PHYSICAL REVIEW

VOLUME 88,

NUMBER 2 OCTOBER 15, 1952

The Rydberg Constant and the Atomic Mass of the Electron*®

E. Ricaarp COHEN
Atomic Energy Research Department, North American Aviation, Incorporated, Downey, California

(Received March 14, 1951. Revised copy received June 30, 1952)

A re-evaluation of the spectroscopic data pertinent to the Rydberg constant and the atomic mass of the
electron yields the values R,=109737.326+0.014 cm™ and m = (54.895-4-0.008) X 10~5 amu. If the “micro-
wave” value of the electron atomic mass, m=(54.87854-0.0019) X 1075, is used, the Rydberg constant is
R.=109737.31140.012 cm™. It is furthermore concluded that Houston’s and Chu’s data can be brought
into agreement with that of Drinkwater, Richardson, and Williams by ascribing the discrepancy to differ-
ences in wavelength standards used by these investigators.

INTRODUCTION

N 1941 Birge! published a careful study of the
existing experimental data on the Ha and Da lines
and reached the conclusion that the Rydberg constant
had the value R,=109737.303-0.017 cm™~! (interna-
tional angstrom scale). The existence of the recently
discovered fine structure splitting of the spectrum of
hydrogen®™ and ionized helium®* has indicated that
small corrections must be made to the previously
accepted Dirac theory. Since these corrections modify
the predicted positions of the electronic energy levels,
they inversely modify also the value of the Rydberg
constant as inferred from the observed positions of
those levels. The observed energy difference of 106245
Mc, for example, in the 25— Py level of hydrogen
implies a shift of 0.035 cm™ in the wave number of the
3P33—2Sy/s transition; this in turn produces a shift of
0.010 cm™! in the apparent position of the Has line,
which is a blend of the 3P3»—2Sy,, transition and the
3D;2— 2Py, transition with relative intensities'? 2.08
and 5. If this line then is used to determine the hydrogen
Rydberg constant, this shift will introduce an error of
0.072 cm™, which is well outside the accuracy with
which the Rydberg can be determined. Furthermore,
the shifts in energy levels have bearing on the spectro-
scopic determination of the atomic mass of the electron,
which can be an important source datum in the more
general question of the best values of the fundamental
atomic constants.

* This investigation was carried out as a preliminary to a
general re-evaluation of the values of the atomic constants by
J. W. M. DuMond and the author, at the request of the National
Research Council Committee on Constants and Conversion
Factors, and serves in part as a report to that committee.
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FINE STRUCTURE OF HYDROGEN AND HELIUM

The theoretical formula for the Lamb shift has been
given by several authors'®1¢ and can be written as
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where u=mc? a=‘“1/137"=¢*/hc, ki=average excita-
tion energy, and R=Rydberg constant associated with
the atom in question.

The most complete calculation of the logarithmic
terms seems to be that of Bethe, Brown, and Stehn!®, who
give In(2ko/ o) =2.8121 and In(2k;/au) = —0.0300 for
the 25 and 2P states of hydrogen. These values lead
to a Lamb shift of 1051.4 megacycles. Baranger'” has
calculated the corrections to this shift, which are of
order of, involving the effects of vacuum polarization.
These much smaller quantities contribute an addi-
tional 6.89 megacycles which brings the Lamb shift to
1058.3 megacycles, in reasonably good agreement with
the observed value? of 1062+5.7

For the helium II spectrum the observed® Lamb shift
is 14020100 megacycles for the 25—2P separation.
The computed value is 14040 megacycles, including
Baranger’s correction term. (The shift as inferred from
the calculations of Bethe, Brown, and Stehn is 13820
megacycles, and on the assumption that the proper
parameter is «Z, the Baranger correction increases
this by 220 megacycles).

Because of the somewhat uncertain theoretical values
(there may still be further corrections of the order of a
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1 Note added in proof*—W. E. Lamb, Jr., and R. C. Retherford,
Phys. Rev. 86, 1014 (1952), give a final result for the experi-
mentally determined shift in hydrogen of 1058.27 Mc=41.0 Mc
(limit of error) to be compared with a calculated shift (including
further corrections for anomalous magnetic moment of the elec-
tron and reduced mass effects) 1057.27 Mc. These corrections
have negligible effect on the present analysis since 3 Mc corre-
sponds to only 0.0001 cm™,
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TasBLE I. Calculated fine structure of hydrogen® and helium.b
The line positions are given relative to the “Balmer line,”

W=R(no2—n1"2).

Position Position of peak
Transition Intensity cm™1 cm™1
H 35:—2Psn 0.2 ~0.06092 —0.06092
3Dsz—2Pys2 1.0 0.0368
3Dya—2Pys 9.0 007208 0.06937
3Pya—2Sus 1.04 0.25900
3Sys—2Pars 0.1 0.3049 0.26303
3Pya—25us 2.08 0.
3Dy—2Pyz 50 0.40271 0.39234
H  45:—2Pss 0.2 0.02114 0.02114
4Dy3— 2Py 1.0 0.06244
4Dys—2Pys 90 0.07767} 0.07615
4Py~ 2S17s 1.04 0.34752 0.34752
4812~ 2P1y2 0.1 0.38698
4Pyj5—2S17s 2.08 0.39325 0.41755
4Dys—2P1s 5.0 0.42828
He 4Fy;—3Ds 2.803 0.1968 0.1968
4Dys—3P3n 1,073 0.6514 } 0.6526
4Fgjs— 3Dy 1,962 0.6532 -
4S12— 3Py 0.156 1.4699 1.4699

a The hydrogen spectrum values can be adapted to deuterium simply by
multiplying by the scale factor Rp/Rg =1.00027.

b The complete He pattern consists of 13 lines but most of these are low
intensity and have never been carefully measured or even observed. Only
those components are listed which have been measured.

few megacycles), we have chosen in the present calcu-
lation to use the experimentally observed separation
rather than the theoretical ones. This choice is actually
inconsequential with respect to the numerical results,
since the spectroscopic data which we shall analyze do
not have sufficient resolution more than merely to
indicate the existence of this shift. The use of experi-
mental values rather than theoretically computed ones
is, however, to be preferred for logical reasons. We
have, specifically, set the logarithmic term equal to
zero for %20 and have used the observed separation to
_determine the value of the logarithmic term for /=0.
We have furthermore assumed %, to be independent
of the principal quantum number, #; this is actually
very nearly true. Such an assumption probably is not
independent of the assumption that %, is zero for all
except s states and is consistent with it. This procedure
cannot be completely justified, but it can be excused on
the basis that it appears to be an adequate approxi-
mation within the accuracy of the experimental data.
The quantity AE(n, l, §) as given above is the value
of the shift of the level away from the “Dirac position”,
and hence the complete formula for the energy levels is
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The pertinent experimental data are concerned with
the transitions #1=3—n,=2 and ni=4—n,=2 for
hydrogen and #,=4—n,=3 for helium. In each case
we can define the “Balmer line” by the relation
W =R(ny"2—n:?) and calculate the expected pattern
relative to it. The Balmer line, of course, is a fictitious
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line and is the energy level if the fine structure were
nonexistent. The theory allows us to determine the
energy shift of an observed line from the Balmer line,
however, and from this latter, the Rydberg constant
is easily computed. In determining the shift of a line
only an approximate value of the Rydberg constant is
necessary, since the shifts are relatively small. In this
way the shifts tabulated in Table I have been computed,
and the fine structure pattern for hydrogen is shown
in Fig. 1. In general, the individual lines cannot be
separated—an observed line is actually a blend of two
or more unresolved components and the position of the
peak is determined by the superposition of the various
component lines. The actual determination of this
position depends on the line widths as well as their
separations and intensities. A simple first-order approxi-
mation has been used that if lines are closer together
than their half-widths (so that no indication of a double
peaked pattern is present), the observed peak is at the
center of gravity of the complex; while if two lines are
well separated, one of them may cause an asymmetry
in the wings of the other but there will be only a
negligible shift in the peak. Fortunately, a clear sepa-
ration between “close’ lines and “far” lines is possible
in the patterns being considered. The last column of
Table I lists the position of the observed peak as the
center of gravity of the components which, as indicated
by the braces, fall close enough together so as to be
unresolved.

OBSERVATIONAL DATA

The pertinent observations on the fine structure of
hydrogen, deuterium, and helium are the data of
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Fic. 1. Fine structure pattern for hydrogen. A comparison of
the pattern with and without the Lamb-Retherford shift. The
dotted lines represent positions and intensities of the Dirac-
Sommerfeld pattern. The solid lines represent the positions and
intensities including the line-splitting which results from the new
electrodynamics.
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Houston,'® Drinkwater, Richardson, and Williams,'?
and Chu.?? We have gone back to Houston’s original
paper and have decided to use all of Houston’s data
rather than merely the long wavelength components in
calculating the Rydberg. Houston himself points out,
“the asymmetry in the short wavelength component
is so pronounced that it is possible to determine the
position of the third component which is causing it
(i.e., this third component is the 3Py2—2Sy, transi-
tion). This is the component predicted by the theory of
Sommerfeld and Unsé6ld and which has previously been
inferred from the displacement of the maximum. . . .
Because of this asymmetry, only the long wavelength
component is used in the computation of the Rydberg
constant.” The theory of the hydrogen fine structure,
however, seems to be adequately well confirmed by
experiment that we feel no concern in using all of the
experimental data, in connection with the theoretical
predictions of the fine structure pattern, in the present
analysis. Even the previous discrepancy in the doublet
separation, in which the observed separation is less
than the theoretical value, has now been fully explained.
The conclusion that the discrepancy could be resolved
by an arbitrary ad hoc shift in the energy of the #%S
levels®# has been completely confirmed by the meas-
urements of this shift (the Lamb-Retherford shift),
which is the reason for the present re-examination of
the entire question.

We have similarly reviewed the data of Drinkwater,
Richardson, and Williams and feel confident in using
both components of the doublet in our analysis. The
reproducibility in the individual measurements of
DRW leads, however, to probable errors which are
unrealistic. This can best be seen if we compare the
separation of the two main peaks with its theoretical
value. DRW measure 0.31984-0.0010 cm™ to be the
separation between what they call line 14 and line 2
in Ha and 0.320524-0.0010 cm~ for the corresponding
separation in Da. The theoretical value, including the
effects of the blending of components 1 and 4 and the
Lamb splitting of component 2 is 0.3230 cm™! for Ha
and 0.3231 cm™ for Dea. The extent of the disagreement
can also be exhibited in terms of the value of a which
would be implied by the measured separations. We
find 1/a=137.724-0.15 from hydrogen and 1/a=137.44
=+0.15 from deuterium, compared with the value given
by DuMond and Cohen® as 137.043. (It might be
pointed out that if we had tried to calculate 1/« from
the measured separations on the basis of the Dirac
theory without the Lamb shift we would have obtained
1/2=139.65.) For this reason we have used the quoted
errors only to determine relative weights to be assigned

18 W. V. Houston, Phys. Rev. 30, 608 (1927).

¥ Drinkwater, Richardson, and Williams, Proc. Roy. Soc.
(London) 174, 164 (1940).

2 D. Y. Chu, Phys. Rev. 55, 175 (1939).

2 E. C. Kemble and R. D. Present, Phys. Rev. 44, 1031 (1932).

2 S. Pasternack, Phys. Rev. 54, 1113 (1938).

2 J. W. DuMond and E. R. Cohen, Phys. Rev. 82, 555 (1951).
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TasiE II. Observational data for the calculation of the
Rydberg constant.?

Wavelength Wave number
(air) (vacuum)
angstroms cm™1

6562.7110 15233.3972
+0.0018 +0.0041
6562.8473 15233.0811
=+0.0009 +0.0021
15233.3868
+0.0016
15233.0670
+0.0014
15233.2551
=+-0.0021
20564.9695
+0.0055
20564.6405
+0.0092
15237.5317
+0.0014
15237.2112
+0.0013
15237.4127
=+0.0021
21335.5431
+0.0055
21335.0879
+0.0118
21335.5490
=+0.0063
21335.0961
=+0.0090
21336.3247
+0.0145

Rydberg
cm™1
109677.635

+0.030
109677.684
+0.015
109677.560
=+0.012
109677.583
+0.010
109677.543
+0.015
109677.610
=+0.029
109677.676
+0.049
109707.403
+0.010
109707.421
+0.009
109707.477
=+0.015
109722.294
=+0.028
109722.297
+0.060
109722.324
+0.033
109722.339
=+0.048
109722.278
+0.074

Balmer line
cm™1

15233.0049
+0.0041
15233.0117
+0.0021
15232.9945
+0.0016
15232.9976
=+0.0014
15232.9921
+0.0021
20564.5520
+0.0055
20564.5643
=+0.0092
15237.1393
=+0.0014
15237.1418
+0.0013
15237.1496
=+0.0021
21334.8905
+0.0055
21334.8911
+0.0118
21334.8964
+0.0063
21334.8993
+0.0090
21334.8874
+0.0145

Source

Ha;i, Houston
Ha,, Houston
Hay, DRW
Hay, DRW
Ha;, DRW
4861.2800
+0.0013

4861.3578
=+0.0022

Hp,, Houston
Hp,, Houston
Da;, DRW
Das, DRW
Das;, DRW

4685.7030
+0.0012
4685.8030
+0.0026
4685.7017
=+0.0014
4685.8012
=+0.0020
4685.5313
=+0.0032

He, Houston
He, Houston
He, Chu
He, Chu
He, Chu

a As indicated by the errors associated with these observations, retaining
4 decimal places in the wave numbers cannot be justified in all cases. The
measurements have all been carried through with four decimal places as a
matter of consistency and to be certain that rounding-off errors would not
build up additional uncertainties.

to the data and have made use of the external con-
sistency to define the actual errors.

Chu’s measurements are taken as he reported them.
Birge! raises the question of excluding one of Chu’s four
plates on the basis that the doublet separation measured
there is inconsistent with the separation measured on
the other three plates. Birge, however, does not notice
this inconsistency in the original data but finds it only
when he has computed 1/« from each of the four plates
separately. It then appears that plate 126 yields
1/a=139.790, compared to the other three values
137.314, 136.971, and 136.971. (These are the actual
figures quoted by Birge and calculated in his 1941
paper. They do not include corrections for the Lamb
shift,* but the discussion would not be affected if this
refinement were made since we are not interested here
in the value of the fine structure constant but only in
the consistency of the data.) On this basis, then, Birge
questions retaining plate 126, but he does not actually
exclude it. If, however, we look at the errors involved
in these determinations of 1/, we see a different
picture. The values are 1/a=139.84-1.8, compared to
1/a=137.3+1.2, 137.041.2, 137.041.4. Plate 126
therefore differs from the other three by an amount

2 Corrected for the modification in fine structure pattern due
to the Lamb shift, these values would all be raised by 0.076.
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which is less than twice the error in this difference, and
it would seem unwise to exclude it since the results
would, in such a case, appear to have much better
consistency than should reasonably be ascribed to them.
The data from all three sources are tabulated in
Table II. Houston’s and Chu’s measurements of wave-
lengths in air have been corrected to vacuum using
Barrell and Sears’ formula® for refractive index:

(u—1)X10°=272.581+1.5453/X240.01268/\¢,

with A in microns. This formula gives u correctly to
better than 1 part in 10%. The data of DRW are given
by them directly in terms of vacuum wave numbers
using this expression for index of refraction, so that
their results require no further correction.

Houston’s measurements, as well as Chu’s, are based
on the value 5015.6750A for the He line. This line was
measured relative to the cadmium line 6438.4696A,
which is the defining standard of length, by Merrill?¢
who gave the wavelength as 5015.675A and to which
he appends the comments, ‘“From the number and
internal agreement of the individual determinations it
seems that an error larger than 0.003A is scarcely to be
expected.”?” Merrill’s actual data list seven observa-
tions ranging from 0.673 to 0.677 for the fractional part
of the wavelength, with a mean of 0.67524-0.0008. In
a survey of other measurements, however, he quotes a
value of 0.678 measured by Lord Rayleigh and 0.679
by Priest. Now an increase of one milliangstrom in the
accepted wavelength of this line will reduce the value
of the Rydberg as inferred from the data of Houston
or Chu, who use this line as their standard of length,
by 0.022 cm™, and this is neither a negligible nor an
improbable correction. Therefore, it is evident that in
our analysis of the measurements of the Rydberg
constant we cannot exclude the possibility that
Houston and Chu used a wavelength standard which
is different than that used by Drinkwater, Richardson,
and Williams merely due to the fact that, relative to
the cadmium line whose defined wavelength in air is
6438.4696A, the helium line actually has a wavelength
which is somewhat different than 5015.6750A. We shall
use as the measured wavelength of this line relative to
the cadmium line

A=5015.67524-0.0015 (standard deviation),

where the error has been somewhat arbitrarily chosen
to allow for possible systematic errors in Merrill’s
measurements. In our least squares analysis of all of
the pertinent experimental data, it will now be necessary

25 H. Barrell and J. E. Sears, Jr., Trans. Phil. Soc. 238, 1 (1949).

26 P, W. Merrill, Astrophys. J. 46, 357 (1917).

27 In a recent private communication Dr. Merrill informed the
author that he would now say that a correction of 0.002A or
0.003A might not be at all inconceivable. It was his feeling,
furthermore, that with present day techniques (the original
measurements were made in 1917) improved accuracy for the
wavelength of this line could easily be attained and that on the
basis of this discrepancy such a measurement should probably
be undertaken.
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to include this as an observational equation and to
include as part of the results of our least squares
fitting the “best” value of this wavelength.

In addition to these measurements of wavelengths,
measurements of the isotopic shift are useful in deter-
mining the atomic mass of the electron, although they
give no direct information on the value of the Rydberg
constant. The separation between the Ha lines and
the Da lines has been carefully measured by several
investigators. The Hoa Balmer line is given by

H—m

and the Da Balmer line is given by

5 S D—m
—Rp=—R;—,

36 36 D

yp=

where m=atomic mass of the electron, H=atomic
mass of the hydrogen atom, and D=atomic mass of
the deuterium atom. These expressions give us

36HD w»p—rpy
m=— .
S(D—H) R.

Using the values of Li, Whaling, Fowler, and Lauritsen?
for the atomic masses H=1.008142 and D=2.014735,
we find (note that it is adequate here to use an approxi-
mate value of R,=109737.3)

m=(13.2393X 10-5) (5p— 7x)

for the atomic mass of the electron, when the isotopic
shift is measured in vacuum wave numbers. The error
in this coefficient due to the errors in the atomic masses
is approximately 6 parts per million. A correction for
the fact that the measured lines are at slightly larger
wave number than the theoretical “Balmer line”” would
decrease the factor 36/5 by five parts per million.
Both these quantities are completely negligible with
respect to the accuracy of the measurements.

The pertinent data are those of Shane and Spedding,*®
Robinson,** and Williams.®* In the case of Shane and
Spedding it has been necessary to compute their value
of the separation by working backwards from their
quoted values of e¢/m, the Faraday, and the atomic
masses. They give e/m=1.7579X107 emu, which is
calculated from the formula

€ FRH(D—H)

m (Ro— Ru)D(H—1m)

28 1Li, Whaling, Fowler, and Lauritsen, Phys. Rev. 83, 512
(1951).

2 C. D. Shane and F. H. Spedding, Phys. Rev. 47, 33 (1935).

% C. F. Robinson, Phys. Rev. 55, 423 (1939). See also R. T.
Birge, Phys. Rev. 60, 766 (1941).

3L R, C. Williams, Phys. Rev. 54, 558 (1938).
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using the wvalues: H=1.007775, D=2.01363, Ru
=109677.759, F=9651.1. From this we may calculate
Rp— Rg=29.86276 cm™! and

sp— pr=(5/36)(29.86276) =4.147605 cm~.

Since a correction for index of refraction was omitted?
in the original paper, this value is the separation
measured in air. )

Robinson’s measurements were made on the most
intense component of Ha and D« in air and the
separation is A7=4.1453+0.0010 cm™. This becomes
4.144154-0.0010 cm™ when reduced to vacuum.
(Apparently the only published data on Robinson’s
work is an abstract in the Bulletin of the American
Physical Society. The values quoted here are reported
by R. T. Birge in his 1941 paper and were communicated
to him privately by Professor Houston.)

Williams measured the interference patterns of Ha
and Da with a 3-mm étalon. The measured peak-to-
peak interval is given as Ay=4.14716+0.00040 cm™ in
air. This value, however, must be corrected because of
differential effects due to the influence of components
3 and 4 on the position of the center of component 1.
The major source of this correction is due to the fact
that Williams’ experimental conditions were such that
the Doppler broadening of the lines is less for D than
for H; component 3 has an appreciable overlap with
component 1 in He but a negligible effect in Da. He
evaluates this net correction as 0.00090 cm™ so that
the true isotopic shift in air is Ap=4.14806 cm~.
Williams’ correction to vacuum appears, however, to be
in error; from his published figures one would calculate
an index of refraction for air u=1.0002557, whereas
Barrell and Sears’ value at this wavelength is
r=1.0002762. Apparently this can be ascribed only to
a numerical error on Williams’ part. We therefore find
(using Barrell and Sears’ value for index of refraction)
that the wave-number separation in vacuum is
Ap=4.14691-+0.00040 cm™.

The data from the three sources and their probable
errors are given in Table ITI.

TREATMENT OF EXPERIMENTAL DATA

In combining all these independent results it is
important that the weights assigned to each individual
value shall be consistent with the weights assigned to
the other data, in order that the relative accuracy of
the several measurements be properly represented. The
errors listed in Table IT are the errors reported by the
respective authors, although we shall not use these
values by themselves to determine the weights. It is
felt that there is too much variation among the results
of different observers (compared with the errors quoted
by them) to believe their quoted accuracy as repre-
senting much more than an indication of the repro-
ducibility of the measurement under a given set of
experimental conditions.

2 R, C. Williams and R. C. Gibbs, Phys. Rev. 48, 971 (1935).
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TasLe III. Da—He isotopic shift and calculated atomic mass
of the electron.

Vp—Pu Vp—VE
(in air) (in vacuum) m X103
Source cm™! cm™1 amu
C. H. Shane and
F. H. Spedding 4.14761 4.14646 54.8961+0.0074
C. F. Robinson 4.1453 4.14415 54.86554-0.0132
R. C. Williams 4.14806 4.14691 54.902040.0053

If we consider the measurements on a given Balmer
pattern to constitute a single determination of the
Rydberg we have six independent observations:
(Houston, Ha, HB, He; DRW, Ha, Da; Chu, He).
These independent values are obtained by taking a
mean value of the Rydberg as computed from each of
the lines in the pattern. The error assigned shall be the
larger of the two values computed by internal and
external consistency.

The procedure now is to carry out a least squares
solution to determine the most consistent values for the
Rydberg constants and the electron mass. In order to
handle the equations conveniently we introduce ap-
proximate values for R, and # and then calculate the
necessary corrections to these numbers. Therefore let
M ; be the atomic mass of an arbitrary nucleus and R;
the associated Rydberg constant; we can write

m
Ro= (12 ).
M;

We must also take into account the fact that Houston
and Chu both used the helium AS015 line as their
standard of length and hence their computed Rydberg
values are to be corrected if a change is made in the
wavelength standard which they used. We shall there-

fore write
m
R,/'= (1+_)R1)
M;

when the equation refers to the data of either Houston
or Chu. We now let
szRo—l—x, Rw,=Ro+y, m=mo+z>< 10_—5,

where Ry=109737.3000 cm™1, m=54.9000X 10~% amu,

and M;=1.007593, M »=2.014186, M ,=4.002775. Thus

we obtain two linear equations

x—(R:X107%/M)z= (moR;/M )+ R;— R,

(for the data of Drinkwater, Richardson and Williams) ;
(for the data of Houston or Chu).

Now because we admit that the He wavelength may be
in error, we shall write the correct wavelength as

A=15015.6750+3,

where § is the correction (measured in angstroms) to be
applied to the assumed value to obtain the actual value.
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(Of course we cannot find the true value of & but we
can make a “best estimate’” of this quantity.) Since
Houston’s standard value was 5015.6750, and the
calculated value of the Rydberg constant is inversely
proportional to this, we must write

(5015.6750)R.,," = (5015.6750+8) R,
which reduces to the relation
y=x-+21.886.

The measurements of Drinkwater, Richardson, and
Williams on the wavelength of Ha and De, tabulated
in Table II, yield a mean value R;=109677.567+-0.011
cm™! for Ha and Ry=109707.424--0.018 for De. The
linearized equations are therefore

x—1.0885=0.026-£0.011 wt=283, (a)
£—0.544z=0.027-£0.018 wt=231. (b)

Houston’s measurements on He, HB, and He yield
mean values, respectively, of R;=109677.674+0.020
cm™; Ry=109677.6264-0.037 cm™; R,=109722.295
+0.038 cm™, and therefore yield, respectively, the
equations

y—1.0882=0.133240.020, wt=25, (c)
y—1.0885=0.085-20.037, wt= 8, @
y—0.2745=0.044--0.038, wt= 7. (e)

Chu’s measurements on He yield R;=109722.322
=+0.038, which gives us \

y—0.274z=0.070--0.038, wt=". (f)

Merrill’s measurement of the wavelength of the He 5015
line gives, according to the previous discussion of this
measurement, 6=0.000224-0.0015A, so that we have a
further equation

x—y=—0.004£0.033, wt=9. (2)
Finally the spectroscopic determinations of the

atomic mass of the electron by Shane and Spedding,
Robinson, and Williams give three additional equations:

2=—0.00420.011, wt= 83, (h)
z=—0.03540.020, wt= 25, ()
z=  0.002:0.008, wt=150. G)

The errors assigned to the numerical quantities in
these equations are standard deviations, and the associ-
ated weights are taken to be proportional to the recipro-
cal of the square of the standard deviation, an error of
=+0.100 being assigned unit weight. The least squares
procedure is now to set up, in the usual way, the
normal equations for the system. These equations are

123¢—9y—107.168z=2.959,
— 9+ 56y—39.740z=4.839,
—107.168x—39.74y+405.539;=8.2863,
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and the solution of these equations is
#=0.0261, y=0.0870, z=-—0.00502, x*=11.94.

The quantity x? is the sum of the squares of the
normalized residuals (which it is the purpose of “least
squares’ to make “least”). For 7 degrees of freedom—
10 equations minus 3 unknowns—the expectation value
of x*is just equal to 7 and there is a probability of 0.10
that in a normally distributed universe x* would be
larger than 12.0. Therefore, considering the uncertainty
with which the errors in the observational equations
(a)-(j) can be assigned, the agreement is quite reason-
able. Expressing this in a slightly different way we can
compute the ratio of internal to external consistency
as used by Birge®; this quantity is 7./7;=1.3. Using
the larger measure of error the final answers are

£=0.026120.0140,  y=0.0870-£0.0188,
5=—0.00502-£0.0079, §=0.0028=-0.0007.

The correlation coefficients for these adjusted variables
are

r(x, ¥)=0.277, 7(y,2)=0.362, 7(z, x)=0.530,
7(8, x)=—0.333, 7(8, z)=—0.044.
The purely spectroscopic values therefore become
R.,=109737.326+0.014 cm™,
m=(54.895+0.008) X 10~5 amu,
A=15015.6778-4-0.0007A.

The consistency of the observed data is shown graphi-
cally in Fig. 2. In order to be able to draw a two-
dimensional picture of the actual three-dimensional
manifold, we represent in Fig. 2 only the projection
onto the x-z plane of the intersection of the surfaces of
the observational equation with the surface y=x
~+0.0609. This procedure is the geometrical equivalent
of recomputing the data of Houston and of Chu on the
assumption that the correct value of the wavelength
of the helium green line is equal to the least squares
“best” value. The ellipse at the center of the plot is
the projection on the x-z plane of the ellipsoid of error.
This ellipsoid is such that its projected semidiameter
on any axis is the standard error of the corresponding
variable.?

The value of m obtained here is to be compared with
the value computed from the data reported by DuMond
and Cohen® 3 on the very accurate microwave results
which yield a measurement of the atomic mass of the

# R. T. Birge, Phys. Rev. 40, 207 (1932).

#J. W, M. DuMond and E. R. Cohen, Revs. Modern Phys. .
20, 82 (1948).

3 In the present paper m is used for the atomic mass of the
electron. DuMond and Cohen use this letter for the physical
mass of the electron, so that in their notation the atomic mass
is Nm, where N is Avogadro’s constant. Since there is no need
in the present analysis to consider Avogadro’s constant explicitly
and since the numerical values for 7 are always followed by an

indication of the units (amu), the present simplified notation
should produce no ambiguity.
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electron. Hipple, Sommer, and Thomas®*® and Bloch
and Jeffries®” have measured the ratio of the proton
“cyclotron” frequency to the proton resonance fre-
quency in the same magnetic field and a weighted
average of these results is w,/w,=0.3580714-0.000007.
Gardner and Purcell®® have measured the ratio of the
proton resonance frequency to the electron cyclotron
frequency in the same field and find w,/w.=(1.52101
=#0.00002) X 10~%. Thus the ratio of electron mass to
proton mass is simply (0.358071)(1.52101)X 103
=54.4630X10~%; and using 1.007593 for the mass of the
proton we find m=(54.87854-0.0013) X 10~5, the error
quoted being a probable error, which is smaller than
the spectroscopic value by 0.016=-0.008.

If we use this value and neglect the spectroscopic
mass determinations the Rydberg constant is R.,
=109737.3114-0.012 cm™, a decrease of 0.015 which
is just slightly larger than the standard deviation. This
value is indicated in Fig. 2 by the small circle and the
vertical line. '

The over-all picture appears to be fairly consistent,
although it must be remembered that there is some area
of uncertainty. The assignment of a correction to the
wavelength of the helium green line is certainly an
assumption which should not be accepted without
stronger evidence than that offered at present. Our
least squares “‘best” value of the helium wavelength,
5015.6778=-0.0007A, is larger than the value given by
Merrill, 5015.675A, by 0.00284-0.0007, which is a
significant correction with respect to its standard
deviation and at the same time is not too great a
correction with respect to the accuracy with which the
spectroscopic determination was carried out. It would
therefore be well worth while to redetermine the ratio
of the wavelength of this line to the fundamental
cadmium wavelength standard. In the absence of this,
all we have actually done is to use the data of Houston
and Chu as a determination of the atomic mass of the
electron and determine the Rydberg constant entirely
from the measurements of Drinkwater, Richardson,
and Williams. The discrepancy between the spectro-
scopic determination and the ‘“microwave” determi-
nation of the atomic mass of the electron may appear
annoyingly large, but the difference is not statistically
improbable and we shall therefore adopt as the best
available present value of the Rydberg constant

R,=109737.311+0.012 cm™.
This value is consistent with an electron mass
m=(54.878520.0013) X 10~ atomic mass units,

and if this is subsequently changed by methods which
are independent of the Rydberg constant, a correction
factor can be specified. By comparing these values with
the purely spectroscopic results, we find that an increase

36 Hipple, Sommer, and Thomas, Phys. Rev. 76, 1877 (1949);
80, 487 (1950).

37 F. Bloch and C. D. Jeffries, Phys. Rev. 80, 305 (1950).
3 J, H. Gardner and E. M. Purcell, Phys. Rev. 76, 1262 (1949).
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F1c. 2. A consistency diagram for the spectroscopic data
determining the Rydberg constant. Each heavy line represents
an experimental result. The light lines on either side of each
heavy line indicate the standard deviation of the measurement.
The black dot at the center of the ellipse is the least squares
“best” value for the Rydberg constant and the atomic mass of
the electron. The ellipse itself is the projection of the standard
error ellipsoid onto the plane of the diagram and the standard
error of any variable is given in turn by the projection of this
ellipse on the corresponding axis. The small open circle and the
vertical line to the left of, and slightly below, the ellipse is the
value of the Rydberg constant if the microwave data is used to
determine the electron atomic mass.

of 1 part per million in the electron mass will produce
an increase of 0.0005 cm™ in the Rydberg. It is im-
portant to point out, however, that there is nothing
particularly fundamental in this coefficient; its value is
dependent upon the values and weights of the Rydbergs
for different atoms and reflects only the way in which
the present data determine an observational relation-
ship between R, and m. With a different set of obser-
vational data this relationship will change.

The value given here, 109737.311 cm™, for the
Rydberg constant is only slightly larger than R. T.
Birge’s 1941 value. This is the result of various compen-
sating effects. If we do not use the “microwave” value
for the electron mass, but restrict ourselves entirely to
optical spectroscopic data the Rydberg is*109737.326
cm™! or 0.023 cm™! larger than Birge’s value. Except
for a small effect due to the difference in the treat-
ment of the data, this change is a result of the
Lamb shift corrections to the energy levels. Using the
smaller “microwave’” mass reduces this differerice by
0.015 cm™, so that the result is only 0.008 cm— larger
than Birge’s value. On the other hand, if the wavelength
of the green helium line is not to be changed from
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Merrill’s value and if no other reason can be given for
choosing Drinkwater, Richardson, and Williams over
Houston and Chu, then the value of the Rydberg,
which would then have to be calculated from consider-
ation of all of these data, would be increased signifi-
cantly since Houston’s and Chu’s data in combination
with the spectroscopic mass determinations yield
R.,=109737.387 cm™. In fact, a least squares solution
of the present observational data, excluding Eq. (g) and
putting in its place, x=1y, gives 109737.3464+0.019 cm—.
The larger error in this case is a reflection of the larger
spread in the data because of the inconsistency between
the cadmium and helium wavelength standards.

E. RICHARD COHEN

We shall conclude by listing the Rydberg constant
for the four lightest stable nuclei. In addition to the
previously quoted mass we use the value 3.015899
=£0.000011 for the mass of the He® nucleus (the probable
errors quoted for the nuclear masses have negligible
effect on the error of the results)

R,=109737.311£0.012 cm™,

Ru=109677.5754+0.012,

Rp=109707.420+0.012,
Ryus=109717.3464-0.012,
Ryu1=109722.268--0.012.
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Proposed Method for Producing Short Intense Monoenergetic Ion Pulses*
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A method is outlined whereby suitable periodic deflection over the range of possible path lengths between
foci of an appropriate focusing magnet is utilized to convert a continuous monoenergetic ion beam at one
focus into very short duration high intensity monoenergetic ion pulses at the other focus. Time-of-flight
analysis of reaction particle pulses resulting from the interaction of the ion pulses with stationary target
nuclei is discussed, and the application of this method to the elastic and inelastic scattering of neutrons is

considered briefly.

N principle the interaction of a beam of high in-

tensity short duration monoenergetic ion pulses
with stationary target nuclei and time-of-flight analysis
of the resultant reaction particle pulses is a form of
spectroscopy applicable to all types of nuclear par-
ticles. Spacially separated, by differing times of flight
from target or scatterer to an appropriately placed de-
tector, the energy and angular distribution of any par-
ticular group of particles could then be determined
without interference from other groups or in the case
of scattering without interference from the source par-
ticles except for elastic scattering in the forward
direction.

The problem of an appropriate method of producing
a beam of high intensity, short duration, monoenergetic
ion pulses appears, however, to have hindered applica-
tion of this technique. One approach to this problem,
which it is felt may be of sufficient general interest to
warrant publication in its present design stage, is out-
lined in the accompanying diagram (Fig. 1).

It consists in principle of deflecting successive por-
tions of a continuous monoenergetic ionbeam, such as
that from an electrostatic generator, over progressively
shorter paths between foci ¢ and g of magnet M in a
manner such that all portions of the beam so deflected
arrive at g essentially simultaneously in a high intensity,

* This work was in part supported by the AEC.

short duration current pulse. These ion pulses incident
in turn on an appropriate target at g produce similar
short duration, high intensity, reaction particle pulses.
In more detail, magnet M is a focusing magnet with an
ion deflector at focus @, a target at focus g, and the
property that path lengths from ¢ to g become pro-
gressively shorter for paths entering the magnetic field
at successive points from & to e. When swept at an
appropriate rate from ¢ to ¢ by the deflector at ¢, all
ions successively crossing line ¢ ¢ in one edge of the
monoenergetic ion beam can be made to emerge from
the magnetic field on a cylindrical surface which col-
lapses to a focus on its axis through g. Under these
circumstances a sharply focused, relatively low inten-
sity, long duration ion pulse entering the field of magnet
M emerges greatly foreshortened along its direction of
motion and arrives at g as a very short duration, high
intensity pulse.

As a consequence of the quite arbitrary choice of
geometry shown, the path length from ¢ to d, due to
the selection of 45° for angles ¢ b and d b 7, is approxi-
mately 25 longer than the path length from e to f.
The rate at which the ion beam must be swept along
line ¢ e on entering the field of magnet M to fulfill the
above requirement is then approximately one-half the
velocity of the incident beam. Swept at this rate, a seg-
ment of the deflected and chopped incident ion beam x
thick and approximately 2S long becomes a pulse ap-



