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Equivalent Potentials
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An explicit construction is described for the entire class of potentials leading, for a particular angular
momentum, to the same phase shift and energy spectrum as a given central potential. A similar procedure
is applied to potentials with purely discrete spectra.

1. INTRODUCTION

ET us consider the Schrodinger equation

p"(r)+Evp(r) = Vo(r) p(r), (1.1)

which describes the wave functions of a particle in a
central field. In general, this equation leads to a discrete
spectrum E,(0 as well as a phase shift q(E) for positive
E. The question can then be asked whether this
spectrum and phase shift can be reproduced by other
"equivalent" potentials. In a previous paper' we have
shown that in the case of m discrete eigenvalues the
manifold of equivalent potentials is at most m-dimen-
sional. We shall see in the present note that this
manifold does in fact exist and can be easily con-
structed explicitly from the bound state solutions of the
given potential Vo [Eqs. (2.12), (2.10), and (2.29)].The
same is true for each higher angular momentum. How-
ever, under very general conditions, the phase shift and
spectrum for any two angular momenta are compatible
with at most one central potential.

The situation is similar in the case of a one-dimen-
sional boundary value problem with a purely discrete
spectrum. (We shall confine ourselves to the case where
the wave function is required to vanish at the ends of
the interval. ) The equivalent potentials, i.e., potentials
with the same spectrum, are then characterized by the
values of a denumerably infinite set of parameters.
Again explicit construction of these potentials is.
possible.

The case of a purely discrete spectrum has been the
subject of an extensive investigation by Borg, ' who
confined himself to questions of existence and unique-
ness. Very recently conditions for the existence of a
boundary value problem corresponding to a given
spectrum and given spectral constants [corresponding
to our F&, Eq. (3.5)) have been published by Gel'fand
and Levitan. ' The present work was stimulated by an
interesting note4 by Borg.
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Thus the condition that the eigenvalues and phase
shift remain unchanged is that 5V(r) be orthogonal to
the squares of all the eigenfunctions.

We shall now verify that the functions P&'(r)P&(r)
have this property. Clearly,
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where use has been made of the Schrodinger equation.
~ B. Holmberg, Nuovo cimento (to be published).

After completion of our investigation we received a
manuscript by Holmberg, ' which contains some of the
results of the present paper.

2. SCATTERING PROBLEMS

We consider as an example the S-state radial Eq.
(1.1) with a given potential Vp(r) and corresponding
spectrum E)= K) l= 1, 2, , m, and phase shift.
q(k), k=+E.

Let P~(r) be the normalized bound state functions
and P(k, r) the continuum solutions normalized to
sin(kr+q(k)) at infinity. An infinitesimal change 8V(r)
of the potential then produces the fojlowing changes of
the eigenvalues and the phase shift:
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= 1 ' (2.14)

From (2.5) and (2.13) one has therefore the equation
(2.4)lime'~"f(k r) = 1.

7~00

Bf(X; k, r)
G(X; k, r, r')f(l;ik, r')

r
We fix our attention now on one of the bound state
functions f( ixi—, r)—=fi(r) and look for the solution of
the system of equations Xfi(X; r')f 'i(X; r')dr'. (2.15)

The same derivation holds when P (r) is replaced by where the Greens function G(k, r, r ) is the solution of
P(k, r). This suggests that an m-dimensional manifold (1.1) defined by the initial values
of potentials can be obtained from such infinitesimal
increments by integration. 8

To carry out this integration it is convenient to work
with the solutions f(k, r), Im(k) &&0 defined by

&V(&, r)/&&= fi(&, r)fi'(&, r),

fl '(X, r)+Eif&(&, «) = V(&, r)fi(&, r)

with the boundary conditions

(2.5)

(2.6)

The integral can be evaluated in. analogy with (2.3) by
using the fact that G is a solution of the Schrodinger
equation in r'. r The result simplifies by means of (2.14)
and the equation

and
V(0, r) = Vo(r), fi(0, «) =fi(r)

lime"'"fi(X, r) =1.

(2.7)

(2 8)
(k, r, r') = —1

- r=r'
(2.16)

a f,"(Z, r)
=f,'(l~, r)f, (X, r).

a), f,(X, r)
(2.9)

Eliminating the potential from (2.5) and (2.6) gives
to give

Bf(X; k, r) —f,(X; r)
4(k'+ xP)

X [fr(X; «)f'(X; k, r) —fi'(X; r)f(li; k, r)], (2.17)

f= ——,'fi(X; r) f,(X; r')f(lk~, r')dr'. (2.18)

The solution of this equation satisfying (2.7) and (2.8)
was obtained by a power series expansion in X, every or equivalently,
term being uniquely defined by the boundary conditions
(2.7) and (2.8). The result is

f, (X, r) =f,(r)/E(X, r), (2.10)
where

p
E(X, r) = 1+— f 2(r')dr'. (2 11)

By putting r=0 in (2.18) one obtains

Bf(X; k)/iIX =0
01

(2.19)

By means of (2.6) this leads to the potential

V(X, r) = Vo(r)+ —fi(r)fi'(r)+ Lfi(r)]'.
8S'

(2.12)

It can be verified directly that (2.10) and (2.12)
satisfy (2.5)—(2.8). Thus (2.12) constitutes a one
parameter family of equivalent potentials. The condi-
tions that the potential be regular requires that the
variation of X is restricted by

8f(k, r) = —] G(k, r, r')hV(r')f(k, «')dr', (2.13)
r

-4 f 2dr

-~0

To obtain further insight we shall construct ex-
plicitly the solutions f(X; k, r), for any k with Im(k) &~0,
corresponding to this family of phase equivalent poten-
tials. An increment 8V of the potential leads to

Bf'(X; k, 0)
Lfi'(lI, ; 0)]'f(k), (2.21)

4(k'+ x ')

which shows that all the f&'(X; 0) —=f'(X; i~&, 0) sta—y
constant except one, namely, fi'(lI; 0) —=f'(X; —iKi 0).
This latter is according to (2.10) given by

fi'P; o) =fi'(o)
oof

1+— Lfi(r)]2dr . (2.22)
4~0

6 G(k, r, r') can be written as

G(k, r, r') =u(k, r)v(k, r') —u(k, r')v(k, r),
where u and v are those solutions of (1.1) defined by the initial
values u(k, 0) =0, u'(k, 0) = 1; v(k, 0) = 1, v'(k, 0) =0.

' For this purpose one evaluates f, y'fI f1'dr where X=~G+pf,
as in (2.3) and then picks out the coefficient of nP.

f(X; k) =f(0, k) =f(k) — (2. .20)

Since f(X; k) determines the spectrum and phase shift,
this equation confirms again the fact that we are,
dealing with a family of equivalent potentials. On the
other hand, (2.17) leads to the interesting equation
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phase, its discrete eigenvalues, and the m positive
parameters I'&. It is therefore clear that by repeating
the above construction (2.12) using the other discrete
energy levels, we obtain the complete m-dimensional
manifold of equivalent potentials. This construction
can be explicitly performed since one can write down
explicitly all the bound state functions for an arbitrary
X. In fact, integration of (2.18) leads to the following
expression for the solution corresponding to arbitrary k:
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FIG. 1. The deuteron square well ( ) and an equivalent
potential (————).

Introducing

1
Lfi(X; r) j'dr= f(—iK&)fi'(X, 0), (2.23)

r, ()), 2i.,

where

f(k) =df(k)(dk— (2.24)

and the Schrodinger equation has been used, leads to

~ =4LI'i(&) —I'i(0)1 (2 23)

f(X; k, r) =f(0; k, r) fi—(r) ' fi(r')f(0; k, r')dr',
4N

(2.29)

which can be easily verified. It will be noticed that in
the final equations (2.10), (2.12), and (2.29) the nor-
malization of fi is irrelevant since it can be absorbed
into the parameter X.

For any higher angular momentum l, the results are
completely analogous to those for S-states. Equations
(2.10), (2.12), and (2.29), with the f's now denoting
solutions of the radial equation for the given /, remain
uncharged and lead to the totality of potentials equiva-
lent for the l under consideration.

The following question then arises naturally: Given
a potential Vo, is there another potential V~ which
leaves the spectrum and phase shifts corresponding to
two angular momenta, say /= 0 and 1= 1, unchanged?

Let us first consider the usual case where none of the
S-eigenvalues E;, q coincide with a E-eigenvalue E,;I.
From our construction

l
see Eq. (2.12)] it follows that

any potential Vz equivalent with Vo as far as S-states
are concerned has the property

As X varies over its admissible range —4I'i(0) &X& ~,
I'i(X) takes on all the values 0& I"i(X)& pp. Let us now
generalize the definition (2.23) to the other bound state
wave functions,

05 l'0
+0~ +r

Z.O

limVe —Vp/e '"~"=constant,
r~oo

(2.30)

1
Lf~(& r)3'«=

I'iP ) ~p

j
f(—i~))f'(X, 0). (2.26)
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Then we have the following result: Each equivalent
potential of the manifold (2.12) is characterized by the
value of I'~, which varies in the range 0(F~ & ~ while
all the other F~ are constant.

Furthermore, we may note that if one potential of
this family satisfies the conditions

and

lv()ld &-
p

(2.27)

(2.28)

then, by (2.10), so do all the others.
In reference 1 we have proved that under the two

last conditions a potential is uniquely defined by its
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Fzo. 2. The Coulomb potential ( ) and an equivalent
potential (———).
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where ~8 is the positive root of the smallest
~
E, s~ used

in the construction of V~. A corresponding result holds
for any V& reproducing the P-spectrum and phase
shift. Since all E;, ~/E, ;pp &pQK~ so that VBA Vp
unless Vg= V~= Vp.

The same result can be obtained even when some of
the eigenvalues coincide, provided that Vp has an
asymptotic expansion of the form

It can then be shown' that f;, s and f, , J* have dif'ferent

asymptotic expansions and hence so do Vz —Vp and

It is clear that even if Vp falls oG at inanity only
like r ', Eqs. —(2.10), (2.12), and (2.29) still lead to
equivalent potentials.

Examples of potentials equivalent for S-states are
shown in Figs. 1 and 2. They have been constructed by
using the ground-state wave functions.

3. POTENTIALS %'ITH PURELY DISCRETE SPECTRUM

The boundary value problems which lead to purely
discrete spectra fall into several subcases. We shall not
make an extensive study of all of these but only exem-

plify the situation by discussing in some detail the case

0
Fn. 4. The harmonic oscillator potential (

equivalent potential (———).
) and an

The eigenfunctions are g(E~, r) =—g~(r), and we call

(3 5)

where

j (E, r) —= Bg(E, r)/BE (3.6)

Again the expression g~'g~ is orthogonal to all the
squares of the eigenfunctions and therefor- just as in
Sec. 2—gives rise to a one parameter family of equiva-
lent potentials

'A X2

U(~, )=Uo()+- '() ()+ L ()j' (37)
4 8E'

s "(r)+Ep(r) = Uo(r) ~ (r),

p(0) = ~(1)= 0

(3 1)

(3 2)

iV (X, r) = 1—— Lgq(r')]'dr',
4 0

g(Ei, 1)=0. (3 4)

Ground state
goal

~r
/

/
Oi II

\ II
I

J
%a ~

FIG. 3. The one-dimensional box ( ) and an equivalent
potential (-——).

' The a„may, of course, all vanish as, for example, for cut-off
or exponentially decreasing potentials.

9 W. Sternberg, Math. Ann. 81, 119 (1920).

where Uo(r) is regular. We shall make a brief reference
to the case of an infinite interval.

A solution of (3.1) which plays the same role as our
previous function f(k, r) of (2.4) can be chosen as

g(E, r) defined by the initial conditions

g(E, 0)=o, g'(E, o)=1 (33)
The eigenvalues E& of (3.1) and (3.2) are defined by

with the solutions

g(X;E, r)=g(0; E, r)+ g, (r) ~ gq(r')g(0; F, r')dr'.
4S ~p (3.9)

From (3.9) and (3.5) it follows that the I'~, t&1 are
independent of 3 whereas I'~ varies from 0 to ~ as X

varies from —4F~(0) to ~. Again the manifolds of
potentials and solutions, (3.7) and (3.9) are independent
of the normalization of g&(r).

By an obvious modification of appendix II of reference
1 it can be shown that in the present case an equivalent
potential is completely determined by the inhnite set
of parameters I"&, 1=1, 2, . Hence, by repeating the
above construction procedure using the other eigen-
values any equivalent potential can be constructed. "

Also for the case of an infinite interval (e.g. , the
harmonic oscillator) Eqs. (3.7) to (3.9) lead to equiv-
alent potentials, the normalization of g&(r) being
arbitrary.

Potentials equivalent to a one-dimensional "box"
and to a harmonic oscillator potential are shown in
Figs. 3 and 4. They have been constructed by means of
the ground-state wave functions.
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