"

~1/m ~2/m ~e/m

Il
1 s2

exp(iu)s'/2) ds,
~0 (1—s')&

(A14)

so that we can now expand our functions around s =0.
Carrying out the details of expansion leads to

(Res),=0 = (Res) q=i =2(2!)&(-', )!/it/&3( —i)&. (A15)

By neglecting the terms 0(i/wt), and taking the
imaginary part of the residue, we get

Ii, 2 (ir) & cos(-', w ——,'m)/(2m) &. (A16)

We now consider the double integrals in Eq. (A7).
The general philosophy in handling double integrals is
to apply the previous development twice. There are
additional features which make the double integration
more complicated, but rather than discuss them
generally we shall note them in solving the specific
examples. We designate by I2 ~ and I2, 2 the first and
second double integrals in Eq. (A7). Then I&, 2 can be
written as

where

I2, 2
——a„g(y, v)e'"~&/' 'd7dy,

a/! p dp
(A17)

g(4» ~) = (1—4')',

F(P, r) =[(1—qP)/2m]L2n —r(1—r2)&—sin ir].
The critical points here are first the points within the
region of the integration where the phase 7//F(p, r) is
stationary, i.e., where the BF/8&= BF/Br =0; then the
vertices of the boundary of the region; finally those
boundary points are critical where F(p, r), taken along
the boundary curve, is stationary. For our integral I2, 2

the following points (infinite in number) are critical:

y=0
y=i,

0—P—1,

7.=0
0~~~1
r =i.

To get the residue at the point (0, 0) we expand
g(p, r) and F(p, r) in double Taylor series around that
point. Substituting these expansions into the integrand
gives !"t" t'
(Res); o= ~"'

J, J, i 2 )
T 2

Xexp iw ————+ drdP. (A18)"
4

"The extension to infinity for the upper limits of both inte-
grations is justified here since the major contribution of the
double integral is around (0, 0). Details on this point can be
found in van der Corput's paper.

appropriate transformation to get the residue there.
If we let

(1-~')'=s, (A13)

we would require the residue at s =0. The transformed
integral is
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Integrating first on v and keeping only the largest where
terms gives 0=-'~—0.2

~e1,w/4 p ao ( Q2

(
iw &, ( 2 )

The integration over 0 follows from the general develop-
ment for single integrals. If we keep only the largest
term of the resulting expansion, the residue is

Xexp iw —— dp. (A19)
4

We now integrate over P to get

(3)'(3~)'* ('
(Res) i„=

w 2(—~)' (1—0')"' (A23)

(Res) p, 0=
m e'"l4 (-', )!

~w wl(i/4) l

The integral in Eq. (A23) is a standard type, so that
(A20) the final result can be written as

sin 7 =0) (A21)

we would require the residue from the points 0—F5~1,
8=~/2. By expanding the functions in the integrand
around 8=7r/2, we can express the residue from this
entire boundary [designated as (Res)i, ,j as

(Res)i„——,I (1—4')l~ 8——0'—
&0~, 4 3!

Thus, this residue is O(1/w'*).
Next we consider the residue from the points

0=&=1, r=1. The function F(p, r) cannot be ex-
panded in a Taylor series around any point having
7=1. Therefore, we must resort to a suitable trans-
formation to accomplish the calculation. If we let

(-;)!(3~)~~~1 (11/12)
(Res)i„——

w l(—i)&41'(17/12)
(A24)

I (3m-)'"I'(5/3) r(11/12)/SI'(17/12)w&. (A25)

This residue is O(1/w&).
Using a similar analysis we find that the residue from

the boundary p =1, 0~ r~1 is O(1/w'). The complete
evaluation therefore shows that the largest term in I2, 2

is given by the imaginary part of Eq. (A24), which is

O(1/wl).
The integral I&, & can be evaluated by the same

procedure as given above. It is found that the largest
term for this integral is O(1/w'"). Combining the
results of the two integrations, we find that

w(1 —P') 4
Xexp i —0'+ dodp, (A22) The sum of Eqs. (A5), (A16), and (A25) is the value

2~ 3t for R(a,, o, o) given by Eq. (72).


