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The Atomic Heat of Silicon below 100'K*
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The atomic heat of Si containing less than 0.01 percent P-type impurities has been measured between
1'K and 100'K. Below 5'K, the atomic heat can be represented by the sum of a cubic term with Debye
8= 658'K, and a linear term equal to that of a highly degenerate "hole gas" with concentration about 10'
cm '. This is also the hole concentration calculated from Hall constant measurements on this material. The
Debye 0 calculated from elastic constants is 653'K, using a simplified procedure (described in Appendix II)
based on the Hopf-Lechner method. The atomic heat is in reasonable agreement with measurements of
Nernst and Schwers above 20'K, and of Anderson above 60'K. Above 5'K, 0 decreases to a minimum of
456'K at T=40'K and then rises to 580'K at T= 100'K.

The specific heat of glyptal lacquer, which was used to secure the heater and thermometer wires to the
samples, was also measured. Below 15'K, it can be represented by

c=2.2X10 4& joules/g deg,
and a table is given of values above this temperature.

I. INTRODUCTION

HE atomic heat of silicon between 1'K and 100'K
has been measured as part of a program of deter-

mining low temperature atomic heats in connection
with irradiation studies. Previous measurements, re-
ported by Nernst and Schwers, ' Magnus, ' and Ander-
son, 4 have covered the temperature range above 20'K.
Blackman and others' have succeeded in using the
Born-von Kkrmkn theory' to calculate vibration spectra
in crystalline lattices. The vibration spectrum may
then be used to calculate the atomic heat. Smith' has
calculated the vibration spectrum for diamond which
has the same crystal structure as Si. She has also calcu-
lated the dependence of the Debye temperature 0 on
absolute temperature and compared it with the ob-
served dependence' in the case of diamond, down to
100'K, or about 0/20. Our measurements on Si make
it possible to judge if her results are applicable to the
diamond lattice in general.

II. EXPERIMENT

a brass vacuum can. The cap of this can was soldered
to a high vacuum pumping line, which had a U-section
to act as a radiation trap. The electrical connections
were brought out from the can through a Kovar-glass
seal in its cap. Above 20'K, the sample was surrounded
by a radiation shield, closed except for several small
holes and having a heater wire attached. This facili-
tated measurements made between 20'K—50'K, and
above 77'K.

Constantan heater wire (about 100 ohms per meter)
was wound around the sample and attached with glyptal
lacquer for heat contact. The thermometer wires were
also wound on the sample and secured with glyptal.
In the helium region, we used 0.05-mm phosphor-bronze
wire, ,kindly supplied by Dr. K. W. Taconis of I.eiden.
In the hydrogen and nitrogen regions, we used 0.1-
mm Pb wire. Above 20'K, the heater and thermometer
wires were electrically insulated from the sample by
cigarette paper. The increase in resistance of the sample
with decreasing temperature made this unnecessary
below 20'K.

A. Apparatus

The method used was similar to that of Nernst an
Eucken. ' The sample was suspended by threads insid
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B. Procedure

The rate of energy dissipation in the heater wire was
determined by measuring the current passing through it
and either the voltage across it or its resistance. Re-
sistances of both heater and thermometer wires were
measured by comparison with a standard 10-ohm re-
sistor, using a Wenner potentiometer which had been
certified by the National Bureau of Standards. Current
and voltage were measured with instruments that had
been calibrated with the standard resistor and the
potentiometer. We estimate the over-all error in these
measurements at about 0.3 percent.

Heating periods were begun and ended by a timing
circuit which counts pulses produced photoelectrically
by the pendulum of a clock. This circuit was arranged
so thd, t current could be supplied to the heater during
periods which were multiples of ten seconds in length.
The clock was checked against timing signals broad-
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cast by WWV, and the over-all error introduced by the
timing circuit is estimated at not larger than 0.01
percent.

The thermometers were calibrated against the vapor
pressures of the refrigerant liquids, using the 1939 scale
for helium, "the XBS formula for hydrogen, " and the
values published by Keesom and Bijl for nitrogen. "
Above 2.2'K a correction was made to the vapor pres-
sure above the liquid surface, to take into account the
hydrostatic pressure due to the liquid above the vacuum
can. When necessary, the resistance of the heater wire
was also measured. The calibrations were made im-
mediately prior to each series of heat capacity measure-
ments. Occasionally, the calibration was checked after
a run. The Pb thermometer was also compared several
times with a helium gas thermometer.

It was found that the resistance-temperature curve
of Pb could be approximated by a straight line above
about 25'K. Below this temperature a smooth curve
was drawn through the experimental calibration points.
The phosphor-bronze curve was also linear below about
2'K; above this the curve could be represented by a
parabola. The straight line and parabola agreed with
the smooth curves drawn through the calibration points
to within 0.1 percent or better. Hence, in the tempera-
ture regions where they were applicable, these expres-
sions were used to convert resistances to temperatures
and also to calculate dR/dT, which enters into the de-
termination of AT, the temperature rise of the specimen
resulting from heating. Between 10'K and 25'K,
dR/dT was determined graphically from the Pb calibra-
tion curve.

At the conclusion of the calibration the helium gas,
with which the calorimeter had been filled in order to
provide heat contact between the thermometer and the
bath, was pumped out and a vacuum of the order of
10 ' mm Hg maintained in the can. The timing circuit
provided a pulse every ten seconds which was made
audible by a small loudspeaker, and at every signal a
galvanometer reading was taken. The galvanometer
sensitivity was measured frequent1y, so that deflections
could be converted to resistances, and hence to tem-
peratures. The temperature drift, which was usually
about 10 "K per second, was followed during a "fore-
period" about 2—5 minutes long. The sample was then
heated, usually for 10 or 20 seconds, producing a tem-
perature rise of several hundredths of a degree, and
thereafter the temperature drift was followed for sev-
eral minutes during the "after-period. " The change in
temperature due to heating was determined by ex-
trapolating the fore- and after-periods, usually to the
middle of the heating period. An analysis of the heat
exchange between the sample and its surroundings,

' A table of T eersls p, based on this scale, has been issued by
the Royal Society Mond Laboratory, Cambridge, England {1949).

"Woolley, Scott, and Brickwedde, J. -Research Natl. Bur.
Standards 41, 379 {1948).

~ W. H. Keesom and A. Bijl, Physica 4, 305 {1937);Commun.
Kamerlingh onnes Lab. , Leiden, No. 245d.

including a correction for the lag of the galvanometer
showed that at the lowest temperatures, the extrapola-
tion should be carried to a point somewhat earlier than
the middle of the heating period (see Appendix I).This
procedure was checked by taking several points at
approximately the same temperature, using di6'erent

heating times and diferent heating currents.

C. Samples

Two samples were used, both kindly supplied by the
Bell Telephone Laboratories. The first, Si I, weighed
about 40 g and was stated to have an impurity con-
centration of about 1.5)&10 ' percent B. Because of its
small mass and the fact that its shape made it necessary
to apply several tenths of a gram of glyptal to secure
the heater and thermometer wires, it was impossible
to measure its heat capacity accurately below 4'K.
The other sample, Si II, weighed about 260 g, but its
impurity concentration was not known. Its more suit-
able shape made it possible to use only a few mg of
glyptal, and so results were obtained with this sample
to below 1.5'K.

D. Measurements on Glyptal

In order to correct for the heat capacity of the glyptal,
especially on the smaller sample, we measured the spe-
ci6c heat of glyptal from O'K to 100'K. One set of
measurements was made by adding extra glyptal to
the small Si sample in several steps until a total of
about 1 gram had been added. The total heat capacity
was measured after each addition, and from these
results the atomic heat of the Si as well as the speci6c
heat of the glyptal could be calculated. This method
gave results consistent among themselves at O'K, and
from 10 to 20'K. As an independent check, a copper
disk weighing about 3 grams was coated with about 300
mg of glyptal, and the total heat capacity measured
from 10 to 100'K. The heat capacity of the glyptal
was about 50 percent of the total at 10'K and about 30
percent of the total at 100'K. In the overlapping tem-
perature range, from 10 to 20'K, the two sets of re-
sults agreed to within about 15 percent.

The measured specific heat of glyptal, from which
the correction was determined, could be represented
below 15'K by the expression

c(glyptal) = 2.2&(10 ' T' ioules/g deg. (1)

Values above this temperature are given in Table I.
The glyptal was air dried at room temperature after
application. It is possible that diferent drying treat-
ment might result in variations of polymerization which
might be rejected in the speciic heat. We would also
like to point out that Eq. (1) is merely the simplest
empirical reIationship based on only a few points of
not very high accuracy. Hence, while it is adequate for
the required correction, any theoretical inference from.
its analytic form would Qq unwagrag. ted,
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TABLE I. Specific heat of glyptal.

T'K

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

e joules/g degree

0.11
0.16
0.20
0.25
0.29
0.34
0.38
0.43
0.49
0.55
0.62
0.71
0.79
0.88
0.97
1.06
1.15

III, EXPERIMENTAL RESULTS

As mentioned above in Sec. II-C, measurements be-
low O'K were made only on Si II. Above 30'K, only
Si I was measured. Between 10 and 30'K both were
measured, and the values agreed to within the experi-
mental error after the heat capacity of the smaller
sample had been corrected for that of the glyptal used
on it. The magnitude of this correction was almost 40
percent at 10'K, about 15 percent at 20'K, and about
2 percent at 100'K on the smaller sample. The correc-
tion for glyptal on the larger sample was negligible at
all temperatures.

Below 5'K, the atomic heat of Si II can be represented
by the expression

C„=6.83&(10 ' T'+21. &0(10 ' T joules/mol deg. (2)

The spread of the experimental points from this rela-
tion is shown in Fig. 1, in which C„/T is plotted against
T', on this plot, Eq. (2) is a straight line. The coeffi-
cients in Eq. (1) were calculated by least squares from
the values of 86 experimental points taken during runs
on three difFerent days.

The values of the experimental points for tempera-
tures from 10 to 100'K and a smooth curve through
them are plotted in Fig. 2, along with the values ob-
tained in this temperature range by Nernst and
Schwers, ' and Anderson. 4 Our results agree fairly well
with these earlier measurements. A smooth curve for
the Debye 8 is also drawn in Fig. 2. Values taken from
both curves are listed in Table II. Although the meas-
urements give C„, (C„—C,)/C„ is less than 10 4 below
100'K," so we may compare our results directly with
the theoretical calculations of C„(see Sec. IV).

The over-all random instrumental error is probably
less than 1 percent and is largely independent of the
temperature range. At the lowest temperatures, the
influence of the heat leak, enhanced by the smallness

"See, e.g., F. Seitz, The Modern Theory of Solids (McGraw-
Hill Book Company, Inc. , New York, 1940), Sec. 24.

of the heat capacity of the sample, apparently intro-
duces random errors of several percent, as indicated by
the spread of the points. There is also the possibility
of systematic error of about 1 percent in the hydrogen
range due to uncertainty in the glyptal correction. The
over-all error in the 8-values is probably under 1 per-
cent, particularly below 50'K, where 0 depends on the
cube root of the atomic heat.
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FIG. 1. C„/T vs T' for Si. O: 6/1/51; V': 5/10/51; 6: 4/25/51.

'4 See reference 5, Sec. 3.' McSkimin, Bond, Buehler, andpTeal, Phys. Rev. 83, 1080
(1951).

IV. DISCUSSION

A. Very Low Temperature Region, T&5'K

1. Lattice Coetribltioe to the Atomic Hect

The fact that the atomic heat of Si II below 5'K can
be represented by the sum of a cubic and a linear term
in T indicates the possibility that we have reached the
true T' region. '4 In this case the linear term would be
due to a source other than the lattice (see paragraph 2
below). Blackman's calculations lead him to expect the
true T' region at temperatures below 8/50, or at least
below 8/100. 8 calculated from the coefficient of the
cubic term in Eq. (2) is 658'K, and therefore T is less
than 8/100 for T less than 5'K. Blackman also pro-
poses a criterion for the true T' region, namely, that
8(E), the Debye temperature calculated from low
temperature elastic constants, should equal 8(T), the
Debye temperature calculated from the lattice atomic
heat. Values of the elastic .constants of Si and their
temperature coefficients, both at room temperatures,
have recently been published by McSkimin and col-
laborators. " We recalculated the temperature coeK-
cients with a more recent value of the linear expansion
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coeScient than that apparently used there. %ith these
data, we obtained an estimate of the elastic constants
at O'K: c~j =1.689, c~~=0.6532, c44 ——0.8005, all in units
of 10"dynes/cm' The method of Hopf and Lechner"
modified as suggested by Durand" (see Appendix II),
was used to calculate 8(E), for which we found 653'K
This is about 1 percent lower than 0(T). The agreement
is very good in view of the accuracy of the elastic
constants and the approximations involved and is
further evidence that the contribution of the lattice is
correctly represented by the terxn proportional to T',

Z. EorIlattice Coyzfributioe to the Atomic Heat

C~ joules/
T'K mo1e deg

~ ~ ~

12
13
14
15
16
17
18
19
20
25
30
35

~ ~ ~

0.0130
0.0165
0.0210
0.0310
0.0400
0.0500
0.064
0.081
0.102
0.262
0.510
0.860

~ ~ ~

637
637
623
596
584
576
562
548
534
488
467
458

40
45
50
55
60
65
70
75
80
85
90
95

100

1.30
1.78
2.30
2.88
3.49
4.08
4.66
5.19
5.66
6.16
6.44
6.78
7.09

TAsI,E II. Atomic heat and Debye 8 of silicon.

456
460
466
472
478
485
494
505
517
529
547
574
580

The nonlattice contribution to the atomic heat can
thus be represented by a term linear in temperature.
Such a term is observed in the low temperature atomic
heat of metals, where it is identified with the heat
capacity of a strongly degenerate electron gas."To see
if our observed linear term might have a similar origin,
the number of carriers per cm' e was determined by
measuring the Hall constant R at and below room
temperature on several small specimens cut from Si II.
The resistivity p was also measured on these specimens.
Table III presents the results, and for comparison,
those of Pearson and Bardeen" on two of the samples
in their series of measurements on 3-doped Si.

The Hall constant and carrier concentration are
related by"

2= r/ne. (3)

Here e is the electronic charge, and r is a factor which
varies between 1 and 2, depending on the ratio of re-
sistivity due to impurities to total resistivity, for non-

C3

4—
O

(0
p 43

&C)O~

600
0
~~D

400

20 40, 60
r'T K

Fxo. 2. C„and 8for Si. 0:Si I; 7:Si II; Q: Nernst and
Schwers; X:Anderson.
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' "G. L. Pearson and J. Bardeen, Phys, Rev. 75, 865 (1949).
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(1950); 82, 977 (1951).

degenerate assemblies. For degenerate assemblies, r is
unity. If Z is given in units of cm /coulomb, then

n=r X6.25X10i8/E. (4)

Two of the specimens give for n,, 10'8 cm ' from room
temperature down to about 10'K for specimen 8 and
down to about 2'K for specimen C. On these specimens
contacts were soldered to Rh-plated spots. Pressure
probes were used on specimen A, and reliable Hall
constant measurements could not be made below room
temperature with this arrangement. The agreement
among the resistivity values for the three specimens is
as good as can be expected, considering the inhomo-

geneity likely to be present in an ingot weighing over
260 grams.

The heat capacity per mole due to a highly degener-
ate Fermi-Dirac gas is"

C„=1.62X 10 "Vn'rn*T= yT joules/mole deg, (5)

where V is the atomic volume of the lattice, and ms*

is the ratio of effective carrier mass to electron mass.
Stoner" has shown that this equation holds for T less
than 0.1 T~, where TD is the degeneracy temperature,
given by

Tv=4.2X10 "n&/rn* 'K.

%ith e equal to 10"cm ', TD is about 40'K, when tn*

equals unity. This is the value found by Pearson and
Bardeen" for the ratio of eftective mass of holes to the
electron mais. Thus below about O'K, y according to
Eq. (5) is about 20X10 'j/mole deg', which is in good
agreement with the coeKcient of the linear term found
experimentally t'see Eq. (2)j, 21.0X10 'j/mole deg'. f

The fact that the Hall constant hardly varies with
T from 300'K to 2'K while TD is only about 40'K
would seem to imply that the activation energy for the
impurity levels is zero and that the Fermi level is not
very near the top of the 6lled band. The latter sup-
position seems reasonable, but Pearson and Bardeen'9

"E.C. Stoner, Phil. Mag. 21, 145 (1936).
~ V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 71, 374

(1947).
g Pote added ~rI proof:—Further electrical measurements on Si II

show it to be very inhomogeneous, with both E- and P-type
regions. Hence this numerical agreement may be fortuitous.
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TABLE III. Electrical measurements on silicon,

Temperature
region

Pearson and
Bardeen+Our samples

Parameter A B C 2 3

Room

Liquid
nitrogen
Liquid
hydrogen
Liquid
helium
Impurity atoms
added to melt

R:cm'/coulomb
p. ohm cm
R
p
R (average)
p (average)
R (average)
p (average)

6
0.14

~ ~ ~

0.78

~ ~ ~

10
?

S S
0.14 0.10

S 4
0.75 0.44

4 4
3 1

~ ~ ~ S
130 14
?

17
0.14
200
0.9

6.7 X1017
cm 3

8
0.06
60

0.33

1.3 'g 1018
cm 3

+ See reference 19.

found zero activation energy only for material having
a carrier concentration at room temperature of 5&&10"
cm ' and higher. On the other hand, our resistivity
values agree fairly well with those of their sample 2
both at room temperature and liquid nitrogen tem-
perature, although only 6.7&(10' cm ' B atoms were
added to this melt. The reason for this discrepancy in
the Hall constants is not clear. Further measurements
are planned on a very pure single crystal of Si, in which,
according to our interpretation of the present result, no
linear term should be observed in the atomic heat.

B. Higher Temperature Region, T)10'K

It is usual to discuss the behavior in this temperature
range in terms of the dependence of 0 on T. Already
at 12'K, the linear term in Eq. (2) is less than 2 percent
of the total, so deviations from constancy of 0 must be
ascribed to lattice eGects which are imperfectly approxi-
mated by the Debye continuum treatment. " Figure 3
is a plot of 8/80 against T/80, where 80 is the constant
value in the true T region, for Si and diamond. ""For
Si, Ho was taken as 658'K, our observed value of 8(T).
For diamond, the value 1972'K was used for 00, this
was calculated by the method of Hopf and Lechner, '
using Smith's' revision of the elastic constants of dia-
mond measured by Bhagavantam and Bhimasenachar. "
The curve for diamond is plotted from Pitzer's measure-
ments and that for Si from the data of Table II. The
circles in Fig. 3 are from 0-values calculated by Smith'
from her determination of the elastic spectrum of
diamond.

Both curves exhibit the feature found by Blackman
and others in calculations on other lattices, '4 namely,
that the true T' region ends before T equals 8/50. Both
curves show a dip in 8/80, that for diamond being
smaller and occurring at higher T/80 than that for Si.
This would seem to indicate that the detailed behavior
of the atomic heat is not completely determined by
the type of lattice.

"P.Debye, Ann. Physik 39, 789 (1912).
~ Hill and Parkinson (see reference 25) have given a similar

plot, using 8 as the normalizing factor rather than 00. 0 is de-
hned in terms of the approach of C, to the classical value 3R, at
high temperatures.

~5 R. W. Hill and D. H. Parkinson, Phil. Mag. 43, 309 (1952).
~6 S. Bhagavantam and J. Bhimasenachar, Proc. Roy. Soc.

(London) A187, 381 (1946).
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FIG. 3. 0/Op vs T/8p for diamond and Si. Curves are from
atomic heat measurements; circles are Smith's calculated points
for diamond.

2' E. Katz, J. Chem. Phys. 19, 488 (1951).

Katz" has recently shown that curves of this type
may be used to derive information about the shape of
the elastic spectrum. He introduces parameters q and
8 . If the minimum in 0 is 8 and occurs at T, then q
is given by

q=5T /Ho,

and 8 is given by
8 = (8./8, )—1. (g)

For q greater than 0.5, the spectrum is insensitive to
changes in 0, so little information can be derived from

q and 8„.For q less than 0.5, a dip in 8/80 corresponds
to a peak in the spectrum centered about u~, with the
weight P relative to the tots, l area of the spectrum,
where v„ is given by

v„=qv~, (9)

where v~ is the maximum frequency, and IH is given by

P= —118 q'. (10)

For the diamond curve, q is 0.5 and 8 is —0.08, so P
is 0.1. Smith' finds that q is 0.53 from her calculated
spectrum, but the area of the peak appears to be rather
larger than 10 percent of the total. These comparisons
are only qualitative, since q is so large. For Si, q is 0.3,
and 8 is —0.31; IH is again about 0.1. Since v~ is pro-
portional to 8, this would imply that v„ for Si is about
0.2 times v„ for diamond. These conclusions would
provide a rough check on calculations of the spectrum
for Si, since they apply at the low frequency end, where
the accuracy of calculated spectra is poorest.
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APPENDIX I
At very low temperatures, the heat capacity of the

sample is so small that it is comparable to the heat
leak during one experimental point. When this is the
case, the temperature during the after-period decays
exponentially to that of the bath at such a rapid rate
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t =0, o.g= 0=ng,

=nI„

(15a)

(15b)

for the beginning and end of the heating period, and

"W. H. Keesom and J. A. Kok, Proc. Koninkl. Nederland.
Akad. Wetenschap. 35, 294 (1932); Commun. Kamerlingh Onnes
Lab. , Leiden, No. 219c.

~9 Aston and Szasz (see reference 30) and Keesom and Kurrel-
meyer (see reference 31) have given generalized treatments while
retaining this assumption.

'0 J. G. Aston and G. J. Szasz, J. Chem. Phys. 15, 560 (1947).
3' W. H. Keesom and B. Kurrelmeyer, Qornmun, Kamerlingh

Onnes I,ab, , I eiQqg, Qo. 257a (1939}.

that extrapolation to the middle of the heating period
no longer gives the true temperature rise. This problem
has been treated by Keesom and Kok,"who assume
that the temperature-recording instrument responds
immediately to changes in T.""This implies that the
maximum temperature will occur at the end of the
heating-period, whereas we noticed that our galvan-
ometer reached a maximum deflection at a time some-
what later than this whenever the final temperature of
the sample was above that of the bath. Other evidence
indicates that this lag is much longer than the thermal
relaxation time of the specimen, so we assume that it is
due to the momentum of the galvanometer and extend
the treatment of Keesom and Kok" to take this effect
into account. They derive the equations

T~—T~=(L/k)(1 —c '"') (11)

T T( (L/k) (ca',(c 1)c ~'(c (12)

for the heating- and after-periods, respectively. The
subscripts f, k, a refer to the fore-, heating-, and after-
periods, respectively. T is absolute temperature, I. the
heat input per second during the heating period, and k
the rate of heat loss to the surroundings per degree tem-
perature difference per second. C is the heat capacity
of the sample, t is time in seconds, t =0 corresponding
to the beginning of the heating period, and t= t~ to the
end. We simplified this equation by assuming T~=O,
throughout the fore-period.

The differential equation for the deAection of a
critically damped galvanometer which is recording the
temperature of a resistance thermometer may be
written as

(r/2') ~ac+ 2(r/2rr) a+a = T, (13)
where n is the galvanometer deflection and 7 is the
period of the galvanometer with no damping. This
equation holds if T (measured here in arbitrary units)
varies linearly with the current through the galvanom-
eter, a condition which is very nearly satisfied in our
measurements, since we operate in such small tempera-
ture intervals during each experimental point that the
galvanometer sensitivity and dR/dT of the thermometer
are essentially constant. The solution of Eq. (13) with
T given by Eqs. (11) and (12) can be put in the form

n —A g 2wt(r+A~fc —2wt(r+—A (14)

Imposing the boundary conditions

Lti -- - I&-- -r-C~'1) cx.' "(&)

l/2t. ) t.i 2 tl

FIG. 4. Galvanometer deQection n& )(t) during and after
heating period, illustrating extrapolation back to t* to 6nd true
temperature rise It1/C.

introducing m=k/c, the constants become

4n'
A r(„= (L/k)

. (27r mr)'—

2'
A g(,

——(L/k)
r(2s.—mr) r

47r'
Ag(, ——(L/k) 1— &

—m~

(2~—mr)'

2xtj
A&, A, (,+e'~"('(L/—k—) 1—

T (2'—m, )~

(16b)

(16c)

A, =A + ' "('

2n ( mr)
X 1——

(
1+—~~, , (16d)

2s 4n' ( mr y
X—(L/k) 1—

( 1+—(, (16e)
(2s —mr)' k 2s-)

4n-'

(L/k) (c~~~—1)c-~~
(2s —mr)'

(16f)

Then for the ideal case with no heat leak (m=0) and
no lag in the galvanometer (r=0), we 6nd the ideal
temperature rise o.;q'.

n(+(t~) =Ltd/C=a;g,

where the superscript on 0. indicates the value of nz

and the bar indicates that v equals zero. To find 0.;~
from the heating curve observed in an actual experi-
ment, Keesom and Kok" extrapolate the tangent to
the after-period at t~ back to a time t* such that

n'~"&(8) =Ltd/C=n;g, (18)

wberc 0,'& ~ is the equation of the tangent. They 6nd
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TABLE IV. t* as a function of m. APPENDIX II

msec ' a(m)(20) tx™(30)
[n(m) (20) —

adam)(30)

] /
1*sec n1m)(20)

The labor involved in using the Hopf-Lechner
method" to find 8, defined by

0.001
0.01
0.015
0.033

9.8693
8.7840
8.2366
6.5272

9.7715
7.9494
7.0906
4.6766

6.636 0.00991
5.342 0.09505
4.613 0.1391
1.234 0.2816

1 1 1 f—=—~ —
)I Q —dQ )

V3 47|. 3
(21)

2—m (28—9m)
Ag, = +clo

(1—m)' (1—m)'
(20a)

t* by a graphical method; we use an analytical pro-
cedure instead. We find o. '"&(2t&) and nt &(3ti) from the
after-period curve, and extrapolate backwards the line
between them. Calling this line o."( ', we then have

n" t"i(t*)=I ti/C =u;g (19)

as our equation for t* (see Fig. 4).

To illustrate this method, we indicate the manner
in which it was applied to our data. Since for our gal-
vanometer r=7 sec, we approximated 2&r/r by unity.
We have ti=10 sec; and setting I.=C, which involves
no loss in generality, we have o,i&=10. Inserting these
values in Eqs. (16), we have

5(=-', (1+2C'). (23)

This corresponds to the generalization suggested by
Durand" of the original treatment of Hopf and Lechner.
They considered only the case in which c») c»+2c«
(C'&1), in which case Eq. (23) must be replaced by

(24)
Then introducing

where the v~ are the three sound velocities in each
direction, is greatly reduced by the scheme outlined
below. In the notation of Born and von KArm&n" for
a cubic crystal,

C=c44/C", C'= (c&2+c44)/C", C"=c»—c44, (22)

where c~i, c~., and c44 are the three independent elastic
constants for a cubic crystal in Voigt's notation. "
When c&i&c&o+2c44 (this corresponds to C')1), we
define

m —3
A,.= +eio

1—m (1—m)'

A3,= (el 0m 1 )c—mt

m(1 —m)'

(20b)

(20c)

/(Jt)=(qH-C)-:, J=0, 1, " 5,

the coeKcients a; are defined by

5

. Z ~vfB(),
120@&=o

(25)

(26)

i,j j$ j$+C f(j $) 1/120$' at Xo a.(H —L)

Equation (20c), which is the third term of our result [see
Eq. (14)], differs from Eq. (12) due to Keesom and
Kok only by the factor (1—m) '. Since we now have an
analytical expression for n" ( ) in the form of a trans-
cendental equation in t* and m, we can find t* for any
choice of m. Values of t* found in this way are tabu-
lated as a function of m in Table IV. The last column
in the Table IV relates m to the observed points in the
after-period, and so enables one to judge where to
enter the table. For m&0.033 the extrapolation will

be very uncertain due to the large slope of a"( ). It
should be pointed out that while Keesom and Kok."
find that t* is never greater than ti/2, we find larger
values of t* for m=0.01 and m=0.001. For such small
values of m, however, the difference between n" t~&(t*)

and n" &~&(ti/2) will only be of the order of 0.1 percent
or less, so the extrapolation can be made to ti/2.

TABLE V. Calculated data.

Pi ——1—C", Po= 1—3C"+2C",
we define

X0=3; Xg= 1,

( 2
Xo=

(
1—-Pi /,

5 )
3 1Pl+P0.
.5 35

4 4 2
),=i 1—-P,+ P,+—P, i,

5 105 21

(28)

(29)

where the coefficients o.;; are given by the matrix

120 0 . 0 0 0 0—274 600 —600 400 —150 24
225 —770 1070 —780 305 —50—85 355 —590 490 —205 35 " ' )

15 —70 130 —120 55 —10—1 5 —10 10 —5 1

Introducing the constants

0 0.0 0.413
1 0.2 0.613
2 0.4 0.813
3 0.6 1.013
4 „'' 0.8 1.213
5 1.0 1.413

3.767 0.00833
2.085 0.04167
1.634 0.2083
0.982 1.042
0.749 5.208
0.595 26.04

3.767 3.000
—12.702 1.000

27.983 0.743
—37.845 0.625

27.498 0.539—8.124 0.470

3.771—12.794
28.354—38.473
28.046—8.307

1 5 1
) o=i 1 Pi+ Po+ P—P —popi i,

— ——
21 21 77 It@: )

3' M. Born and T. von K6rmln, Physik. Z. 14, 15 (1914).
~ W. Voigt, Lehrbuch der Kristall physi k (B.G. Teubner, Leipzig,

1928).
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and write
1

IIrz Q——X—,a,.
3 s=0

(30)

The final result is then

8= (IHz) '(C"/p)l cm/sec
and

(31)

8(E)= 2.514X10 '0/(V)', (32)

where p is the density of the crystal and V the atomic
volume.

It should be pointed out that Eq. (32) holds only
when the Debye treatment gives an adequate approxi-

mation to the atomic heat, that is, in the true T' re-
gion. Thus the elastic constants should be those at O'K.
It can be seen from Eqs. (30) and (31), however, that
0(E) is not extremely sensitive to variation of the c,,
To illustrate the method, we apply it to the data given

. by Hopf and Lechner for FeS2. p =5.03 g/cm', C=0.413,
C'=0.598, C"=2.555X10" dynes/cm'. Since C'(1,
(=0.2. From Eq. (28) Py=0.642 Pp=0.355. Table V
lists the quantities calculated from these data. The last
column gives the coefficients computed by Hopf and
Lechner. From this table we calculate l~~ ——2.25; and
0=5.46X10' cm/sec. The values given by Hopf and
Lechner are 2.26 and 5.43X10' cm/sec.
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Production of the E-Layer in the Qxygen Dissociation Region in the Uyyer Atmosphere

D. C. CHQUDHURY
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Starting with the generally accepted theory that the E-layer is
formed by ionization of 02 in the region of its dissociation, the
probable value of the absorption cross section of 02 for this
ionization is calculated by utilizing the height distribution of 0&

(in the transition region) as recently obtained by Moses and Wu.
It is found that, depending upon the temperature gradient and
the boundary temperature chosen for the region of dissociation,
the necessary absorption cross section varies from 3&(10 " cm'
to 9)&10 ' cm. Hence, it follows that for the two current hy-
potheses of E-layer ionization, namely, pre-ionization by solar
rays in the wavelength range 900A—1000A (Nicolet) and ioniza-
tion by high energy photons emitted from the solar corona (Hoyle
and Bates), the ionization cross section of 02 should also lie
within this range. For the former, the rate of ion production (as

obtained by application of simple Chapman formula and assuming
the sun to be radiating like a blackbody) appears to be one
hundred times more than the observed rate. The discrepancy is
removed if it is assumed that of the molecules excited to the
pre-ionization levels by absorption, only a small fraction (one in
a hundred) undergoes ionization. For the high energy photons it
is found that in order to have the necessary absorption cross
section, the energy should be 181 ev rather than 325 ev as obtained
by Hoyle and Bates. It is suggested that both the pre-ionization
process and the ionization by high energy photons are operative
in producing E-layer ionization. The former produces the normal
E-layer and the latter (of different frequencies) intensifies the
ionization at different levels producing the fine structure of the
E-layer as reported recently.

1. INTRODUCTION

HE most generally accepted theory of the E-layer
is that it is formed by the ionization of molecular

oxygen in the region where its concentration falls rapidly
with height owing to photodissociation (Mitra, ' Bhar, '
and Wulf and Deming'). There is, however, uncer-
tainty regarding the process of ionization and the wave-
length of the active radiation. According to the earlier
views, the ionization of O~ was either at its first ioniza-
tion potential (Wulf and Deming') or at its second
ionization potential (Bhar'). There have, however,
been objections to both these views. For the first
ionization potential (12.2 ev) the absorption cross
section is so small that no ionization maximum will be
formed in the region of dissociation. (Ionization at the
first ionization potential of 0& is now believed to pro-
duce the D-region. ') Again, the wavelength range of the

' S. K. Mitra, Nature 142, 914 (1938).
2 J. N. Bhar, Indian J. Phys. 12, 363 (1938).
'O. R. Wulf L. S. and Deming, Terr. Mag. Atmos. Elect. 43,

283 (1938).
4 A. P. Mitra, J. Geophys. Research S6, 373 (1951).

active radiation for the second ionization potential
760—661A lies within the region of strong absorption of
atomic oxygen. Hence, the active radiation will all be
used up before reaching the transition level. To meet
these difhculties two different hypotheses have been
proposed. According to one (Hoyle and Bates') emis-
sions of very high energy photons (perhaps of about
325 ev) from the solar corona is supposed to cause the
ionization. According to the other (Nicolet ) pre-
ionization of molecular oxygen by solar radiation in
the energy range 12.2 to 13.55 ev (900A to 1000A) is
responsible for the ionization of 02.

In the present note the recent theoretical deter-
minations of the distribution of molecular oxygen in
the region of dissociation, as made by Moses and Wu, '
will be utilized to first find out what should be the
value of the absorption cross section of 02, in order
that the E-peak may be formed at the observed height.

' F. Hoyle and D. R. Bates, Terr. Mag. Atmos. Elect. 53, 51
(1948).' M. Nicolet, Mem. Roy. Met. Inst. Beige, 19, 124 (1945).

7 H. E. Moses and T.-Y. Wu, Phys. Rev. 83, 109 (1951).


