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way as to give equivalent good fits to the very precise
low energy Van de Graaff data. On the basis of this
plot, and again assuming only central forces, our results
appear to favor the Yukawa type potential. However, it
should be pointed out that Jackson and Blatt have in-
vestigated the allowable uncertainties in cross-section
and bombarding energy required to discriminate be-
tween the two shapes, and that'our uncertainties are
somewhat greater than those given by these authors.

An analysis of these data in terms of the f function of
Breit, Condon, and Present" yields a value for this
function, as determined from the 57.8' S wave phase
shift, of 15.7&0.5, which is in fair agreement with the

"Breit, Condon, and Present, Phys. Rev. SO, 825 (1936).

value 16.5&0.17 predicted by Yovits, Smith, Hull,
Bengston, and Breit" for the Yukawa well.

The authors are indebted to Dr. J. G. Hamilton, Dr.
T. M. Putnam, Dr. R. L. Thornton, and the operating
crew of the Berkeley 60-inch cyclotron for their aid in
performing these experiments. Thanks are also due Dr.
R. G. Thomas for his helpful criticism during the prep-
aration of this paper and to the nuclear plate group for
their analysis of the plates.

Note added irI, proof: —The points at angles from 169.8' to
176.2', inclusive, on Fig. 3E are plotted incorrectly. They should
be lowered 5 to 10 percent to conform with the values given
in Table I.

"Yovits, Smith, Hull, Bengston, and Breit, Phys. Rev. 85,
540 (1952).
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Theorems involving the correction terms of lattice point problems in the theory of numbers are interpreted
to derive the orders of magnitude of the oscillatory (de Haas-van Alphen effect) and non-oscillatory (Landau
and surface diamagnetism) terms in the magnetic moment of a Fermi gas in a finite cylindrical container.
The results are valid for systems from atomic dimensions up, and all values of the magnetic field. The
different types of moment are different from strong and weak fields, and may depend, for small particles,
on the nature of the surface potential at the walls of the container. The applicability of the method to
physical problems, and the difhculties associated with statistical mechanical problems involving magnetic
fields are discussed.

I. INTRODUCTION

'HE problem of the diamagnetism of an electron
gas was first examined from a fundamental

standpoint by Bohr' and Van Leeuwen, ' who showed
for a rather general class of conditions that no magnetic
properties whatever were to be found on the basis of
classical statistics. Bohr, in particular, showed that
this conclusion was a consequence of exact cancellation
between the large diamagnetic properties of electrons
whose orbits did not collide with the wall and the para-
magnetic properties of those orbits which did collide
with the walls. Landau' re-examined the problem on
the basis of quantum statistics and showed that a small
diamagnetism was to be expected when the levels were
quantized on the basis of either Boltzmann or Fermi-
Dirac statistics. However, it was not at all clear how
the conclusions of Bohr were related to those of Landau
via the correspondence principle. The reason for this
was that Landau assumed a very strong magnetic field
(orbit radius very much less than dimensions of the
container) and did not attempt to satisfy the bouridary
conditions at the walls of the container, but merely

' N. Bohr, unpublished dissertation, Copenhagen, 1911.For an
account of this work, see reference 5, p. 97.' J. H. Van Leeuwen, J. phys. et radium 2, 361 (1921).

~ L. Landau, Z. Physik 64, 629 (1930).

counted those quantum states which had the center of
gravity of their probability distribution inside the con-
tainer. If one attempts to follow the details of the
Landau derivation, it appears that the results obtained
are quite sensitive to such apparently trivial details as
the order of integration over the different quantum
numbers and of differentiation with respect to H to
obtain the moment, the choice of origin for the energy
level, and the choice of several possible forms for the
Euler-McLaurin formula for replacing a sum by an
integral.

Moreover, there is the added embarrassment that,
if higher terms in the Euler-McLaurin formula are
included, one may find infinite contributions to the
moment because certain derivatives are infinite at the
ends of the range of integration. Thus one can obtain
the Landau result but one can also obtain quite dif-
ferent results which one has no a priori reason for
rejecting.

The discrepancies can be roughly divided into two
classes. First, a large difference in the moment per unit
volume is computed by

IV/V= &T(~/~II) &~ log[1+exp(&o K)/&T) 3

as opposed to

M/V= kT Z, (BL/BII)1/(ex—p[(E,—Ep)/kT]+1l;
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that is, diferent order for summing and differentiating
the partition function, the sum having been replaced
by an integral over the density of states.

The second type of discrepancy arises as follows. One
must remember that the sought-for Landau moment/cc
is small, of order 10 ' H. If one does not take the limit
volume —+infinity for the specimen, then small terms
which are size-dependent arise, and contribute to the
moment for macroscopic specimens (of order centimeter
dimensions) amounts of the same order of magnitude
as the Landau contribution. Moreover, these terms are
dÃerent for different choices of all the apparently
trivial details of calculations mentioned above.

Teller4 and Van Vleck' attempted to clarify the first
type of inconsistency which arises between differenti-
ating with respect to the field before or after carrying
out the sum over states. For example, Van Vleck, using
a cylindrical container, attempted to show that the
large contribution to the moment of electrons which do
not encircle the origin nor collide with the walls just
canceled, except for the Landau diamagnetism, the con-
tribution of the electrons which do collide with the wall.
However, if one includes the states of positive quantum
number t (orbits which do encircle the origin which he,
following Landau and Teller, excluded quite arbi-
trarily), the cancellation. is completely destroyed for a
container of finite macroscopic dimensions. One then
finds a huge diamagnetic moment. It was this observa-
tion which led this writer' to conclude (also erroneously,
as will be apparent from the subsequent discussion)
that a gas of electrons in a finite container has a large
diamagnetic moment.

The above discussion refers primarily to the strong
fields (by definition orbit radius ( specimen size) where
the contradictory results associated with the small
quantities involving dimensions (which did not give
contributions to the moment small compared to the
expected Landau result) were simply ignored or evaded

by passing to the limit of infinitely large containers. In
most statistical-mechanical problems such "surface
terms" are indeed negligible.

For the case of weak fields (orbit radius ) specimen
size) or small containers, there is an equally great
variety of conclusions. Van Vleck' suspected, on the
basis of the principle of spectroscopic stability, that
the susceptibility would be the same as for strong fields,
an inference not borne out by the conclusions of this
paper. Papaetrou' made a perturbation calculation of
plane waves taking into account degeneracy and con-
cluded to a strong diamagnetism for weak fields, and
moreover concluded that the diamagnetism for very
weak fields was different depending upon whether the
ratio of the edge length for rectangular containers was

E. Teller, Z. Physik 67, 311 (1931).
5 J. H. Van Vleck, The Theory of Electric arId 3fagnetic Suscepti-

Nlities (Oxford University Press, London, 1932), p. 356.
6 M. F. M. Osborne, Phys. Rev. 81, 147 {1951).' See reference 5, p. 354.

rational or not. He overed only a tentative explanation
for this strange result. Slater' concluded to a strong
diamagnetism for weak fields, whereas Welker" con-
cluded there was none, but this method of calculation
led Papapetrou" to interpret Welker's calculations as
indicating a strong diamagnetism for adiabatic mag-
netization. Dingle" also concluded that for finite con-
tainers and weak fields a diamagnetism larger than the
Landau value was to be expected.

In the low temperature region Shoenberg, " (quoting
unpublished results of Landau), Blackman, i4 and
Peierls" derived expressions giving an oscillating
moment (the de Haas-van Alphen effect) but they also
used Landau-type wave functions which do not satisfy
the boundary conditions at the walls of the container.
Here also extreme care has to be taken in carrying out
the necessary calculations in order to avoid, or rather,
ignore inconsistencies of the type mentioned above.

This situation led Hesden' to attack numerically
the problem of a container of a specified volume con-
taining a specified number ( 10') of particles in order
to solve exactly the problem of fitting the wave func-
tions properly inside the container. He found a dia-
magnetic behavior suggestive of the de Haas-van
Alphen e6ect, and possibly also of superconductivity.

The origin of these diGerences may be expressed
most simply in the following way. Consider a finite
Fermi-Dirac system in a magnetic field with discrete
energy levels E,=E,(H, d, p), where by d and p we
refer explicitly to the dependence on dimensions of the
container and physical constants. The total energy of
this system is:

U= Z;E,/{exp[(E,—Ep)/kTj+1},

where Eo is defined by the expression

A7= Z,1/{exp[(E;—Ep)/kTj+1}.

E is the number of particles in the finite container,
and E is finite and constant. The rate of change of the
energy of the system with varying magnetic field is
—3f, the moment. For constant number of particles in
the system it is:

—M = (BU/BH) ~= (BU/BH)zp+ (BU/BEp) rr(dEp/dH)
= (BU/BH)zp (BU/BEp)rr(—BX/BH)zp/

(BE/BEp) rr (3).
Remembering that H appears explicitly only in E;, then
on differentiating there is considerable cancellation and

8 A. Papapetrou, Z. Physik 112, 587 (1939).
1' J. C. Slater, Phys. Rev. 52, 214 (1937).
'0 H. Welker, Sitzber. bayer. Akad. 14, 115 (1938).
"Reference 8, p. 601.
' R. B. Dingle, Phys. Rev. 82, 966 (1951).
'3D. Shoenberg, Proc. Roy. Soc. {London) A170, 341 (1939).
"M. Blackman, Proc. Roy. Soc. (London) A166, 1 (1938).
'~ R. Peierls, Z. Physik 81, 186 (1933).
M D. J. Besden, Phys. Rev. 79, 417 (1950); unpublished thesis,

Rice Institute (1950).
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Fn. 1. Geometrical determination of Fourier coeKcient u1, 2.

one finally obtains* exactly

M = P,(BE—,/BH)/(exp DE; Ep)/kT—]+1). (4)

In this form, especially when one considers Fermi-
Dirac statistics, it can be made evident why incon-
sistencies appear. If one takes as usually the case that
the energy states whose classical orbits do not intersect
the wall are as given by the energy states in free space,
then all the contributions of these states to the sum in
Eq. (4) are positive. This contribution alone leads
naturally to a huge moment. If, nervertheless, the net
result for the moment is to be small (see Bohr and
Landau) this huge contribution must be almost exactly
canceled by a contribution of equal magnitude but
opposite sign by those states which do intersect the
wall. If we ask: what are the orders of magnitude of the
numbers of these two classes of states, those which do
intersect the wall and those which do not?, and remember
the very small (Landau) order of magnitude to which
the two contributions to the moment must be equal, we
see that the accuracy of the counting and the energy
evaluation must be as good for the surface states as
those in the interior, or the cancellation will be imper-
fect and a too-large absolute value for the moment is to
be expected.

The average value of the energy is of order -,'the
maximum energy Ep, i.e., most of the states have orbits
whose dimensions are comparable to those at the top
of the Fermi sea. It can be easily shown by considering
the cross-sectional areas where the centers of orbits of
different classes lie that the orders of magnitude of

(1) the numbers of interior states, (2) the numbers of
states which encircle the origin without intersecting the
wall, and (3) the numbers of states which intersect the
wall are like (1) m.R'L, kpr, (2) prrpPL, kp', and (3) 2prRrpL, kp'

or relatively like (1), 1, (2) rP/R', and (3) rp/R. Here
rp is the radius of the orbit for E=Ep, R, I., are the
dimensions of the container, kp= (2mEp)~/k, and Ep is
the Fermi energy.

If Ep is in volts, R, L, in cms, H in gauss (along s),
the relative numbers of states are approximately like 1,
Ep~/(HR), Ep/HpR'. The contributions to the moment

*Correction added in proof: This procedure gives the adiabatic
moment. Equation (4) is the correct expression for the isothermal
moment obtained from the free energy.

of the first and second classes of state are approximately
where p= eIi/2mc:

(1) For interior states not encircling the origin:

Mi~ Ij,m R Lzkp mR Lz10 ~

(2) For interior states encircling the origin: (l)0)
Mi&p —ppryppL~kpp~ —prRpL~10 Ep(volts)/R H

Hence for the surface states, whose orbits do intersect
the walls, the contribution M8 must be equal and
opposite to the sum of the above to the order of mag-
nitude of the Landau diamagnetism, MJ.~10 'HR'I-, .
Thus we see that for strong fields and macroscopic
specimens, the contributions of the second and third
classes of states are by no means negligible when one
is looking for moments as small as the Landau moment.
It is just the details of the delicate ways in which they
are neglected which are responsible for the various
inconsistencies mentioned previously.

Let us rewrite Eq. (4) as follows: Let 1(x) be the
unit function

1(x)=0, x&0
21=-, x=0

=1, x&0
in such a way that

)I (d1/dx)dx=1.
s+p

Then we can write Eq. (4) as:

M= —(BU/BH)pr=(B/BH) t Z,1(E—E;)
p

X (1/{expL(E—Ep)/kT]+1))dE (5)

where the differentiation with respect to II is to be
taken only where H appears explicitly, that is, in
E,=E,(H, d, p) only. Now consider the expression
Z, 1(E—E;). This is the number of states of energy E,
less than any chosen energy E, plus states of energy
E;=E counted as 2. It is expressions of just this type
which are given by solutions of lattice point problems
in the theory of numbers, to which we now turn. It will
be found that just the refinements of number theory
give the information necessary to compute the magnetic
moment.

II. LATTICE POINT PROBLEMS OF NUMBER THEORY

Kendall's" lattice point problem for the plane (we
shall indicate the necessary generalizations for a three-
dimensional problem) consists of the following. Given
a closed curve, everywhere convex, and with specified
continuity conditions on its derivatives, how many
points whose coordinates are integers lie inside or on
the closed curve? The answer by definition is G(E)
where by E we may here understand one or more
parameters specifying the size and shape of the curve,
such as the axes of an ellipse. G(E) is given by the area

"D. G. Keudall, Quart. J. Math. (Oxford) 19, 1 (1948).
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plus a series of periodic correction terms. The area plus
the correction terms can be shown to converge to the
exact number of points inside the closed curve, plus
those on the curve counted as ~~, i.e., to:

[G(E+0)+G(E—0)5/2.

Kendall gives (his notation) the following asymptotic
expression for the number of lattice points inside or on
a closed centrally-symmetric oval, everywhere convex,
with a finite second derivative of the curvature, and
with no points of zero or infinite curvature: 0 denotes
order of magnitude.

G(E) =area++„, „u„„,
a = (xlp&/m. l&) cos(2s(lx)~p .3m/4)—+0(.x'"/P~').

x is a parameter determining the size of the oval (Fig. 1).
If we imagine m, m to specify a direction in the plane,
then xlp is the distance from the origin of a line per-
pendicular to the direction e, m and tangent to the
oval. x&p is the radius of curvature at the point of
tangency and l&= (m'+u')& is the spacing of lattice
points on the line through lattice points at right angles
to the direction u, m, and 1/1& is the separation of suc-
cessive lattice "lines" normal to the direction e, m.
Unity, the spacing of the integers, is the unit of length.

Kendall shows that the error o=(Z„,„~a ~')& in
taking the area of the oval as the number of lattice
points is of order of the square root of the maximum
radius of curvature. This has a geometrical interpreta-
tion as the maximum number of points just caught or
just missed by an arc of unit sagitta, and p,„as radius
of curvature. For a circle, (chord)'= 8 (radius curvature

sagitta), or
c=2(2ps)'* p& for s= i. (7)

We wish to show that this geometrical interpretation
of the total error as described by number theory can
be extended to each one of the terms a„„.Consider the
oval (Fig. 1) as growing (increasing xl) and consider
the number of points just caught or missed by the arc
tangent to the lattice line, m, m, that is, perpendicular
to the direction m, n. The increment will be periodic in
the lattice spacing 1// for this lattice line, that is, of
order A sinL2~px&/(1/f&) —y5. The amplitude A will be
the number of points on an arc of sagitta s= 1/l~ and
radius of curvature x&p, and these points are l& apart.
Hence, chord length is approximately

(x p s) = [x p (1/1 )5,
and the number of points on this length is (x&p) &/l&= A.
Hence, the fluctuation with growth of G(E) owing to
the curve cutting this particular lattice line is

a„„=0(x&p&/lt) sin[2s p(lx) &—p5, (8)
which is just the form of the coeScient c . This
geometrical analysis is insufhcient to give the exact
amplitude x&p&/crt& and the phase q =37r/4, nor does it
give the residual 0(x'"/P"). It does give correctly the
bt;h@v&pr of all the oscillatory terms required by number

theory, even though the above heuristic derivation is
applicable only when m and n have no common factor.

For nonsymmetric ovals, Kendall shows that the
coefficients a „are of the form Eq. (6) with imaginary
exponentials instead of sines. However, on summation
only the real part contributes to the real number of
points within the oval.

One can also apply the above geometrical argument
to curves with points of infinite radius of curvature.
Kendall examines the oval u'x+ v'& x' which has
infinite radius of curvature at I= &x&, @=0.He shows
for this oval that

a~ 0 ——21'(5/4) Jsl, (2mx&) x'"/s 4e&
(9)

=OLx'I sin(2xmx& —p) 5, x))1,
from which he infers that the error 0 =0(x'").But this
is just the order of magnitude of points just caught or
missed by an arc (not approximable by a circle) of
unit sagitta around the points (u, v) = &x&, 0. At
N=x& —1, v x't and by the above geometrical inter-
pretation of a, o

cg, Q Ot x'" sin(2sx& —y)5. (10)
This is just the lowest and predominant frequency of the
Quctuation in the number of points as the curve grows
(increasing x ) in the direction 1, 0.

In the case of a right angle triangle, taken as the area
between (u/a)+(v/b) =1 and u= ——'„v= —~, Fig. 2,
the interpretation of the real part of the coefhcient a „
as the oscillating number of points just caught or
missed as the figure changes its dimensions is also valid.
We understand a, b both )&1. It can be easily verified,
by evaluating the coeKcient

&c+a12b &5-eb/o

( 1)m+a

&& expt 2'�(mu+nv) 5duds, (11)

K

Lg

he Xeno
I-~-I

FAG. 2. Number theory analysis for a triangular area. ODL for the
case a=b; Ogg fqg the case a—b=e,' OBH far the case b&&a.
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that a11 is for b= u

an ——[exp(2m. ia)u/2mi]+O(1). (12)
Here R(an) in order of magnitude represents the fluc-
tuating number of points along the hypotenuse, LD
(Fig. 2). For a b=—e«a, e))1,

—[a exp(2~i(b+b/2, ))—b exp(2~i(a+a/2b))]

4~'(u —b)
+O(1) (13)

E(au) is here a fluctuation of the order of the number
of points along the segments DE CE and IiJ Iir. of
Fig. 2.

For the case b»c of Fig. 2, it can be shown that a1p is

a&o ——[(b+~~)/2m i]+(b/4am i) exp[2~i(a+ u/2b)]
[b/a(—2ni)']+b/. (4a~i) (14).

Here E(a~o) is a fluctuation of the order of the number
of points along GB GA. In all cases the periodicity and

.]
~ ~

/
~ ~

/
~

I
l
l

I

I
)

't'
l

~ l4 . I

~ ~

FIG. 3. Modifications of a
Qat-sided oval in order to
fulfill Kendal1's criteria. The
coefficient u „correspond-
ing to the direction in, e
indicated would be very
small.

amplitude are correctly given in order of magnitude
and the geometrical interpretation is valid.

For closed curves which are concave and have either
cusps or inQection points, we make also the reasonable
conjecture that the coe%cient a „has this same inter-
pretation, that is, as the number of points just caught
or missed as a periodic function of the displacement of
the periphery of the curve. We assume that it is periodic
in the normal distance of the tangent line from the
origin, with a period determined by the spacing of the
lattice lines, and of amplitude determined by the radius
of curvature at the point of tangency, and the spacing
(sagitta) of the lattice lines, just as for Kendall's oval.
H no tangent can be dry, wn perpendicular to the direc-
tion of interest, we expect the corresponding coefficient
u to be small (see Fig. 3) and, if this tangent falls
near an inQuection point, a detailed analysis of the
curve will be necessary to determine how many points
are just caught or missed over a range of the normal
distance corresponding to the spacing of the lat, tie|:
lines, just as in the case of the oval I'x+v'&x'.

,

There is another sort of conclusion which can be
inferred from Kendall's arguments. Consider a closed
curve one side of which is straight, of length c, and lies
somewhere in the space between two principal lattice
lines. Kendall's formula applied uncritically for the
error 0- of order p,„' would indicate an infinite error,
but if we replace the straight portion by an arc slightly
rounded at the ends to provide a closed continuous
convex curve, this arc being at most of unit sagitta,
then the modified oval fulfills the criteria which Kendall
requires and contains exactly the same set of lattice
points as the original curve. We now apply Kendall's
argument to the modified oval, for which p, ' c, that
is, the length of the Qat portion. Thus, for such fiat-sided
curves the maximum error is approximately the length
of the Qat side. This fits quite satisfactorily the inter-
pretation of the error as the number of points just
caught or missed. It is also the amplitude of the largest
periodic coefficient u10 of the modified oval.

There is a particular circumstance for such Qat-sided
ovals, however, for which this oscillatory term and the
corresponding contribution to the error can be removed.
Let us suppose we are considering a particular class of
Qat-sided ovals where the Qat side always bisects the
space between two principal lattice lines. Then the
number of points inside this curve is exactly one-half
the number contained in the completely convex figure
obtained by reQecting the given curve in its Qat side.
To this figure, we can then apply Kendall's arguments
for the closed continuous convex curve, rounding o6
corners without loss of lattice points where necessary,
and the large term previously given by the Qat side will
not appear. These di6erent possibilities are illustrated
in Fig. 3 by dotted lines.

There is yet another inference which can be drawn
from Kendall's conclusions which we use in our dis-
cussion of the electron gas. Kendall shows that the
error in using the area as an estimate of the number of
lattice points inside a curve is of order p,„and also
of the order of the square root of the perimeter. From
this we infer that, given a number of diferent closed
curves, each enclosing exactly the same set of lattice
points, the one whose perimeter and maximum radius
of curvature is least has an area which is the best
estimate of the number of points inside. This argument
will be useful in deriving the order of magnitude of the
Landau and other non-oscillatory terms in the diamag-
netism.

Based on the above geometrical interpretation of the
results of number theory for closed curves lying in a
plane, one can easily give the generalization for a
three-dimensional figure. The volume of a slab or
segment of unit thickness is of order (p~p~)~ where

p1, p.. are the principal radii of curvature. Then the
number of points just caught or just missed as the solid
grows is of order (pqp2)*'. U the surface is developable,
that is, one of the principal radii of curvature is infinite,
the other p finite, the error is of order p&c. This simply
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means the number of points in a slab of unit thickness
and dimensions corresponding to the finite radius of
curvature p and the length of the longest straight line c
which can be drawn in the surface. This expression can
be generalized for diGerent directions exactly as in the
case of the anth coefficient in the plane. Similarly, when
the enclosed surface is bounded by a plane (both radii
of curvature infinite) we can take the number of points
in this plane as the amplitude and the normal to the
plane will determine the coefficient to which it applies
and the periodicity, which is the spacing of lattice
planes parallel to this plane face. Also, if it should
happen that for a particular class of closed surfaces
with Rat sides, the Rat side bisects the space between
two principal lattice planes, we may close oG the
surface symmetrically with respect to this Rat side arid

apply our arguments to the resulting volume and then
take one-half the result, exactly as we did for the cIosed
curve in two dimensions.

If we admit the conclusion (generalizing Kendall's
conclusion for a plane curve) that the error is least
when (pip2) or the area is least for different surfaces
containing the same set of points, we may bevel oG any
edges which do not contain lattice points in order to
improve the accuracy of using the enclosed volume as a
measure of the number of points inside. It is important
in this case that in beveling off we do not remove any
lattice points in the process. It should also be noted
that beveling only removes an appreciable volume for
acute angle edges. For obtuse angles the requirement
that p be finite and continuous means that not much
volume can be removed. The beveling only occurs over
unit distance at most.

A few remarks should be made here concerning the
sense in which the correction to the area as a measure
of the number of points inside is to be taken. The first
sense is that in which the closed curve lies at random in
the plane of the lattice points. The second is that to be
taken when the closed curve is one in a family of dif-
ferent sizes and of fixed position and orientation in the
lattice plane. The error is then taken in the sense of the
average error as the parameters specifying the size and
shape of the diGerent members of the family are varied.
It is in this second sense of the error that we are pri-
marily interested. General conclusions, such as have
been drawn above concerning the error and the perio-
dicity, usually apply to both conceptions, at least this
seems plausible.

It may be mentioned that the exact meaning of the
order of magnitude from the number theory standpoint
is a question of considerable subtlety and complexity.
We shall use it in what follows in the conventional
sense, since it seems to apply well to the "average"
order of magnitude of the error when the number of
points inside is very large. For a more precise discussion
we refer to the literature, "as the problem, although it
has received much attention, has not yet been solved.
There is reason for believing that the square root of the

radius of curvature as a correction may be exceeded for
a denumerably infinite set of dosed curves in the
family. This may imply that the fluctuations in the
magnetic moment in the derivation which follows are,
from a number theory standpoint, upper limits of the
order of magnitude of the moment which may not be
exceeded except at discrete values of the Fermi energy
Eo and magnetic field H." It is dificult to ascribe
physical significance to such isolated. values.

III. THE ENERGY LEVEL DISTRIBUTION FOR
A FINITE CONTAINER

%e now have the problem of using the above con-
siderations to determine the number of energy levels
less than any arbitrary energy E for a charged particle
in a finite cylindrical box in a uniform magnetic field.
This number is essential to determining the thermo-
dynamic properties, in particular the magnetic moment,
of a gas of such particles according to Fermi statistics.
The Schrodinger equation for this problem is "
—(5'/2m) (O'P/Br'+ Bp/r Br+O'P/r'B8'+ O'P/Bs')

—(i heH/2mc) Bf/BB+ V(r, s)
+(mr'/2) (eH/2mc)'P =Ef) (15)

where V(r, s) is the scalar potential of the box. For the
present we shall take

V(r s) = V.(r)+V.(s),

where V,(s) = V,(—s), and introduce the notation

V, (L,(E,))=E„or L,(E,)= V, '(E,),
and, similarly,

R(E,) = V„—'(E,)
to denote turning points determined by the scalar poten-
tial where the kinetic energy vanishes for some arbitrary
energy E . Under the assumption

4 = p(r) exp(ice)f (s),

the Schrodinger equation separates and we have

—(5'/2m) (p"/p+ p'/r p P/r')+ keHl/2m— c

+V„(r)+(mr'/2) (eH/2mc)'= E„, (16)

(A,'/2m)l-"/f+ V.(s) =—E..
By definition the eigenvalue for the energy is

E=E„(t,e)+E,(m, )=E(l, rl, , n,)

We will use the WEB approximation in solving these
equations where the radial quantum number is m, taking
on values 0, +1, +2, , and the e, quantum number
is m, =0, +1, +2 . The orbital quantum number f

ranges through all permissible integral (+, —and 0)
values for which E=E(l, m, r4)&E„and satisfies the
requirement that the radial WXB integrand be real,
and with real limits of integration. If we introduce the

"There is a discussion of a class of these discrete values by
M. C. Steele, following paper LPhys. Rev. 88, 451 (1952)j, Eq.
(»)."C.G. Darwin, Proc. Cambridge Phil. Soc. 27, 86 (1931).
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notation 2mE(l, n, n,)/k'= k' 2mE /k'= k ' 2mEO/k'
= ko', 2mE, (n,)/k'= k,'(n, ),L= (kc/eH) & (approximately
the radius of the smallest quantized orbit in field H),
and the radial equation can be written, substituting
E„=E(l, n, n,) E„—and p(r) =u(r)/r&,

d'u/dr'+-(k' —2m V,(r)/k' kg'(n—g) —P/r'
r'/—4L4 (l/—L')+ 1/4r') u= 0, (17)

and the s equation is

d'f'/d 's= —(kg'(ng) —(k'/2m) Vg)i. (18)

In accordance with the arguments of Kemble~ and
Kramers" in applying the WKB method in polar coor-
dinates, one drops the 1/4r' term in Eq. (17) so that
the radial quantum number is given by

n= (1/s) (k' 2m V,(—r)/k' kl'(n, )—
—(l'/r') —(r'/4L') —l!L')'«—

k (19)

and the s quantum number by (this determines k,(n,)]
p zss

ng= (1/s.) (k '(n )—k'V (s)/2m) &ds '„—(2-0)

where the subscripts e, l indicate the coordinates where
the integrands of (19) or (20) vanish. We can solve for
them explicitly when we know V„(r) and V,(s).

We now have the problem of counting all the possible
eigenvalues of E=E(l, n, n, ) (determined by combined
solutions for E and E, from Eqs. (19) and (20) less
than some arbitrary E ). Since the quantum numbers

n, l, n, are integers, an estimate of this number of
states according to number theory, is the volume in
quantum number space (n, l, n, considered as con-
tinuous variables) enclosed by the surface E(l, n, n,)&E,
and the planes n, = —

~ and n= ——,'. On these planes
the upper and lower limits of coordinate integration in
Eqs. (19) and (20) come together. According to our
previous discussion, this is just one-quarter of the volume
and encloses one-quarter of the points of a 6gure closed

R

symmetrically about these planes. Let us call this
(quarter) volume in quantum number space V(E,). We
may subsequently improve it as an estimate of G(E,),
the number of integer coordinates n, l, n, inside, by
beveling off its sharp edges and subtracting the volume
so removed from V(E,), and by adding periodic terms
based on the dimensions and curvatures of the surface
E(l, n, n,) =E,. So we have for V(E,),

~ezts ~ its

V(E.)=) ) ) dngdldn&
nz--$ Lg n

(21)

where subscripts I, l refer to upper and lower limits.
The question now is what are the limits of integration,
which are not required to be integers. Being a volume
integral, these limits will depend on the order of inte-
gration; however, if we integrate on n first, the upper
limit on n is just Eq. (19) with k replaced by k,. So
integrating on dn in Eq. (21), we have, as the 2 terms
cancel,

nzt» pits g prt»

V(E,) = ~
—

~
(—l'/r —r /4L'+k, '

C..= k3„~J„,
—2m V,(r)/k' —kg'(ng) —l/L') kdr. (22)

To integrate further, as we still have a triple integral,
we refer to Fig. 4, where the WKB integrand is plotted
as a function of r' and l. In the form given by Eq. (22)
above, it is seen that V(E,) is just the integral of the
radial WKB integrand over all regions of r, l, n, space
where this integrand is real. The value of n+-,' cor-
responds to the integration on r along paths such as
DB, FM, or HE in Fig. 4. The lower and the upper
points of the curve correspond to r&, and r„of Eq. (19).

If we actually carry out the r integration, and com-
pute n+-,' before proceeding with the n„ l integrals, it
will be necessary to divide the region of Fig. 4 into two
parts, to the left and right of GL, corresponding to
whether the upper limit of r is determined by the wall
of the box [scalar potential V,(r)] or the vector poten-
tial of H. However, since the total expression Eq. (22)
is still just a multiple intergal on r, l, and n„we may
integrate in any order we like so long as we cover the
same region, and we may write it as follows:

V(E,)=
~nz ———

&

f+r [+a +z(~z) l

dn dr—

G

M AB

f —(r~/2L2) +rfka~ -(2m pr(r) /5 ) —k» (xz)l~

X
( = —(r~/2L ) —v[k ~ —(2mV, (v) /k~) k,~(n,))&—

Vdl,
(23)

FIG. 4. Strong field case. L'k, /R&1. Region of integration
where the radial WKB integrand is real for fixed n, . Inner para-
bolas are for diferent n, (dotted).

~0 E. C. Kemble, The Fundamental Princi ples of Quantum
Mechanics (Mcoraw-Hill Book Company, Inc., New York, 1937),
p. 107.

"H. A. Kramers, Z. Physik 39, 828 (1926).

V= (—(l'/r') —(r'/4L')

+ k '—(2m V (r)/k') —kg'(ng) —(l/L')) k

These lower and upper limits on l correspond in Fig. 4
to JIA and ACG, respectively, l= r'/2L' corresponds—
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to IA. Or, with l'= I+(r'/2L') .

&V& IlZ —Z (~ )]
dn,

nz
0

fa+r[k~ —(2myg(z) /5 ) —kg (ng)]&

x~
l = —p'fka —(2mVg(z)/h ) —kg (~g)]~

Y'dl',
(24) -(i,l,0)

F'= Lk, —(2mv, (r)/k') k—,'(I,) l"—j&/r

With this order of integration, n,„is given by the largest
value it can obtain, for E„=O.

Lk.'—(2m V.(s)/k')]lds ——,'. (25)

K ,0)

Integrating on n, corresponds to adding the contribu-
tions of successively smaller parabolas (dotted) of Fig. 4.

All of this is independent of whether the field is
strong or weak and whether the box is large or small,
so long as the box potential is separable in r and s. Note,
and this is the important point, that this V(E,), Eq.
(24) or (26), is actually independent of the magnetic
fmld. Hence, if used by itself as an estimate for G(E,),
it will give no contribution to the magnetic moment
(which involves a differentiation with respect to H)
whatever. The only terms which can contribute to the
moment will be oscillatory terms, depending on the
curvatures of the energy surface or small corrections
which may arise if we find we can snip off small edges
of the "Fermi volume" without loss of quantum
numbers, these oscillatory and subtractive terms being
essentially the improvements on V(E,) as an estimate
of G(E,). It can be shown that this conclusion also
holds using the higher corrections to the WKB approxi-
mation given by Dunham, "as the field dependent terms
disappear with the same substitution l—+l' which
removed them above.

From Eq. (24) we have

[&g &g(Sg)]

XLk, —k,2(e,)—2mv, (r)/k'hydr. (26)

We cannot proceed with our integral without definite
assumptions concerning the potentials V,(r), V.(s)
since k. depends on e, through Eq. (20). However, if
we assume the simplest of all potentials, a simple well
in r ands, so that

V, (y) =0, y&R,
=M&E r&E.

V,(s) =0, L,/2&s&+L, /2, —
=~&E., ~.~&L./2;

then, for all E,(M, the turning points, when they
~ J. L. Dunham, Phys. Rev. 41, 7i3, 721 (1932).

FzG. 5. Energy surface in quantum number space for strong fields.

occur at the walls, are constants, and we have"

k.(m.)= (n,+ ',)vr/L. ,
-

p krsLg/m- -$

sg= -k
= (4s./3) (sR'L,)(2mE, )t/k'.

(R'/4) Lk '—(yl„+ ')'m'/L $dn —(27)

This is just the formula for the number of levels less
than E in the absence of a magnetic field.

The disadvantage of integrating first on r and thus
computing n directly is that it can be done exactly for
paths BD or FM, but a series expansion which will
depend on H is necessary to get it in a tractable form
for subsequent integrations on l and n, for paths such
as HK. The paths D8, FM, HK correspond respectively
to orbits which encircle the origin, interior orbits which
do not encircle the origin, and surface states, or orbits
which touch the wall. Hence, any errors committed by
dropping terms in the expansion for the surface states
will just appear as an II dependence of V(E,) in the
final result, which could be carried out exactly by
integrating first on l and then on r.

It will be seen that it is essential to include the states
of positive l to get a total V(E,) independent of H, so
that the calculations of Van Vleck, ' who computed
surface states but neglected the states of positive l,
must have been in error by just an amount suKcient
to compensate for the omission of positive l states.
Similarly, this writer's calculations' were also in error.

In order to apply the corrections, both periodic and
those due to edges and cusps in the surface, let us plot
the energy surface in quantum number space. To do
this it will only be necessary to represent specific
regions of the surface accurately, since we know its
overall volume, Eq. (27). This energy surface plot is
given in Fig. 5. The portion of the surface MHDCB,
which corresponds to integrating on r to compute n in

"The use of the WEB relation between I, and E, instead of
an exact relation which could here be obtained will not alter any
of the conclusions which follow.
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FIG. 6. Energy surface in quantum number space for weak fields.

the region GLMACIi of Fig. 4, can be expressed
exactly and is

e= (1/~) ((L'k '/2) —n'L'[(n +-', )'/2Lg'] —l—
~

l
~ ) —-', .

(»)
This is valid for all / greater than the l coordinate of the
line GM of Fig. 5, which is

l = R'/2L'+ —R[k.' (ii,+-,')'w—'/L, ']i.
—R'/2L' is the "length" of DH,

&R[k '—(m + ')'m'/L ']l-
corresponds to MHL measured from a plane through
OH perpendicular to the l axis. The cusp-shaped region
MLH which corresponds to the region GLJ of Fig. 4,
or surface states, is given approximately by

e (L'[k '—(n +-')'~'/L. ']/2~)
)& [x(1—x') l—sin —'x+ x./2]+0(a) ——,'. (29)

Here a=L'[k ' —(r4+ —')'~'/L, ']/R&1 for validity of
approximations x= (l"—a)/(1 —2al"+a') ', where

l"= (l+R'/2L')/R[k ' —(e +-,')'~'/L, ']',
x~(l—R'/2I. ')/R[k. '—(e.+-', )'~'/L. ']l&1.

These are obtained by integrating Eq. (19) with r„=R,
and using the transformations of Eq. (29).

If we like, in order to justify applying our arguments
to number theory, we may imagine Fig. 5 to be extended
by reflection in the m= —

~ and m, = —
~ plane. We can

then expect that the largest periodic corrections arise
from the ruled surfaces BMHD and BDC and that
there will be nonperiodic corrections based on rounding
off the edges DH and HLDC. There is no edge at all at
CBML when reflection occurs at m, = —~, and we cannot
smooth off the edge BD without losing lattice points as
the, quantum states at l=O are good quantum states.

Let us consider these various corrections. We shall
compute them in order of magnitude only, although in
most cases exact evaluation of the integrals gives a
quite good estimate of the numerical coe ancients

required. Exact evaluation is best carried out by the
number theory development of the correction terms as

performed by Steele using the method of critical
points. '4 In fact, the quantitative evaluations which
follow can be regarded just as geometrical interpreta-
tions of the critical point method.

Consider first the edge DH. At this edge we may
approximately subtract from the total volume without
loss of lattice points a triangular prism of length
DH=R'/2L', of base EF= i2, and of height

(dm./dn). =0 (be=-,').
We say "approximately subtract" since the remaining
figure must have a surface of continuous curvature, by
our previous number theory discussion. Figure 5 for
strong fields has (dm, /dm)„=o))1, so that this approxi-
mation is valid. As the field gets weaker the edge DH
is less acute, and this approximation is less valid. When
this edge approaches 90', it may fail completely (Fig.
6). In so doing we improve the estimate of the volume
as a measure of the total number of lattice points, since
we reduce the total surface area and also the region
removed is one of large radius of curvature (it increases
with m, on the Fermi surface). Thus the net volume
removed is

—-,'( 8/
' )( '/2 ')(-') (30)

The corresponding contribution to the moment at
T=O' is, for ED=Fermi energy,

@o

Mr, ——(8/BH) t 8V 1.(E,)dE,~ ~R'L,EO/L—4krH
0 =0[ vrR2L, e2HE—O&/Acm&]. (31)

This is the order of magnitude of the Landau moment
and is diamagnetic.

Consider next the contribution of the surface states
to the moment, which we may obtain by removing
without loss of lattice points a thin strip of thickness
km= —', (from n= —i~ to N=O) along the edge HI-. In
order to find its dimensions Alt, as a function of / and e,
(Fig. 5), we must find an expression for the quantum
number n, valid for small ranges of ni, that is (v+2) &—',

(near I of Fig. 4). This we may obtain from Eq. (19)
(with r=R) as follows:

Let Al be the distance in / from the line HL of Fig. 5,
so that

l = (—R.'/2L') —R[k,'—(m,+—,')'x'/Lg']'+El. (32)

If we substitute this expression for l in Eq. (19) and
expand in terms of 6/ keeping only the smallest powers,
we find after considerable manipulation, and writing
(I,+-', )'vr'/L.-'=k, '(a,), as for Eq. (27)

m= (1/mR') (L'[k ' —kg'(e )](2hl)')[1+0(a)]——' (33)
This reaches the value m=0 at

Al= 0(R/L+'[k, ' k,'( )]I'"). —(34)

The length of the strip HL is L,k,/~ (largest m,

'4 J. G. van der Corput, Amsterdam Roy. Acad. Sci. 51, 650
{1948).
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Ep

3II= (8/8H) t 8U(E,),„„dE,
0

=0(RL kp'"/L"') (Ep/H)

0(7rR'L—, m'~'e'~'Ep"'/Rh'~'c'I'H'~'), (36)

valid for kpL'/R&1. This is the order of magnitude of
the surface diamagnetism previously reported, " and
found by Steele using the method of critical points.
Here again a numerical evaluation of the exact volume
between n= —

2 and 0 and the limits on h1 in this edge
would give a fair value of the numerical coefficient
required in Eq. (36). It is considerably less than unity,
as the edge HL is quite "thin, " varying as (Al)&.

Finally we have the edge CD, which is actually a right
angle in Fig. 5, completed by reflection in the plane
n= —~. The maximum volume that could be removed

along this edge without loss of lattice points is of order
(p')(L,k /pr)(p'). This is independent of the magnetic
Geld and hence can make no contribution to the
moment, considered as a correction to V(P.,).

We now have to consider periodic terms Lsee Eq.
(6)j corresponding to the direction (1, 0, 0) in Fig. 5.
Consider first a slab of unit sagitta as having a radius
of curvature of order 1/(d'I/de, ')n, =o, of length
BM=AO OP =R'/2L' —Rk, . The di—stance of the
tangent plane from the origin is AB=Lpk„'/2, so that

8V(E~)l, p, p (d s/dm~ )n~=o '(R /—2L —Rk )
)& cos2m. (k,'L'/2 —pp).

Using (d e/dm, P)p, =o '=L,/~L, and calculating the
moments from bV(E, )Lp, p as in Eqs. (31), (35) we find

at T=O

3fg, p, p (L,/prL) (R'/2L' —Rkp)

([8(k.'L'/2)/BH]z. =zp/[8 (k.'L'/2)/BE. jz, =zp}

cos2~(kp'L'/2 —pp). (37)

The expression in brackets implies the approximation
that the last oscillation of the sinusoid determines its
integral, and that the sinusoid contributes the major
part of 8/BH In other words. , this contribution to the
moment is the effect of the Fermi surface just catching
or missing a lattice plane in quantum number space. In

'~M. F, M. Osborne and M, C. Steele, Phys. Rev. S6, 247
(1952).

value) so that the volume removed is of order

I.,u /' —g ~at =Eq. (34)

-~ n, = —
& hl =0

pn=Eq. (33)

dn (35)
2

0(RL—,k."'/L4"),

and the contribution to the moment at T=0' is of order

terms of physical constants, Eq. (37) becomes

Mq, p, p
=0(~R'L,e&H~/c&hP) cos(2m.mEpc/heH —

pp)

0(—L,Re~m'"EpP/hc'H*') cos(2~mEpc/heH pp)—. (38)

This is just the order of magnitude of the leading term
in the de Haas-van Alphen effect (1st term) and the
surface correction (2nd term) thereto found by Steele.

. In the direction (1, 1, 0), Fig. 5, the lattice planes are
1/K2 apart. The distance of the tangent plane (to ruled
surface BCD) is BA/2l=( —,'L'k, '/v2). The radius of
curvature in the section perpendicular to BC is

(d'e/dm, ') p, o'=as before. BC=L'k,,'/v2 so that the
fluctuating correction to t'ne volume V(E,) is

8V(E )t, y, p (I /m'L)(k L/2~)
)&cos[2m. (km'L'/2) (V2/K2) —

pp$,

and the contribution to the moment at T=O',

Ã., ., p= 0(L,mEp'c1/e'*h'H ) cos(2prmEpc/heH @) (—39).
It will be seen that the terms contributing to the
moment in Eqs. (38) and (39) are in relative order of
magnitude like unity, L'kp/R, L'kp'/R'. Thus, as the
field gets weaker (I.'kp/R 5/HR) they approach the
same order of magnitude, and are equal just when this
description of the quantum states fails and we consider
the Geld to be weak instead of strong.

Note that if we pick directions such as (1, 0, 1) in
Fig. 5, where the slope de,/de=1 of the tangent plane
is less than (de,/dn)„Lp, /L'k, L,H/5, there is no
tangent plane which can be drawn except at the arti-
ficially-rounded edge DH which contributed the Landau
diamagnetism. This is to say the periodic correction
terms corresponding to these directions are small in
agreement with Steele's Gndings. '

In tbe direction (1, —1, 0) where the curve is both
concave and convex, a detailed analysis of the region
of the inflection points will be required. However, since
MJI.is a curve, it does not seem possible for the number
of points just caught or missed to be as large as those
on the straight edges BM or CB, evaluated above, hence
the correction 5V~, ~, p(E,) and the moment will be cor-
respondingly smaller.

If we consider the shape which the Fermi surface
obtains as the magnetic Geld weakens, it can be seen
that the developable portion MBDII gets smaller while
the region of surface states and those of positive l get
larger until the turning points for orbits of energy Eo
(at the top of the Fermi sea) are no longer determined

H Gx F

FIG. 7.'Region for integration of the WEB radial integrand for
weak fields, I,'k, /R&1,
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contribution of the term in 1/a' in Eq. (42) is the only
term containing the magnetic field and hence the only
part of the volume which can contribute to the moment;
the terms in 1/a of Eq. (42) canceled out. If we evaluate
the contribution to the moment at T=O', we have

by the vector potential but by the wall. The Fermi
surface ultimately approaches that of Fig. 6. The
diagram for the WEB integration corresponding to
Fig. 6 is given in Fig. 7, There are two points to be
noted, however. For small values of k,'—k,'(n, ), region
QF'RBA of Fig. 6 (see the dotted parabola of Fig. 7),
the figure still preserves the character of the strong
field surface. Second, surfaces interior to the given
surface of Fig. 6 approach the shape of Fig. 5. This
simply means that as the orbital component of energy
and hence radius of orbit is small compared to the con-
tainer dimensions, Fig. 5 still applies.

If we examine the Fermi surface shown in Fig. 6,
we see along the edges F Q and FFB volume may be
removed without loss of lattice points. We can evaluate
e+—,

' &-,'for small powers of At using

4 p

=0(r, R'/4E4 ~ H/k 14c2n'14) ~ 4rR'L (44)

valid for k4L2/R&1. This is' the order of magnitude of
the Dingle diamagnetism. "

The derivation is valid to the extent that the energy
surfaces (E,) over which we integrated, Eq. (44), are
represented by Fig. 6. Since interior surfaces approach
Fig. 5, these would contribute a diGerent moment cor-
responding to Eq. (36) with smaller effective E4. If, for
example, k4L'/R=2, 8 of the volume is represented by
energy surfaces like Fig. 6, Ls by Fig. 5, and Eq. (44) is
valid to, say, j.2 percent. For this reason the volume
integral of Eq. (43) is carried out in order of magnitude
only.

Exact evaluation will show that the numerical coef-
ficient required in (44) is considerably less than 1, as
the "edges" BH and QX are rather "thin" in the 44

direction, varying like (LU)&, as was also the case for
the surface diamagnetism in the case of strong fields.
As was previously reported, "the two types of moment
go into each other as the field changes from strong to
weak, as is indeed evident when we consider the
regions of their origin in the Fermi volume. As before,
in the case of strong fields, the edge AI at /= 0 cannot
be removed without loss of lattice points.

Although the analytic expression for surface in the
region of the Landau edge A8 is exactly the same as it
was for the strong field case, we can no longer with
certainty bevel oG and conclude that there is also a
term giving the Landau diamagnetism. The reason for
this is that the Landau edge is now no longer an acute
angle but a rather obtuse one, so that if we remember
that we must bevel oG to a surface which has a con-
tinuous radius of curvature riot larger than the largest
already present, not much volume can be removed.
Surfaces considerably interior to that of Fig. 6, since
they approach Fig. 5, would have an acute Landau edge,
and these would contribute to a Landau-like term in
the integral over dE giving the moment. In any event,
the Landau diamagnetism is considerably smaller than
that given by Eq. (44), and for some conditions" may
be smaller than the surface diamagnetism of Eq. (36).

We would now like to estimate the order of magnitude
of periodic terms corresponding to the directions
(1, —1, 0) and (1, 1, 0), Fig. 6. Although the surface is
saddle-shaped in these two directions, we still take, as
was mentioned seemed plausible, the product of the
square root of the two radii of curvature as an estimate
of the number of points just caught or missed in these

f= —R'/2L'&RLka' —ka'(44») laW hl,

where 6/ is the distance in / from the edges EA and AII.
As before, to do this we write Eq. (19) in the form

44+ '= (1—/s) I (1/r) [(r'—r ') (rn' —r')/4L4]&dr, (40)
rg

and denote by r„+, r&+, r „,rI the roots of the iategrand
for positive and negative values of /, corresponding to
paths JE and I.M of Fig. 7 for small quantum numbers
rk. These are given in Eq. (41) in terms of

1/u=R/L'P '—k '(r4 )g&&1

e+ and e indicate the values of e for these paths. In
Eq. (42), as before, we have k, (r4)=( ,44+') /4rL, and
also define $ as k,'—k,'(44,).

r„,p'=4L4$(1+1/4u'+1/u . ),
r~, ~p =R'[1—(2Al/$'R)(1+1/8+1/u' )j. (41)

Ultimately, we find for m in the neighborhood of the
edges F Q and RH

(n+ —) =44 '=R '*$ &(Al)'*(1+1/a+1/a2)/37r (42).
If we integrate dnd(LU)dr4, over values of n for which
O(n+L~(~~ and the corresponding values of hl and
r4 given by Eq. (42), we can 6nd the net volumes

8V(E,)+ of the two edges. We indicate by hi+4 the
values of b,l for which 44~'= 2, from Eq. (42).

Iana~Laka/n -$
)

El+4 tana'

—hV(Z.),=
~ n = -$ ~ lU =o~ n+ =0

de,dh/de+'

t
»a~Lika/n 4n al $tan '--

drI„dh/dn '.
~ ~t =o ~n '=o

On integrating and combining terms of the same order
of magnitude, we find

bV(Ea)g=O(R"'Ra'I'La)+O—(R'/'La/L'ka'/') (43)

Note that the second term of Eq. (43) which is the



NUMBER THEoRY

directions. Since the dimensions of the figure along the
lines OH and OE are

Rk.[1aO(R/L'k. )], R/L'k. (1 (t, at e x—),
whereas the distance OJ is

Rk, (1 0(R—/L'k )') (n+-,', at 1=0),

we can expect that the distance to the tangential plane
in the direction 1, 1, 0, or 1, —1, 0isinorderof magni-
tude

(Rk./2l) [1aO(R/L'k. )j.
The radii of curvature (one positive, one negative) are
in order of magnitude (d'n/dl') ~.=o ' and either
(d'l/de, ')n =0 ol (d B/dB )n =o ' which are, respec-
tively, 0(Rk,) and O(L,2k,/R).

Hence, the periodic correction to V(E) is of the
order of magnitude

"eV(E,) (Rk,)&(L,'k, /R) &

X[cos(2~Rk (1+R/L'k, )—y)]. (45)

This contributes to the moment, for T=O',

M =0(Eoe/Rhc) cos(2~[R(25tEp) '/h j
X[1+ReH/c(2mEO)'] y} 7rR'L, .—(46)

This is in agreement with the form and order of mag-
nitude of periodic terms found by Dingle. " All the
physical parameters appear correctly, but the period
given by Dingle's leading term is three times as great.
However, our analysis could not be expected to give
this degree of accuracy. Note that in Eq. (46) if R is
small, say 10 ' cm, this term fluctuates so slowly with
magnetic field that it might almost be interpreted as a
constant moment of most uncertain sign.

Ke may also apply the above analysis to the para-
bolic potential given by Darwin. " The Fermi surface
in Darwin s notation is shown in Fig. 8. If we identify
as the "volume" of Darwin's parabolic well xR0'I...
where Ro is the radius, at which the scalar potential of
the wall is equal to the Fermi energy Eo, then it can
easily be shown that the edge DE contributes a moment
of the order of the Landau moment ML, . The nose
ELM, which lies entirely between the planes m+-2=0
and e+ ,'= ', , co-ntr-ibutes Mc 1/Lkp=Mc(eIZ/kc)~

h/(2mEO)'*, i.e., considerably smaller, except for very
large fields (in striking contrast to the contribution of
the surface states for the cylindrical box.) The oscil-
latory terms corresponding to the directions 1, 1, 0 and
1, 0, 0 can easily be evaluated (see Fig. 2) and are
smaller than their counterparts for the cylindrical box
potential.

These diGerences between the box and parabolic well
are not surprising, as all the states in a parabolic well
potential are in a sense surface states to some degree,
whereas for the box a significant distinction can be
made between those states which do and those which

"R. B. Dingle, Proc. Roy. Soc. (London} A211, 500 (1952};
212, 38 (1952}.

mLz /0

=E/~~(b+))

J,O, O

FIG. 8. Energy surface for the Darwin potential.

do not touch the wall. A 1/r or exp( —kr) potential box
(atomic system) might give still difierent results.

IV. DISCUSSION

If we consider the application of these ideas to a real
metal of shape other than a cylinder, it seems plausible
to believe that expressions for the I.andau diamag-
netism, the de Haas-vanAlphen eBect, and certainly
the surface diamagnetism for strong fields will still
apply. The surface diamagnetism is essentially a con-
sequence of the quantization of orbits which intersect
the wall, and if the radius of curvature of this orbit is
small compared to the radius of curvature of the surface,
it can be considered as plane, and Steele's result for
the cubical box and the results of this paper for a
cylindrical box are in agreement, so that one can expect
that for any surface whose radius of curvature is large
compared to that of the quantized orbits considered, the
same result will apply.

Moreover, we can also expect that the introduction
of a finite surface potential spread over a finite distance
will not essentially alter these results, so long as the
thickness of the surface layer is small compared to the
radius of the orbit or the dimensions of the box. Since
the thickness of the surface layer has been estimated at
from 10 ' to 10 ' cm, one can expect that for most
magnetic fields and particles not too small this can be
regarded as a surface of zero thickness and the above
results for a rectangular well potential will still apply.

It is evident from all of the foregoing discussion that
the observed fluctuations in the magnetic moment
according to the de Haas-van Alphen eGect can always
be interpreted as a Fermi surface just catching or just
missing the lattice points or quantum states of a plane
as the magnetic field changes the shape but not the
volume of the Fermi surface. Moreover, the non-

periodic contributions to the magnetic moment follow
from the fact that the Fermi surface can be shrunk,
without loss of lattice points, into a figure of smaller
surface area and smaller radius of curvature.

It should be possible to conclude from observation
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of the de Haas-van Alphen eGect considerable informa-
tion about the Fermi surface. However, such an inter-
petation would probably have to await a discussion by
number theoretical methods of the problem of particles
in a magnetic field and in a periodic instead of a box
potential. Here it may be expected from the work of
Steele that a considerable portion of the phenomena
can be correctly represented by using Landau counting
without explicitly taking into account the effect of
surface states.

It might be appropriate to mentioned here the eRect
of a finite temperature and of collisions. If, instead of
integrating hV(E)dE to a sharp cutoff at Eo, the
Fermi energy, in the expression for the moment as
given by Eqs. (31), (35) or (38), where bV(E,) is one
of the correction terms, we use the Fermi distribution
for a finite temperature, this wi]l have the general effect
of "blurring" the cutoff. This has a negligible eRect
on the nonperiodic contributions to the moment,
reducing them by a factor P1 —O(kT/Fo)']. The oscil-
latory terms are not much a ffected so long as
kT«ekH/2mc= pH, since then the cutoff occurs over
an energy range (kT) small compared to the spacing of
the levels pH. On the other hand for kT& @EX the oscil-
latory moment is damped out by a factor O(kT/pH)
X(e ' " '" ) with respect to its T=O value.

If the energy levels are blurred by collisions by an
amount e, the above expressions with kT replaced by e

will apply approximately, in order to estimate the col-
lision damping. However, the damping of the oscillatory
terms will depend to a considerable extent on the
actual shape of the blurred level. The eRect of collisions
has been considered by Dingle in detail. " Kendall
discusses the problem of lattice spots of finite size, but
his development does not seem immediately applicable
to the problem of collision damping.

The results of this paper apply for boxes ranging
from atomic to astronomical dimensions, the definition
of "strong" and "weak" fields being adjusted accord-
ingly. The only restriction is that the number of elec-
trons in the box be suKciently greater than one (say
ten or more) so that V(E,) is a fair estimate of G(E,).
If we try to find combinations of moment, field strength,
and dimensions such that the moment per unit volume
is )H, the applied field, we find that only for very small
fields or small dimensions, HR(10 ' gauss cm for the
oscillatory moments, LEq. (46)], or very large speci-
mens"- (E km) and very small fields (H&10 ') for
non-oscillatory moments [Eqs. (44) or (36)j is this
possible. Adjusting the effective mass or the Fermi
energy can modify these conclusions a little. "

These conclusions are in striking contradiction to
those of Papapetrou and Slater, who concluded by per-
turbation arguments for weak fields or small" boxes
(Slater) that a strong diamagnetism was to be expected.
If our conclusions from number theory are correct, it

"J.Bardeen, Phys. Rev. 80, 567 (1950).

means that one must examine with great care any
perturbation calculation in a magnetic field for statis-
tical mechanical problems. "The conclusions of Welker,
who found (neglecting IP terms in the Hamiltonian)
two huge susceptibilities which just canceled each other,
are more in keeping with the results of this paper Lsee
Eq. (27) for V(E,)j.

There is a second point to be remembered in applying
the conclusions of this paper to a physical problem. The
perfect balance LEq. (27)) insofar as magnetic proper-
ties are concerned, between interior and. surface states,
which is only altered by a consideration of number
theory corrections, is only valid for the state of thermo-
dynamic equilibrium. Be the departure from equi-
librium ever so slight, this balance may be completely
upset. This consideration is important in discussing the
magnetic properties of the ionosphere, and may be sig-
nificant in theories of superconductivity when it is
recalled that multiply-connected bodies may not be in
their lowest state of thermodynamic equilibrium when
a magnetic field is present.

V. GENERALIZATION

It is interesting to consider the problem of generalizing
to other quantum-mechanical problems the number
theory point of view in computing the density of states.
This aspect of a quantum-mechanical problem was first
considered by Bohr and Kalckar. "Auluck and Kothari"
have also considered an assembly of oscillators from
this viewpoint.

It has been known for a long time that in the cor-
respondence principle limit

V(E,) = t'
dpi dqa/k'

"&(P, c) ~&&a

is an estimate of the number of states (i.e., quantum
cells) less than E,. When this is applied to a Hamiltonian
containing a vector potential where H=H(p+eA/c, q),
it is immediately plausible why the result of Eq. (27)
was obtained. A canonical transformation' of p+eA/c
—+p', q

—&q', with unit Jacobian can always transform
the six-dimensional volume integral of Eq. (47) to a
form where the magnetic field does not appear either
in the integrated or in the limits of integration, hence
V(E,) is independent of H.

The question now is: can we generalize the method
of Eq. (47) to compute number theory correctioii terms
to V(E) in order to calculate G(E,)P The number
theory analog to Eq. (47) which agrees with it exactly is

(47)

d.'sids2ds3.

'8 See reference 5, p. 277 G.
"N. Bohr and F, Kalckar, Kgl. Danske. Videnskab. Selskab

Mat. -fys. Medd. 14, No. 10 (1937).
'0 F. C. Auluck and D. S. Kothari, Proc. Cambridge Phil. Soc.

42, 272 (1946).

V(E.)= ' (48)
B(ny, n2, n3) &p

E(ni, tt2, mi) are the eigenvalues of H(p, q)Q=EQ The.
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number theory correction terms for Eq. (48) are

5V(E,)i „=R(ai „)

R
~ J

t'
exp[2'lri (lnq+ mn2+ nn, )]

E~~ B(ni, no, n3) &Ea

Xdngdn&dn& I, (49)

where the number of states less than E, is G(E,)= V(E )
+Z&, , „a& „.It would appear that to compute Eq. (49)
by analogy to Kq. (47) one might proceed as follows. In
Kq. (49) dn; is replaced by dp, dq;/h and n; is replaced by

n ;= dp, dq, /h=n, (E., Lp, g] ), (50)
II(~, ~) «.

i.e., by the area of the p,q, cross section of the surface

H(pq) =E, in phase space. ([p, q] means the set of p's
and q's except p, , q,:.) Since this is subsequently to be
integrated over all phase space by Eq. (49), in Eq. (50)
when substituted into Eq. (49), E, is again replaced by

H(pq). Thus Eq. (49) becomes, computed in analogy
to Eq. (47),

~tmn= exp{2vri(tn~(H(p, rl) [p, q]q')
4 &(P, a) &&.

+mn, (H(p, q)Lp, q],')

+nn, (H(p, V)Lp, 0],'))} dp, dA/h', (51)

where the rs; in the exponent are the cross sections as
given by Kq. (50).

This scheme has been applied to give exact results
for the simple problem of the particle in a box and the
harmonic oscillator. Its success, or some modification
of it, when applied to problems where the variables are
not separable or there are several particles with inter-
action remains to be determined. One may expect that
the critical point method. , and the methods of com-
binatorial analysis will find application in spch problems.

It is a pleasure to acknowledge the benefit of numer-
ous discussions in the course of this work with M. C.
Steele.
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The methods of number theory are used to find the magnetic
properties of a free electron gas. The mathematical procedure
which connects number theory to quantum mechanics is given in
detail since the same or a similar method may be useful in other
problems of solid state and nuclear physics.

The magnetic moment calculation is given in three parts. For
the case in which surface states are not considered the results
obtained are in agreement with those of previous workers. But
when the use of a finite container (rectangular box) to hold the
electrons is considered, it is no longer possible to neglect surface
states. Through the use of the WEB approximation it is found
that the surface states give rise to new size-dependent terms in
both the oscillatory and nonoscillatory parts of the magnetic

moment. The oscillatory corrections are generally negligible com-
pared to the usual de Haas-van Alphen eRect. However, the non-
oscillatory correction, which is diamagnetic in character, can be
larger than the Landau diamagnetism for properly chosen mag-
netic field strengths and containter sizes.

The calculation is concluded with a consideration of the eRect
of the electron spin. It is found, in agreement with other workers,
that the only eRect of spin on the oscillatory part of the magnetic
moment is to introduce a phase change of &7r in alternate terms.
The "surface" diamagnetic correction due to a finite container is
found to be independent of electron spin.

Details on the use of the method of critical points for evaluating
integrals asymptotically are given in the appendix.

I. INTRODUCTION

'HE extension of Landau's' original work on the
diamagnetism of free electrons has already been

undertaken by several different methods. Landau'
himself showed that in addition to the nonperiodic
diamagnetic susceptibility the electron gas should ex-
hibit the de Haas-van Alphen' effect. Sondheimer and

*Based on a thesis presented for the degree of Doctor of
Philosophy at the University of Maryland, June, 1952.

' L. Landau, Z. Physik. 64, 629 (1930}.
2 D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939},

(quoting L. Landau).
3 W. J. de Haas and P. H. van Alphen, Proc. Acad. Sci. Amster-

dam BB, 1106 (1930).

Wilson4 have recently confirmed this result by an
elegant use of the density matrix. However, neither of
the above-mentioned papers attempted to find the
effect brought about by using a finite container to hold
the electrons. It is well known' that the absence of
diamagnetism of free electrons in classical theory is
dependent upon the behavior of the electrons on the
surface of the container. The preceding paper in this

4 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A208, 173 (1951).

'See, for example, J. H. Van Vleck, Theory of Electric and
Magnetic Susceptibilities (Oxford University Press, London, 1932),
p. 100.


