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Some Consequences of Invariance under Charge Conjugation
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The charge conjugation operator, which transforms charged Gelds to their charge-conjugate fields and
reverses the sign of the electromagnetic field, is explicitly constructed. States of zero net charge are eigen-
states of this operator; the eigenvalues are (—1)"for states of n photons and (+1) and (—1) for the singlet
and triplet S states of positronium, respectively. The effect of charge conjugation on neutral boson Gelds is
also discussed. Physical consequences of the invariance of Geld theory under this transformation include:
1. For usual interactions a spin-zero particle (including the singlet S state of positronium) cannot decay into
three photons, although this decay is shown to be allowed by angular momentum and parity considerations.
2. The m=1 and m= —1 levels of triplet positronium cannot be split by a magnetic Geld.

II. CHARGE. CONJUGATION IN SPINOR
ELECTRODYNAMICS

Charge conjugation for a charged matter 6eld is the
operation of reversing the signs of the charges of all the
particles, while not altering their other properties—
momentum and spin, for example. It is well known that
if U is this (unitary) charge conjugation operator the
eGect of charge conjugation on the field operators

P(x), P(x) of a charged spinor field is given by'

Ult(x) U '= Clt(x),

Ug(x)U '=C 'lt(x),

(ia)

(ib)

'H. Fukuda and V. Miyamoto, Prog. Theoret. Phys. 4, 392
(1949).

~ R. Drisko, private communication.
3 While writing this paper we learned of a paper by A. Pais and

R. Jost [Phys. Rev. 87, 8'71 (1952)] on the same general subject.
We have attempted to minimize the overlapping of the two
papers, and in particular have omitted consequences of simul-
taneous use of charge conjugation and charge symmetry.

4 J. Schwinger, Phys. Rev. 74, 1439 (1948). We use the same
notation as is used in that paper; in particular, P(x) =P*(x)y4.

I. INTRODUCTION
' "N considering the decay of a neutral spin-zero par-
~ ~ ticle into three photons, we were struck by the
fact that, although this was not forbidden by standard
selection rules, the decay probability calculated for the
usual interactions was zero. For the case of a neutral
scalar meson decaying via intermediate pairs of fermions,
the process had been shown to be forbidden' as a conse-
quence of Furry's theorem, and this was found to be
still true if the fermions were replaced by charged
bosons. It was also pointed out to us' that the proba-
bility for the decay of the singlet S states of positronium
into three photons was zero to the lowest order in
e'/fic, a result which cannot be derived from Furry's
theorem. If these results represent absolute selection
rules, we should expect them to be related to a general
invariance principle. It is the purpose of this paper to
show that these results do follow from the invariance
of field theories under charge 'conjugation and to con-
sider some of the consequences of this invariance

principle. '

where C is a four-by-four matrix having the properties
that

C 'y„C= —y™„, CC '= —1, (2)

and is undefined to the extent of a constant of modulus
unity. After this operation the Dirac equation for
charged particles, and consequently the equations of
motion for the field operators P(x) and P(x), become
those for particles with charges of the opposite sign.

If it is required that the Hamiltonian of the inter-
acting matter field and electromagnetic field A„(x),

H=H, gt„+Hns, t, .—— dsxg„( x) A„( x),
C&

is invariant under charge conjugation, the transforma-
tion property of A„(x) must be

UA„(x) U '= —A„(x). (ic)

1
Q =— d'x je(x).

Hence U and Q can be made simultaneously diagonal
only for states of zero charge.

It is of interest to construct the operator explicitly;
to do this we factor U:

U= UDU~g,

where UD and U„J, operate on the matter field and the
electromagnetic field, respectively. The potentials A„(x)
are expanded in plane waves,

) 2~Ac~ &

As(x) —Zl I (isa. &(es i)se +is—s. i (ss, i)i~ )
a&, (Vllrl 3

U leaves invariant the commutation relations of the
fields and commutes with the Hamiltonian (3); it is
therefore a constant of the motion. Since two successive
charge conjugations reproduce the initial state, U has
two eigenvalues, +i and —1, just like the parity
operator. Furthermore, U commutes with the total
angular momentum and the parity, but it anticom-
mutes with the total charge Q,
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where a~, ), and ai, , q* are absorption and emission opera-
tors for photons with wave-vector k and polarization
vector ai, , )I,. Then an operator which anticommutes
with A„(x), and which is therefore a suitable repre-
sentation for U p„ is

U, y, =(—1)";&=+1,1w, 1'u~, ~. (&)

The Dirac matter 6eld operators may be expanded
in plane waves using positron theory.'

P(x) = V-& g, t u„N, (x)+b,*w,(x)),
where we choose N, (x) and v„(x) to be related by

v„(x)=CN„(x), N„(x)=CP„(x).

Here u„(x) and v, (x) are electron spinors of positive
and negative energies, respectively, r standing for a
particulaI' value of the InomentuIQ y and one of two
values for the spin s.' The relations (1) can now be
expressed in terms of the creation and annihilation
operators u„*, b„*, u„b„;from (1a),

V 'g„(UDu„Un 'u„(x)+Unb, *Un 'n„(x)]
=CV & Q, t u, *N,(x)+b8,(x))

= V 2 g „l b„N,(x)+u„*v„(x)j,

Unu, Un ' b„, Ug&b,——*Un '= u,~. (6a)

Similarly from (1b)

Unu*Un '=b* Unb Un '=u (6b)

In order to construct U222 we define operators n„*, P,*,
a„, P„, by

n„= (u„+b„)/K2,

p„= (u„b„)/v2, -
and the Hermitian conjugate equations. These opera-
tors satisfy the relations

Ug)e„Ug) '=n„,
Uiip„Un '———p„,

and the usual anticommutation rules among them-
selves; by applying these rules it may be shown that
(7) 18 satisfied lf U22 ls Ieplaced by

1—2P„*P„.

Thus U~ may be written

Un =g(1—2P„*P,)

=g(1 u,*u, b,*b,—+u,*b,—+b,*u,) (8).
The eGect of U~ on a state vector may be found either
by using the explicit construction (8) or by expressing
the state vector in terms of creation operators acting

~ See, for example W. Pauli, Revs. Modern Phys. 13, 203 (1941).
Our notation is not the same as his.

'For a given value of r, v, (x) is the spinor of the negative-
energy electron whose absence corresponds to a positron with
spin and momentum the same as those of the electron whose
spinor is N„(x).

7 We are indebted to Professor G. C. Wick for. this construction
of Ug).

on the vacuum state and employing (6). By either
method it can be seen by inspection that UD multiplies
each empty state r by unity, and for each occupied
state r changes an electron to a positron and vice
versa; for the exceptional case when both an electron
and a positron are present in the state r, UD multiplies
the state by —1, as is to be expected from the anti-
symmetry properties of Dirac particles.

III. STATES OF TWO AND THREE PHOTONS

It will first be shown that the decay of a scalar or
pseudoscalar particle into three photons is not forbidden
by angular momentum and parity considerations.
This has previously been stated, ' but no explicit con-
struction of a scalar or pseudoscalar state of three
photons was demonstrated.

In order to illustrate the method to be used, the
states of two photons previously discussed by Landau
and Yang'0 will be considered. The state of two photons
must be described in terms of three vectors: the po-
larization vectors of the two photons, a~ and s2, and
the relative momentum vector y. The polarization
vectors are directly associated with the photon creation
operators which act on the vacuum state. Since each
creation operator acts only once our expression must
be bilinear in a~ and a&. Because of the transversality
condition (ai y=0=e2 y) the only spherically sym-
metrical states are

si e2f(l y I ), (scalar) (9a)
(eiXe2) pf(l pl), (pseudoscalar) (9b)

where y(l yl) s~ands for an arbitrary fu~c~ion of t e
magnitude of y. It is seen from these representations of
the states that the plane's of polarization of the photons
are parallel and perpendicular in the scalar and pseudo-
scalar states, respectively. Since the only vector state
satisfying the above conditions,

Ky' E2y)

is antisymmetrical on interchange of the two photons
(which changes y to —y), it is evident that there exists
no such state of two photons. "Similarly there is no
pseudovector state.

The states (9) can be expressed in a manifestly
Lorentz-invariant and gauge-invariant manner by using
the 6eld strengths F„„(x)instead of the potentials A„(x).

For three photons there are the three polarization
vectors a~, a2, e~, and two independent vectors to be
chosen from yq, y2, and y~, the three momentum vectors.
From these it is possible to construct spherically sym-
metrical states satisfying all the above conditions; two
of the simpler ones are

&1' (122 P2) &2' (P2 Pl)&2' (Pl P2)g(Pl P2 P2)

(scalar) (10a)

ei (e2X e2)g(P1„P2, P2), (pseudoscalar) (10b)
s D. Peaslee, Helv. Phys. Acta 23, 845 {1950).' L. D. Landau, Doklady Akad. Nauk, S.S.S.g. 60, 207 (1948).
'0 C. Yang, Phys. Rev. 77, 242 (1950}.
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where g is a function antisymmetric on interchange of
any two of the three (independent) scalars Pi, P2, and.

Ps Lfor examPle, (Pi—Ps)(P4 —Ps)(Ps —Pt)]. Thus it is
possible for three photons to exist in scalar and pseudo-
scalar states.

By applying the charge conjugation operator (5) to
state vectors for a given number of photons we obtain
the result that for an even number of photoris U„~ has
the eigenvalue +1, and for an odd number of photons
the eigenvalue —1.

IV. THE EFFECT OF CHARGE CONJUGATION
ON STATES OF POSITRONIUM

It has been pointed out in Sec. II that U can be
diagonalized for states of zero charge, and can be
diagonalized simultaneously with angular momentum
J and parity I'. Therefore, states of positronium with
specified values of J and I' may be chosen so that U
is diagonal. In fact, U also commutes with the orbital
angular momentum 1 and the spin s. Hence the 'S and
'S states, which are specified uniquely by their J and
1 values, must be eigenstates of U. The state function
of any state of positronium can be expanded in terms
of free-particle state functions,

Ppositronium = ( P c(p, $1& $2)act*(p)bs2*( —p)
P4814~2

+Q ' 'art*arm*brt*br4 + ' ' ')'Pvscs (11)
7

where the second term represents the effect of virtual
pair production. Since U commutes with the number of
free particles, it will be sufficient to determine the be-
havior under U of the 6rst term in (11).Performing the
operation, we have

UDppositronium —p C(p, $1, $2) UDas1 (p) UD
P 4 ~is~2

)& UDbs2*( p) UD 'U—D+v„

= 2 c(p, », »)b 1*(p)a2*(—p)+-.
Ps~ls~2

c(Pr sls ss)as2 ( P)bsl (P)Pvsc
Ps814~2

c(—p, ss, si)a. i*(p)bs,*(—p)%' „.
P4814~2

For S states c(—p, $1 ss) =+c(p, si, sg) tlllls

UD%'s= —P C(P& Ss, Si)asi*(P)bss*(—P)%' (v1s2c)
Psals~2

The three triplet S states must behave in the same way
on operation by UD, and for the particular states with
$1=$&, c(p, s2, si)=+c(p, s1, s2). Consequently from
Eq. (12) the triplet states must belong to the —1
eigenvalue of UD. In the same way it follows that the
singlet state belongs to the +1 eigenvalue. Comparing
these results with those of the last part of Sec. III,
we see that

(1) the 'S states cannot decay into three photons;
(2) the 'S states cannot decay into two photons, a

result already known from space-symmetry
considerations,

TABLE I. Values of J, P, and tf for states of positronium.

State

1$
3$
1P
3p

J
0
1
1

0, 1, 2

I
od(l
odd
even
even

U

+1—1—1
+1

Clearly these results can be generalized to states of
higher 1, with the result that the eigenvalues of U~
involve an extra factor (—1)'. A classi6cation of the
5 and I' states of positronium is given in Table I, ac-
cording to the eigenvalues of J, E, and UD. It may be
noted that the states which are odd under charge
conjugation are just those which would not exist if
the two particles were identical.

By using the property of invariance under charge
conjugation it is possible to deduce another result for
positronium —that the m=+1 and m= —1 levels of
the 'S states are not separated by a magnetic field.
Since the interaction of external electromagnetic fields
with the charged particles is formally the same as for
the radiation field, we require such fields also to change
sign on charge conjugation. %e then consider the be-
havior of states of positronium under the two successive
transformations of charge conjugation and of rotation
through 180' about an axis perpendicular to the axis
of quantization, which is parallel to the magnetic field.
Under the first transformation the magnetic field is
reversed, while the states are unaltered (apart from a
change of sign, which does not affect the energy eigen-
values of the states). Under the rotation the magnetic
field is re-reversed, while the m=+1 and m= —1
states are interchanged. Since the only eGect of the two
transformations, which each leave the Hamiltonian
invariant, is the interchange of the two states, t'he
energies of the two must be exactly equal.

A third result that can be deduced, of less practical
value, is that in electron-positron scattering there is no
mixing of singlet and triplet states, since for the same
values of J and P they belong to di6'erent eigenvalues
of Ug).

These results are absolute selection rules, inde-
pendent of any perturbation expansion.

V. CHARGED BOSON FIELDS

For the sake of completeness we give the explicit
form of U for a charged scalar field p. The transforma-
tion laws for such a field under charge conjugation are

Uy(x) U—'= qy*(x),
Uy*(x) U-'=q 'y(x), -

where p is an arbitrary factor of modulus unity, which
can be set equal to unity without loss of generality.
In a way similar to that used in Sec. II we find the
following transformation laws for u,*,b,*, a„b„the free
particle creation and annihilation operators:

Ua, U '=b„
Ua, *U '=b,*.
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or
Up(x) U—'= p(x), (14a)

~~(x) ~ '= —~(x) (14b)

Once one of these has been chosen there exist a whole
set of interaction terms which are forbidden by the
condition that the Hamiltonian be invariant under
charge conjugation; consequently, selection rules con-
cerning neutral particles may be derived from this in-
variance principle. It should be noted that it is possible
formally to retain invariance under charge conjugation
without drawing any conclusions about neutral par-
ticles; this can be done by assuming that the charge-
conjugate of a neutral Geld is a di6'erent neutral field
(the field of the antiparticle). For example, if a neutral
particle consisted of a bound state of a proton and a
negative p-meson, the charge-conjugate state would
involve a negative proton and a positive p-meson. Thus
the requirement that a neutral boson Geld follow either
Eqs. (14a) or (14b) is really an additional assumption.

The interactions of a neutral scalar 6eld q with a
single charged field are of the form

v (x)4*(x)4(*)
s (x)k(x)4 (x),

q (x)C„(x)C„(x),

(p, g, and C„are scalar, spinor, and vector fields, re-
spectively) where only terms linear in p have been in-
cluded. As long as only a single charged 6eld is involved,
vector interactions of the form B„pj„(x), where j„ is
the current of the charged 6eld, can be reduced to
contact interactions of the charged field and terms
quadratic in q, neither of which contribute to the decay
of a single neutral meson. Each of the forms (15) corre-

As in Sec. II we define new operators n,*, P,*, n„P, by

a.= (a.+b,)/K2, P,= (a,—b.)/V2,

and the Hermitian conjugate equations. These new

operators satisfy
Uo!sU =&sp

VP U-'= —P
(13)

and the usual commutation relations among themselves.
The operator satisfying Eq. (13) is (—1)e*'e; so U' may
be represented as

p = (—1)zsps"ex

VI. EXTENSION TO NEUTRAL FIELDS

Although a neutral 6eld is not generally assumed
to interact directly with the electromagnetic field, one
can attempt to determine the behavior of a neutral
6eld under charge conjugation from its interaction with
charged 6elds. For any single interaction term an ap-
propriate assumption about the transformation law of
the neutral 6eld will make this term invariant under
char'ge conjugation; for a neutral boson field q (x) this
assumption will be either

sponds to a decay of the neutral meson via a charged
pair and each requires the transformation law (14a)
for invariance under charge conjugation. Thus for all
of these interactions the decay of the neutral scalar
meson into three photons is forbidden, as previously
noted. If interactions involving two charged fields are
considered it is possible to get interaction terms which
require (14b). One such interaction is a modified form
of the vector interaction,

~,v (*)J.(x)X(x)X(x).

Here J„can be gy„P or the gauge-invariant currents of
either of the fields p or C „,and x is another spinor field.
This interaction should allow the decay into three
photons. Similar considerations hold for a pseudoscalar
neutral Geld; in this case both the pseudovector and the
pseudoscalar interactions with a single charged 6eld
require Eq. (14a).

For the neutral vector field the simple vector and
tensor interactions both require Eq. (14b) (for each
component of the vector field). Interaction terms re-
quiring Eq. (14a) can also be constructed; for example,

~pv 4'7 pg'xv vx.

A vector meson field obeying Eq. (14a) could not per-
mit decay into two or three photons, but only into four.
For the neutral pseudovector field the pseudovector
interaction requires Eq. (14a) while the tensor inter-
action requires Eq. (14b) so that only one of these is
allowed by our assumptions, as has been pointed out
by Pais and Jost.'

In addition to the decays into a number of photons,
some other selection rules for the decay of neutral
bosons may be established. If the neutral boson Geld
is even under charge conjugation (14a) the following
decay scheme is forbidden:

B'~m'+ m'+y, (16)

where x' is the usual neutral meson. This has been
pointed out" as a consequence of Furry's theorem for a
pseudoscalar 8', but is independent of the spatial
transformation properties of 8'. More generally, the
decay into any number of neutral mesons (assumed to
be even under charge conjugation) and an odd number
of photons is impossible. If the neutral boson 6eld is
odd under charge conjugation (14b) many decay
schemes are forbidden, including

B'~'+~',
B'~++sr for scalar Bo,

B'~e++e for scalar or pseudoscalar Bo.

On the other hand, (16) now becomes possible.
We should like to thank Professor R. E. Peierls for

several very useful comments. We are deeply indebted
to Professor G. C. Wick for many helpful discussions
and suggestions.

"A. Pais, Phys. Rev. 86, 663 (j.952).


