
NEUTRON CAPTURE CROSS SECTIONS

where D(8) is the spacing of levels of the same spin
and parity as the initial state at energy 8, and p&,(8—e)
is the density of levels at energy 8—e that can be
reached through the radiative transitions of multipole
2". The radiation widths are obtained by integrating
M'(e) from e=0 to 8

The ratio of radiation widths of states of spin J and
given parity with excitations 8 and 8+E then takes
the following form:

B+E

pB+E Cd'
1„&»(8+E) D&»(8+E) J,

p (&&(8) D(&&(8)
~2x+lp (8 «)d ~

JD

1 D'~&(B+E)
(16)

f~(E) D'"(8)

where D&»(8) is the spacing of levels of spin J and
given parity at excitation B. It is assumed that for all
spins J the energy dependence of the level densities is
as in (11), the constant preceding the exponential alone
having J dependence. This allows the .use of p, the
density of levels of all types, instead of p) on the right
side of (16).

Many authors, for example, Feshbach, Peaslee, and
Weisskopf, ' have shown that

F~& '&(E')~T& (E')D& &/2s. , (17)

where the value of D( ' is to be taken at the excitation
energy of the compound nucleus. Equation (6) follows
directly from (16) and (17).

p&, has no obvious J dependence. Hence, from (15)
it can be seen that the main dependence of I"„&~&(8)
is in its proportionality to D&»(8). This is the basis
for taking $g to be independent of J.
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The fundamental diffusion equations describing the three-
dimensional development of the electron-photon component of
the cosmic radiation, are formulated. These equations take into
account exactly ionization loss and variation of density in the
medium, and enable one to determine all angular and radial
moments of the distribution functions, as explicit functions of
depth and energy for arbitrary initial conditions.

The exact general solution of these equations obtained in this
paper are readily adapted to any physical situation of interest.
The method is similar to that devised by the authors in considering
the three-dimensional development of the nucleon component.
The only approximations involved are those inherent in the
Bethe-Heitler cross sections in the full screening approximation,
and the neglect of angular de6ections in processes other than
elastic Coulomb scattering.

It is shown that all previous work is subject to very large errors
on the following counts: (1) the neglect of fourth and higher
angular moments for the Coulomb scattering in Landau's equation
and equivalent integral equations; (2) the neglect of variation of
density in the atmosphere —which alone can lead to. errors as
high as 5000 percent; (3) elimination of the depth dependence
either by integration over all depths, or evaluation in the neighbor-
hood of the cascade maximum; (4) miscellaneous errors introduced
in the evaluation of already approximate integrals; (5) use of
results due to Moliere, hitherto unpublished in detail, which
involve errors of several orders of magnitude in the higher mo-
ments; and also in the distribution functions concerned.

No calculation of the actual distribution functions in the
atmosphere or elsewhere has yet been made on the basis of a
realistic physical model. The results obtained in this paper will
allow the authors to do this in the future.

1. INTRODUCTION
' 'T is dificult to find any topic in theoretical physics
~ ~ which has received so much attention, with results
so lacking in precision, as the spread of the soft compo-
nent of the cosmic radiation in the atmosphere. Both
the physical assumptions and the mathematical tech-
niques employed have been of such a crude nature that
no conidence whatever can be placed in either the
qualitative or quantitative aspects of the theories
advanced.

All theories hitherto put forward which have not
consisted of purely qualitative considerations, have
been based either on equations due to Landau' or on
completely equivalent integral equations due to Roberg
and Nordheim. ' These equations are actually inappli-

L. Landau, J. Phys. (U.S.S.R.) 2, 234 (1940).' J. Roberg and L'. W. Nordheim, Phys. Rev. 75, 444 (1949).

cable to the atmosphere, since they relate only to media
of constant density. Janossy' has argued that "no great
error arises from the fact that the variation of the
cascade unit with air density has been neglected, "but
our exact calculations will show that the error actually
attains a maximum of 5000 percent. Another defect of
the equations of Landau, and Roberg and Nordheim,
is the neglect of the higher angular moments of the
Coulomb scattering of the electrons. In consequence of
this neglect, the mean square angular deviation of
particles from the shower axis can be calculated accu-
rately for a medium of constant density, but the mean
fourth power obtained is in error by 18 percent, the
mean sixth power by 45 percent, and higher moments
are completely inaccurate. Similar corrections apply to

'L. Janossy, Cosmic Rays (Oxford University Press, London,
1948).
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the moments of the radial distribution function. The
so-called "exact" values of the higher moments com-
puted by Eyges and Fernbach4 and Nordheim et al. '
are thus subject to large corrections. Furthermore, the
angular and radial distribution functions constructed
from such moments are necessarily incorrect.

Moliere' ' attempted to obtain the distribution
functions by a method not requiring the previous
determination of the moments. The details of the
method have never been published, but since it involves
the use of I.andau's equation, it is necessarily inexact.
Further, if I andau's equations are accepted, Moliere's
results are still incorrect, both quantitatively and
qualitatively. His calculation has so little relation to
the physical problem that it is a strange coincidence
that experimental evidence' should appear to support
his results. This coincidence has unfortunately led to
an almost universal acceptance" of an incorrect theory,
which has obstructed further advance.

Errors of principle have been introduced in the
treatment of the depth dependence of the angular and
radial spread. Some authors' ' "have averaged over all
depths; however, it will be shown presently that the
spread is by no means constant, whether one assumes
constant or variable density. Others' have obtained
results only for the cascade maximum, or attempted by
very approximate methods to extrapolate from the
cascade maximum. "In view of these and other approxi-
mations which have been introduced, it seems futile,
as some authors have attempted' 4 ' to take ionization
loss into account; this may be done after a theory
valid for high energies has been established.

The conclusion is inevitable that all work hitherto on
the angular and lateral spread of the soft component is
incorrect or so inexact as to be severely in need of
amendment.

From the physical point of view, two distinct prob-
lems need to be considered: the determination of the
spread of the electron and photon components of the
cosmic radiation in the atmosphere, and in a medium
of constant density such as lead. It is now almost
certain that in the atmosphere the soft component is
secondary to the nucleon-mesonic component, so that
the spread of the nucleon component, previously deter-
mined by the present authors, " provides the initial

4 L. Eyges and S. Fernbach, Phys. Rev. 82, 23 (1951).
5 Nordheim, Osborne, and Blatt, unpublished Echo Lake

Proceedings (1949).
G. Moliere and W. Heisenberg, Cosmic RaChatioe (Dover

Publications, New York, 1946).
7 G. Moliere, Naturwiss. 30, 87 (1942); Z. Physik 125, 250

(1948).
G. Moliere, Phys. Rev. 77, 715 (1949).' Cocconi, Cocconi- Tongiorgi, and Greisen, Phys. Rev. 76,

1020 (1949).' J. M. Blatt, Phys. Rev. 75, 1584 (1949) is one of the few
authors who appear to have appreciated that Landau and
Moliere's theory was incorrect, though he was not able to amend
it."S.Z. Belenky, J. Phys. (U.S.S.R.) 8, 9 (1944)."S.Fernbach, Phys. Rev. 82, 288 (1951).

"H. Messel and H. S. Green, Phys. Rev. 87, 378 (1952).

condition required for the determination of the spread
of the soft component. The problem thus raised will be
considered by us in a subsequent publication in which
we shall obtain the correct radial and angular distri-
bution functions. In media of constant density, the
angular and radial distributions of interest result from
two initial conditions, corresponding to either incident
electrons or incident photons at the top of the layer
considered. This is the problem which we presently
considered, since it is that which has been treated by
all previous authors. It has applications to the spread
of showers in slabs of material with uniform density,
and also to the spread of atmospheric showers through
sha/low layers mell dovon in the atmosphere, where the
density is almost constant. For purposes of comparison,
we have, however, determined the mean square lateral
spread of showers initiated by electrons (though few,
if any, of these exist) at the top of the atmosphere.

Our theoretical results are applicable to an arbitrary
distribution of particles incident on the absorbing layer
concerned, within which the density may vary in an
arbitrary manner, and are thus completely general.
However, for purposes of numerical discussion, we have
always considered an incident power law spectrum for
the particles concerned. Numerical results for all other
types of spectra can be obtained by a single complex
integration, which in most cases is readily performed
by the method of steepest descents. We have confined
our attention in this paper to the determination of eth
moments of the angular and radial distribution func-
tions; it is possible, however, to reconstruct the func-
tions from the moments by a method given by us in a
previous publication" and this we shall do presently.
The present theory is valid only in the region of high
energies where ionization loss is negligible, but the
consideration of an additional term in our fundamental
equations will enable us to extend the theory to low

energies in the near future.

2. FUNDAMENTAL EQUATIONS FOR THE SPREAD
OF THE SOFT COMPONENT

We denote by f&'&(y, r, t)dpdr/(2xp') the probability
that a particle of the ith kind (i= 1 refers to electrons;
i = 2 to photons) be found with momentum in the range

ydp at height t cm, and with horizontal displacement

x, dx from the shower axis, assumed to be vertical. "
Further, we denote by w"&(y', p)dp/(2~p') the well-

knoryn Bethe-Heitler cross sections" in the full screen-
ing approximation, and by w(p', p)dp/(2~p') the corre-
sponding diGerential cross section for the elastic
scattering of an electron" by an atom of the absorber
considered. The total cross sections corresponding to
mr('& and zv are represented by n&'& and n, respectively;

'4 The method of generalization to the case where the shower
axis is not vertical was described in our previous paper (reference
13)."Multiplied by 2 for i=2."B.Rossi and K. Greisen, Revs. Modern Phys. 13, 240 (1941).
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the fact that o.o} is mathematically divergent leads to
no difficulty in this instance. The ionization loss for
the electrons per cascade unit is represented by P; the
depth in the absorber, measured in cascade units is
denoted by l(t). In a medium of constant density
0 g/cm', l= —8/k, where k is the radiation length in
g/cm' (k=43 for air). In an isothermal atmosphere,
on the other hand, l= (po/43g) exp( —grot/po), where po
and 80 are the surface pressure and density, and g the
acceleration due to gravity.

The rate of change of f(" per unit path length is
p/p. Bf&"/Br, where ro= t; this —results from a loss
(n&"+nB, i)(dl/dt) f&" from the momentum range p, dp
to the other momenta, a gain

dl p—' [w" "(p' p)f" "(p')
dt~

+{w"'(p', p' —p)+w(p', O) }f"'(P')B'.)7dp'/(2~P")

from other momenta, and a loss P(dl/dt) X(Bf")/BP)Bi, i,

due to ionization. Hence,

dt p Bf&'& Bf("&

( (')+ B, ,)f(')+.P
dip Br B

t

+ [w" "(O', p)f" "(p')+{w"'(O' O' —p)

+w(p' p) }f"'(p')B'jdp'/, (2~P") (1)

Transforming to polar coordinates by writing

the last term in (3) reduces to

co=1——',(137rrt,z l)'/(0. 57E)',

ci——1——', (r&t,z&)'/(137E)'

(7)

The term with l=0 in (5) yields the total cross
section for elastic scattering, and cancels the equivalent
term (nb;, if&'&) on the left-hand side of (3). The latter
is then

dt ( Bf('& Bf&'& S sin%' Bf&') )—
! C —S cos%' + —!+n"&f"&

dl E Bt Br r B%' )
Bf(i)

=!3 B + Lw" "(EIE')f" *'(E')
BE ~E

+.w (') (1 E/E') f(i—)(E') B. ,'jdE'/E'

+P 4 '(l!) 'E "wiP(P+2)
l=l

Q 4 '(l!) 'E—"wiP(P+1.2)
L=O

X{P+l(l—1)}f"&(E)5,; i, (5)

where I' is the operator

(B B 1 B'i
P= S

(BC BC S' B%')
and

CI

w =2'U!t (1 c)' 'E—" 'dc,
co

r = (ri'+ro') ' E=p= (pi'+ po'+ po')'
(2)

P]ri+Poro =ErS cos%', C= Po/P, S= (1—C') ',

one obtains

Bf"& S sin%' Bf"))
!—S cos% +

Br r Be)
dt( Bf& &

C
dl 4 Bt

+(n(i)+n$. )f(i)

Bf(i) ( oa

=P B. + [w(o—i)(E/E~)f(o —i)(E~)=
BE

" ~.
+w (i) (1 E/E') f(i) (E')B, i—]JE'/E'

2m d@( ] oo

+ t dC'
~

dE'w{E', E, CC'
~o 2or i ~E

+SS' cos(%'—+')}f&'&(E', C', +') B;, i. (3)

Expanding f(') (E', C', 4') about the value C' =C,
0 '= 4, by means of associated Legendre operators,
and substituting"

w(E', E, c) = b(E' E)V/E'(1 c)',— —
V= ,' r7[137 r),t' /I n(181 s-&)j,

(4)

X{P+l(l 1)}f&'(E)B—, i (8)

This equation is exact, within the limitations of the
assumed Bethe-Heitler cross sections. One may legiti-
mately approximate C by 1, and P by B'/BB(o+ B'/BBo',
where

0&=S cos% and 02=5 sin+, (9)

since this merely amounts to dropping terms of order
(m, /c)E' compared with unity. At sufFiciently high
energies (above the critical energy) one may also set
P=O, neglecting ionization loss. If in addition, all
terms with /)1 are dropped from the summation in

(8), and dt/dl is replaced by the constant —k/B (appro-
priate only to a medium of constant density), then (8)
reduces to Landau's equations. ' The last two procedures
mentioned account for the substantial errors involved
in the use of Landau's equations, or the equivalent
integral equations of Nordheim and Roberg. It might
be supposed that the error in neglecting the term with
l=2 in (8) in comparison with the First is of the same
order of magnitude as that resulting from the substi-
tution C=1, for example; this is not so, however, as it
makes a direct contribution to the fourth angular and
radial moments. This is evident on physical grounds,
and will appear so in subsequent mathematical develop-
ments.
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(10)

S. SOLUT10& oF THE &UNDtiMENTttL EQUttT1012&s In order to solve the simultaneous Eqs. (15) with

If the Me!!in transform f&o(v) of f&o(g) is defined by P=0 (the general case P/0 is PostPoned for future
consideration), we formulate the equation satis6ed by

k(v) =g"'(v)+ p(v) g"'(v), (1'7)

then (8) reduces to
0.

df 8 8 csin@ 8—C—S cos%'—+ — f(') (v)
dl I N Br r 84

where t((v) is independent of depth. If ti(v) satisfies the
quadratic equation

&"'( v) t (2)v+{D"' D—"'(v)}) (v) I—l" )( v) =o, (18)

one obtains
= —(v—1)Pf"'(v—1)~', 1+Ii"'(v)f" "(v)

—D&'&(v)f"&(v)+g 4—'(l!)—'&v&8(8+2) ~ ~

j
where

X{P+t(l—1)}f"'(v—2»(&;1 (11)

8 2XS cosP'
i C—+ k(v)+a(v)k(v) =E(v, l), (19)
1 Bl l'(t)

1 (4/3+ np)
8&'&(v) =2-

(v+ 1)(v+ 2)

1 (4/3+ 0&p)

Il (2) {v)—
v+1 v(v —1)

D"'(v) = (4/3+ «){+(v)—+(1)}+2—
v(v+1)

D&"(v) = 7/9 —«/6,

4(v) =—ln(v!), while 9(22= {ln(1812 &)}—'.
dV

~(,»=Z4-{l )- Q{Q+2)

X {Q+l(l—1)}g")(—2l) (2o)

a(v) =D(»( )—t ( )Il(2&( ). (21)
(»)

Inserting the two admissible values

pi(v) = L(D"'—D"')+{(D"'—D"')'
+4+(1)21(2)}kj/2+(2) (22)

p (v) = L(D(1) D(2)) —{(D(1) D(2))2

+4+(1)21(2)}kj/22l(2) (23)

of t((v) 111to (19), aild wl'ltiilg

Introducing the polar Fourier transform

2% 00

g&')(v, k, P')=)I d%' I rdr
p p

&&exp{2kr cos(4—P') }f&'&(v, r, 4'), (13)

whose inverse is

p2x
f&"{v, r, %') =(22r) ', dP' kdk

~p ~p

G (2,1)(v)—
It (1)(v)

G (2,1)(v) — G (2,1&(v)

a2(v) —ai(v)

G (2,2)(v) G (1,1)(v) G2(2») (v) —Gi(1 1)(v)

D&'& —ai(v) a2(v) —D(»
G (1,1)(v) G (1,1)(v)

a 2{v)—ai(v) a2(v) —ai(v)

8&'&(v)

Gi""(v)= G (1,2)(v) G (1,2)(v)
a2(v) —ai(v) (24)

)&exp{—2kr cos(@—p')}g"&(v, k, p'), (l4) one obtains

g"&(v) =g&»(v l=X)G~&'o(v) exp( —C 'La (v)(l—X)
Ch'

[ 8—' C—+vkS cosP' g&'&(v)
dlI at

= —(v —1)Pg"'(v —1)&' 1+Ii"'(v)g" "(v)

+2Sk cosP'{t(l)—t(X)}])

+C 1G (1') (v) I exp( —C '[a (v) (l—l )

D "&(v)g—")(v)+2 4 '(l') '~&Q(Q+2)
L=1

g {Q+l(l—1)}g&'&(v—2»8 ) (15)

( 8 &) 1 ()

Q
— S2 +

& BC BC S' BP"3

+2Sk cosP'{t(»—t(l') }])R(v,l')dl', (25)

where t(l) is the height, expressed as a function of l,
and the repeated adzes j and m are sumnMd over the
values j. and 2, as in relativity theory. In practice an
iteration procedure using (20) and (25) is employed in
solving these equations. The integrals which arise may
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be simpli6ed by expanding the exponential factor

exp[ —iSk cosP'{t(l) —t(l') }/Cj
in a power series, and integrating by parts a sufficient
number of times to replace t(l) everywhere by its
derivative. The result may be expressed in terms of
the operator

F =C 'G " '&(v) exp{—C "a„(v)l}

X E (SC ' cosP')" Z u).4 '(s ') 'Q(Q+ 2)

t(l) u

X{Q+ s(s—1)} ik ~—dt(l)

form (see reference 13)

( 2)
—n

g&'&(v) = P (ik cosP')'(ik sinP')"
)tm~~I

Xt&(")(1—C)f. .."'( ). (30)

This gives, on applying the transform de6ned by
(13) and (14),

( 1)(+m+m2 —n

f"'( )= Z . . . f«, -, - "'( )
)fml~f

X()('&(r cos%')8("&(r sin%')()("&(1—C), (31)

from which it may be deduced by integration that

where 8, is the incremental operator which raises the
value v by unity. One has, in fact, the solutions

r1= r cos%', r2= r st,
f &'&=2" I t I f('&(r r, C)r 'r "(1 C)"dr dr—dC

X

(32)

oa

g")(v)=
I E y)" lg")(v, i=7()

=0

XG &''&(v) exp( —C '[a (v)(l—l()

is a typical moment of f&"(v) with respect to r), r2, and
2(1—C) .

By comparison of (27), (28), and (29) with (30) we
obtain for the 2mth pure angular moment of the electron
distribution

+0Sk cosP'{t(l) —t(l()}])~ (27) f &'&(v) = (e()'g &"(v—2e) exp{—a„(v—2m)}

g("(v)=g&"(v,'l=7()G (' '(v) exp( —C 'La„(v)(l—X)

+iSk cosP'{t(l) —t(l() }])+I 2g('&(v). (28)

This gives the exact values of the g&'&(v) throughout
the atmosphere or other medium, for an arbitrary given
distribution of electrons and photons at depth X, for all
depths and for an arbitrary distribution of density.

4. SIMPLE APPLICATIONS

Xexp —a„(g) v —2 Q n(&l —1) l

X exp a„(0) v —2 g r)(q —1) l
JO q-1

(33)

The nature of the solutions (27) and (28) depends on
the initial conditions supplied by the physical situation
considered. In the atmosphere, a correct initial condi-
tion for the soft component is the distribution function
for the neutral x-mesons, which is governed by the
distribution function of the nucleonic component. Since
we have already determined the distribution function
for the nucleonic component of the cosmic radiation in
the atmosphere, this problem is ready for solution. In
the present paper, however, we are concerned with
assessing the merits of previous work on the soft
component, in which it was customary to take initial
conditions corresponding to a particle or spectrum of
particles incident on the top of the atmosphere, and
therefore adopt the same initial conditions ourselves,
namely,

where P' indicates summation over all products for
which +05(k)=e, with N(0)=0. The corresponding
formula for the photons is obtained by changing
G ()&("&(v) to G ()&("&(v) in (33). These formulas are
independent of the variation of density in the absorber,
except insofar as it a6ects the cascade unit. The
formulas for the radial moments, however, depend
very sensitively on the law of variation of density
adopted. One has

f(2, 0, 0) &'&(v) = 2wlg0('&(v —2)G & "&(v—2)G~( "&(v)

Xexp{—a„(v)l}x, „(v, l), (34)

where

Xexpt {a„(v)—a (v—2)}l]. (35)

l ~l
„„,„(v, l) = "dlt'(l) "dlt'(l) dl

where g0(t (v) is independent of C. When this is substi-
tuted into (27) and (28), one obtains a result of the
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Substituting, for an isothermal atmosphere, t'(l) Hence, one has
= —po/(gi&, l) one has

f&o, o, &

' (E, ~)

( po &
'~ L{a-(v)—a-(v —2) }~j

x -(v, l)=]
& g8&&& a„(v)—a„(v—2)

Xexp[{a-(v)—a-(v —2) }G
(36)

lim (y+2e+1 —v)E 'f&0, 0, &" (v), (38)
e=y+2n+1

f&~, o, o& "(E ~)= »m (7+3 v)E 'f&~, o, o&"(v) (39)

J&(x) =e 'P x"/e'e!
n=l

and for an absorber of constant density, with t'(l)
= —

k/&&, one has

pk) ' J,[{a„())—a„(v—2)}l]
X -(v, ~)=l —

I

E&&] {a (v) —a (v —2)}'

Xexp[{a„(v)—a„(v—2)}t],
(37)

J2(v) = e
—'(e~—1—x—x'/2).

The moments f&0, 2, 0»" (v) which describe the hori-
zontal spread in a direction normal to the instantaneous
motion, are of order E ' compared with f&2, o, o&&"(v).

and make no efFective contribution to the total radial
moments,

f&o, 2. o& "'(v)+f&2, o, o& "'(v).

VVe have written dow'n corresponding expressions for
the higher radial moments, but as these expressions are
somewhat complicated we shall not reproduce them
here.

For a single incident particle of energy Eo, go&
'

(v 2+)
=Ep" 8~, &

where i = 1 for an incident electron and
i=2 for an incident photon. For an incident power
law spectrum of electrons or photons,

go&" (v—2&v) ={yE " '" '
/(p +2 &+v1 v) }t'&;;—,

where E, is the geomagnetic cut-oG energy and &= 1.5
is the primary power law exponent; it should, however,
be remembered that this substitution has little relation
to the physical reality. With this latter substitution,
the inverse Mellin transform which has to be applied
to the formulas of this section is readily evaluated for
energies E)E,; the pole at v=y+2e+1 is the only
one within the contour completed by a semicircle in
the right-hand half of the complex plane, and one
has therefore only to take the residue at this pole.

The expressions (38) and (39) relate to particles with
energy E; to obtain results for particles with energies)E one simply integrates the expressions from E to Ep.
The values of the G's required for the numerical
evaluation of (38) and (39) are:"

G& &' "(2.5) = 0.30628, G& "'&(4 5) =0.049882)

G&&& 2&(2.5) =0.46833 G ""(45) =0.18567,

G &''&(2.5) =0.45368, G ""(45)=0.25525,

G, &' '&(6.5) =0.013816

Gg&"&(6.5) =0.093836

G& &2 &&(6.5) =0.14520,

(4o)

S. RESULTS AND DISCUSSION

To assess the error introduced by the neglect of the
higher angular moments for the Coulomb scattering in
Landau's equation, we have evaluated the exact
asymptotic values of the second, fourth, and sixth
angular moments for large depths, valid for inhomo-
geneous as well as homogeneous media.

For an incident electron power law spectrum one has

f&0 ~ ~&&&&(E )= ao) G 0»&(4 5)~~E—2

f&o, p, p&&'&(E, l= ~) a„(4.5)—a&(2.5)

=0.6711(E,/E)2

where EP = (4&r)137m,'; and

and those of the u's

a&(2.5) =0.35001, a&(4.5) =0.70167,

a2(2.5) = 1.73328, a2(4.5) =2.14525,

ay(6.5) =0.74846

a2(6.5) =2.57416.

The numerical results will be presented with the
discussion in the next section.

TABLE I. Values of the mean square distance of particles of
energy E from the shower axis, in units of (kE./BE)', where k is
the radiation length, E,=21 Mev, and B is the constant density
of the medium considered. In all cases, figures are for a primary
power law spectrum of exponent y=1.5.

f "'(E /= ~) G~&"&(6.5)(u&2+2.684m ')E '

f&» o&"'(E~ ~= ~) a~(6 5)—a&(2 5)

= 1.519(E,/E) 4. (43)

Primary Secondary l =1 1, =2 t=3 l=4 l=6
Electron 0.1625 0.5252 0.7913 1.023 1.261 1.505 2.623
Photo 0.07139 0.3962 0.9294 1.556 2.189 2.808 5.543

pheto Electron 0.04386 0.1900 0.372 1 0.5637 0.7674 0.9758 2.623
Photon 0.00454 0.07028 0.2704 0.6092 0.053 1.542 5.543

The ratio of m~ to 2.684m1' is 0.184, so the error involved
in the use of Landau's equation (or other equivalent
equations) is 18.4 percent for the mean fourth power of

"L Janossy and H, Mess&1, Proc, Roy. Irish Acad. AS4p 217
(&95&j,
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the angular deviation from the shower axis. For the
corresponding mean sixth power,

f(o, o. )"'(~ I= )

f«, 0, o&"'(~~ I= ~)

G~ &'"(8.5) (ms+ 10.34mgw2+ 11.55M g') E—'

a (8.5)—ag(2.5)
(44)

The ratio of 10.34z~zv2 to 11.55m~' is 0.443, so, even if
one neglects m3, the error in using Landau's equation
exceeds 44 percent. This error varies somewhat with
the initial condition applied; however, the order of
magnitude remains unchanged. Thus, not only are the
"exact" moments previously determined4 ~ subject to
increasingly large corrections, but the determinations
of the distribution function which employ these mo-
ments are seriously affected. Moliere' ' apparently used
a different method to determine his angular distri-
bution function from Landau's equation; however,
according to Eyges and Fernbach, ' the sixth angular
moment (for example) derived from his distribution
function is in error by an order of magnitude, and the
distribution function itself is thus in even greater error
than that determined by Eyges and Fernbach.

The depth dependence of the angular moments can
be computed readily from our formula (33). However,
the radial moments are of more interest in this con-
nection, and we have selected the mean square distance
from the shower axis for special consideration. Values
for a medium of constant density derived from (34)
are given in Table I.

It will be noticed that the spread approaches its
asymptotic value only very slowly; there is thus no
support for the assertion by Janossy' that "most of
the scattering takes place in a layer of about one
cascade unit above the observer. "

Another interesting feature of the results is that the
spread of the electrons at depths greater than 4 cascade
units is less than that of the photons —in spite of the
fact that only the elastic scattering of the electrons
contributes appreciably to the spread of the shower.
What happens is that the electrons are absorbed more
quickly than the photons, with the result that the
photons are ultimately left further from the shower
axis. Only at depths less than 4 cascade units does the
spread of the electrons exceed that of the photons.
Moreover, this conclusion is independent of whether
the primary particles are photons or electrons.

It is clear on physical grounds that the spread at
great depth must be independent of the type of primary
particle. A photon primary generates a pair at some
lower depth, so that the spread is delayed throughout
the medium. These conclusions are confirmed by our
calculations, and are indeed elementary consequences
of our Eqs. (27) and (28).

As can be seen from (34), in media of constant or

lo

3 P 5'

Spread Function ——-
6 Z S

FIG. i. The spread function normalized in such a way that,
multiplied by (E,/E), it gives the mean square distance of
electrons of energy E from the shower axis. The curves are
calculated for an electron primary power law spectrum with
exponent y=1.5. The vertical scale gives the atmospheric depth
l measured in cascade units. Curve 1 is for an isothermal atmos-
phere; curve 2 for an atmosphere assuming a constant mean
density.

variable density the mean square distance from the
shower axis is a linear combination of four terms,
namely, the x, „(4.5, 1) given by (35), divided by, the
average numbers. It can be seen from (36) and (37)
that the behavior of the x, „ is determined by the
spread fmnotion J~(x) in the atmosphere, or J2(x) in a
medium of constant density. Since the function J&(x)
describes the spread of all components of the cosmic
radiation (see reference 13) in the atmosphere, it has
been tabulated for us by Dr. E. A. Cornish of the
Commonwealth Scientific and Industrial Research
Organization, with results given in the Appendix. After
several cascade units, only the term derived from gy y

makes an essential contribution to the spread; and we
have therefore singled out this term for special con-
sideration.

In order to compare the behavior of the mean square
spread of showers initiated by a spectrum of electrons
in the atmosphere, assumed to be (a) of constant
density and (b) isothermal, we have plotted the Jz and
J2 as functions of depth, multiplied by the appropriate
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2.0
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2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6

J1(X)

0.0000000
0.1679646
0.2823759
0.3563793
0.4002031
0.4217734
0.4272021
0.4211756
0.4072634
0.3881625
0.3658910
0.3419402
0.3173958
0.2930317
0.2693846
0.2468114
0.2255345
0.2056768
0.1872884
0.1703675
0.1548762
0.1407521
0.1279177
0.1162866
0.1057688
0.09627376
0.08771300
0.08000181
0.07306021

5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
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7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
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9.6
9.8

10.0
10.5
11.0
11.5
12.0
12.5
13.0

J1(X)

0.06681354
0.06119279
0.05613459
0.05158116
0.04748001
0.04378372
0.04044957
0.03743916
0.03471810
0.03225562
0.03002427
0.02799953
0.02615959
0.02435576
0.02295855
0.02156481
0.02029013
0.01912236
0.01805071
0.01706557
0.01615839
0.01532155
0;01349454
0.01197937
0.01071006
0.009636510
0.008720378
0.007932085

TAsLE II. The spread function JI(x). whether one assumes media of constant or variable
density.

It should, of course, be borne in mind that the
concept of incident electrons at the top of the atmos-
phere is probably unphysical. However, since all
previous work has adopted this concept, it is interesting
to note that the maximum spread of particles with a
given energy is attained in the upper half of the atmos-
phere. Xo such maximum is attained in a medium of
constant density, where the spread tends to a constant
value.

To the errors already noted in work by previous
authors, should be added those arising from miscel-
laneous approximations introduced in evaluating the
already approximate integrals obtained. In view of the
above it is obvious that treatments which have en-
deavored to account for the low energy showers, by
the introduction of ionization losses, are practically
meaningless.

APPENDIX

Table II gives the spread function Ji(x), defined in

(36). It can be expressed in terms of an indefinite
integral:

factors, in Fig. 1.%e were doubtful as to what constant
density 5 should be chosen for the "atmosphere" of
constant density, but have in fact taken a mean value
equal to the actual density at 12 cascade units. In the
case of the isothermal atmosphere, bo is the surface
density; thus, no such de.culty is encountered.

It is obvious from Fig. 1 that the variation of the
shower spread with height depends very sensitively on
the law of variation of density which is adopted. The
values calculated for constant density would be much
more applicable to the actual atmosphere if they were
multiplied by the ratio of the assumed density to the
actual density at each level. This procedure would, of
course, be quite inconsistent, and even if applied would
result in a percentage error.

Results have hitherto been calculated, either in the
neighborhood of the cascade maximum, ' ' which varies
widely with the energy and initial condition considered,
or averaged over all depths. ' ' ' It is clear from Fig. 1
that neither of these procedures could result in values
bearing even an approximate relation to those at sea
level, or other given depths. This conclusion holds

J,(x) =e *
~t f Ei(x)—lnx —y}x—'dx,
0

where y is Euler's constant and

The values given here were computed by Dr. Cornish

by summing the infinite series

Ji(x) = e-~ P x"/n!N',
n=o

which is the most convenient method for arguments up
to 13 or 15. Beyond this, it is easier to use another
development

where c„ is the coefficient of x" in the power series
expansion of fin(1 —x))'. Values for arguments from
13 to 50 are being computed in this way.


