
N. J. HARRILK AND N. F. RAMSEY

expression for E(E) is used in this equation, one finds

o"(Q.) '"-'= o'L. ((W~.) ) (~./. )'—0884
—0.614 H((R 8,—)/8, )i(R,/ae)

+0.410 en((E —R,)'/E, s)i(E./ae)'$. (13)

The various averages can be obtained from Ramsey's"
paper on the effects of zero-point vibration arid when
these are used, the above equation gives

aH(Q, )P'"= (0.344+0.010)X10-"cm'. (14)

The agreement between the experimental value of Eq.
(11) and the theoretical value of Eq. (14) is within the
overlap of the errors.

The results of the present measurements are all sum-
marized in Table VI. These are in good agreement with
values previously quoted. 4 There are large improve-
ments in accuracy with the present results. (1—o si)b/B'
is improved by a factor of 100 over previous measure-

ments. ' The best existing values for y„ limits the ac-
curacy of the rotational magnetic moment as calculated
from the present results, but, there still is an improve-
ment of about j.00 over previous measurements. The
dependence of the diamagnetic susceptibility on the
orientation of the molecules' rotational angular mo-
mentum, fbi $e,

—is improved from a 65 percent uncer-
tainty to only 5 percent; and the quadrupole moment of
the electron distribution, Q„ from 40 percent to 4 percent
unccl tRlnty.

The experimental value of Q, compares favorably to
the theoretically calculated value. The usefulness of
the experim, ental value of Q, lies in a cheek of the wave
functions used in the theoretical calculation of Q, and
the wave function used to calculate the gradient of the
electric 6eld at the nucleus resulting from the electrons.

The authors wish to thank Mr. R. G. Barnes and
Mr. P.J.Bray for their assistance in making the present
measurements.
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The treatment presented in two preceding papers is extended to cover the case of spin-dependent forces.
A general theorem is derived which reduces the problem of scattering by spin-dependent forces to the
problem of scattering by spin-independent forces, which has previously been solved analytically. It is shown
that observations on the neutrons returning from the scatterer can be used in many practical cases to deter-
mine the ratio of the two scattering amplitudes. Similarly, for very small probability of depolarization per
single collision, the depolarization of the neutrons transmitted through the scatterer offers information
about the spin dependence of the scattering amplitudes. The necessary material for the evaluation of the
observation is presented in table form. A comparison is made with a paper by Borowitz and Hamermesh in
which the same subject has been treated by a different method.

I. INTRODUCTION
' "N two preceding papers' the multiple scattering of

slow neutrons in a plane parallel sheet of infinite
extension has been discussed. The physical assumptions
underlying the treatment were the following: The
scattering probability is spherically symmetrical; the
scRttcring ls pul cly clastic; cRpturc processes Rrc
admitted. It was also assumed that no correlation exists
for the scattering from the various centers. The present
paper, as announced at the end of II, extends the
treatment to the case of spin-dependent nuclear forces. 2

The physical interest of the problem here discussed
can perhaps best be explained as follows. It has been
shown in an earlier paper' that the probability Q for

' Halpern, Luneburg, and Clark, Phys. Rev. 53, 173 (1938) (I);
O. Halpern and R. K. Luneburg, Phys. Rev. 76, 1811 (1949) (II).

~ O. Halpern, Phys. Rev. 75, 1633 (1949).
3 O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).

ao+3ai=0. (2)

The relation (2) is approximately satisfied, for example,
in the case of H. One can see in general that sizeable
values of Q will only occur if the two amplitudes have
opposite sign.

the inversion of the spin of the incident neutron during
a scattering process is given by

2i(i+1) (ai—ae)'
Q= (1)

3(2i+1) iao'+(i+1)ai'
Here i denotes the spin of the nucleus in units of h/2sr, '

ao and aI stand for the scattering amplitude of thc
system nucleus plus neutron if its total angular
momentum is i ,' and i+—'„—respectiv-ely.

One can see by a simple analysis of (1) that Q has a
maximum value of —', ; this maximum value is taken on
for the case of
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If, on the other hand, ao and a& dier only by a small
percentage, then the value of Q diminishes very rapidly.
If, e.g. , ao and a& differ by 20 percent, then Q is of the
order of 1/150.

Direct experiments4 of a single scattering type have
successfully demonstrated the spin-dependence of the
scattering amplitudes of some elements. The observed
values were necessarily somewhat inaccurate; the
evaluation of the elaborate experiments led, for ex-
ample, to values of Q exceeding -', . It can scarcely be
hoped that the accuracy of this type of experiment can
be very much improved and most obviously an arrange-
ment of this kind will be useful only if Q has sizeable
values. If, on the other hand, the two amplitudes differ

by a small percentage only, then an arrangement in-
volving multiple scattering becomes necessary so that
a suKciently la.rge depolarization effect be obtained.

The result of a large number of collisions during a
diffusion process cannot be foreseen by simple argu-
ments, since the number of collisions undergone by the
re-emerging neutrons will show large fl.uctuations. A
theory is therefore required which gives directly the
polarization state of the emerging neutrons if that of
the incident particles is known. Observation on the
amount of depolarization will then allow us, with the
aid of the theoretical formulas, to determine the value
of Q and thereby the ratio of ao and a~.

The usefulness of the study of multiple scattering for
the determination of Q has a.lready been. recognized by
other authors' in an earlier paper, which we shall discuss
at the end of the present note.

II. THE INTEGRO-DIFFERENTIAL EQUATION
FOR SPIN-DEPENDENT FORCES

We shall now show that the problem of diffusion
under the influence of spin-dependent forces can be,
without difFiculty, reduced to the problem already
solved, of difFusion under the influence of spin-inde-
pendent forces. '

Following I and II we write again the specialized
Boltzmann transport equation for the diffusion of
neutrons in the one-dimensional case,

Jaw(x, $)/ax+Aw(x, $)=BS(x), )=cosa. (3)

Here, m denotes, as before, the probability of finding
neutrons at the distance x from the boundary, the
velocity of which makes an angle 8 with the x direc-
tion; to is given by

w(x) = w(x, $)dg.

since only those particles which retain their polarization
can be added. Particles, on the other hand, which change
their polarization during collision give a negative con-
tribution, their fraction being

arrQ.

The addition of these contributions gives the right side
of (5).

The boundary conditions, as discussed in II, take
the same form for w and II. They read

w(0, ~) =y(p), g&o,

w(l, $) =0, $(0,
1I(0 g) =g($) $&0

(6a)

(|b)

(7a)

rr(l 5)=0 $(0. (7b)

Here f(g) and g(P) are known functions.
Equation (3) has been solved in II. The resultant

solution for ro(0, $) and w(l, $) as well as for w(x, $)
inside of the slab was there given in terms of 0- and a
new transcendental function P,($), the values of which
in the neighborhood of o -', and for $&0 can be found
in II in the form of a power series and in tables.

By a simple transformation (5) can now be reduced
to (3). Substitute in (5) the following:

on the limiting value ~. As before, the treatment is
limited to values of of 0 in the neighborhood of —,'.

Equation (3) holds true in the presence of polarized
neutrons and spin-dependent forces as long as we
understand z to represent the distribution of all
neutrons independent of their spin. To discuss the
polarization, we need a second equation which can be
obtained easily. Denoting by II the function analogous
to w(x, t) but referring to the polarized part only, we
observe that always II—m and that for a completely
unpolarized condition Ir becomes zero. The ratio lr/w
gives the percentage of polarization.

The transport equation for II reads as follows ~

~air(x, ~)/ax+All(x, P) =a(1—2Q)ir. (5)

In fact, the left side of the transport equation, giving
the amount of polarization, leaving a certain x,
domain is unchanged as compared with (3). The right
side, on the other hand, exhibits two changes: The gain
in polarization through the entrance of particles into
the specified domain is now given by

Blr(1—Q),

A and 8 determine the probability of scattering and
capture and of scattering alone, respectively. The ratio
8/A is again called o. In the absence of capture, o takes

We then obtain

x'= x(1—2Q),

A'= A/(1 —2Q).

Parr/ax'+A'll= err.

(8a)

(Sb)

W. K. Meyerhof and D. B.Nicodemus, Phys. Rev. 82, 5 (1951).
5 S. Sorovntr and M. Hamermesh, Phys. Rev. 74, 1285 (1948). (3) and (9) are equivalent if one replaces the old by
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TAsr, E I. Values of I'& '(s).

o+2' 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.500 1.00
0.499 1.00
0.498 1.00
0.496 1.00
0.494 1.00
0.492 1.00
0.490 1.00
0.485 1.00
0.480 1.00
0.470 1.00
0.460 1.00
0.450 1.00
0.440 1.00
0.430 1.00
0.420 1.00
0.410 1.00
0.400 1.00

1.24 1.45 1.64 1.83
1,23 1.42 1.60 1.77
1.23 1.41 1.59 1.75
1.22 1.40 1.57 1.72
1.22 1.39 1.55 1.69
1.21 1.38 1.54 1.67
1.21 1.37 1 53 1.66
1.20 1.36 1.50 1.62
1.19 1.35 1.48 1.59
1.18 1.32 1.44 1.55
1.17 1.30 1.41 1.51
1.17 1.29 1.39 1.48
1.16 1.27 1,37 1.45
1.15 1.26 1.35 1.42
1.15 1.25 1.33 1,40
1.14 1.24 1.31 1.38
1.13 1.23 1.30 1.36

2.01 2.19
1,94 2.10
1.90 2.06
1.86 2.00
1.84 1.96
1.81 1.93
1.79 1.90
1.74 1.85
1.70 1.80
1.64 1.73
1.60 1.67
1.55 1.63
1.52 1.58
1.49 1.55
1.46 1.52
1.44 1.49
1.41 1.46

2.37 2.55
2.25 2.40
2.20 2.35
2.13 2.27
2.09 2.21
2.05 2.17
2.01 2.13
1.95 2.05
1.89 1.98
1.81 1.88
1.74 1.81
1.69 1.74
1.64 1.70
1.60 1.65
1.57 1,61
1.53 1.58
1.50 1.54

2.73 2.91
2.55 2.70
2.49 2.62
2.39 2.52
2.32 2.44
2.27 2.38
2.22 2.32
2.14 2.23
2.06 2.14
1.96 2.02
1.87 1.92
1.80 1.85
1.75 1.79
1.69 1.73
1.65 1.68
1.61 1.64
1.57 1.60

the new variable and also changes the coefficients in the
manner indicated. The substitution (8) is legitimate as
long as Q (-,'. Since we are only interested in the problem
of small values of Q, the substitution (8) is always valid
in our case.

The presence of spin-dependent forces thus affects
the transport equation by changing the unit of length
and increasing the "capture cross section. " The per-
centage of polarization can immediately be determined
if the ratio of the two solutions of (3) and (9) is formed.

b
w(0, p)=

2(~ -~) Po(b) Po(-S)
(10)

In (10) Po denotes the new transcendental function

P,($) discussed before for the value of o =-,'; $ is, of
course, always negative, while b denotes the direction
cosine of the velocity of the incident beam. For most
practical cases b——1; but, as shown in I and II, the
general case of an arbitrary velocity distribution can
be obtained by multiplying (10) with the distribution
function and integrating over b.

III. DISCUSSION OF THE SOLUTION

The effect of depolarization can be studied observing
the returning as well as the transmitted neutrons; the
magnitude of Q and perhaps experimental convenience
will decide the method to be used. We want to illustrate
here the evaluation for some special cases of interest.
The discussion will be carried out under the assumption
that A =28. This means that there is no direct capture
present. A' is, of course, larger than 28.

This restriction is only introduced for illustrative

purposes, since the formulas in II include the general

case, with true capture present.
If observations are made on the returning beam, then

it is convenient to assume that the slab is infinitely

thick; this restriction again is insignificant, since II,
formulas (5.5) and (6.3), are valid also for large but
finite thickness of the slab.

The velocity distribution of the returning beam

ro(0, f) then reads

o =8/A', (12)

The percentage of polarization II/w is now given by

II(0, ~) P.(-g)P.(b)
x(&) =

(o, ~) Po(-~)Po(b)
(13)

It depends, as we see, quite markedly on the direction
cosine of the velocity of the returning beam.

Table I gives the values of P.(P) in the range of
greatest practical interest. The polarization ratio can
be determined with its aid by two simple divisions. We
notice that the percentage of polarization of the re-
turning beam increases monotonously with decreasing
—$. Depolarization is by far strongest for neutrons
which emerge perpendicular to the boundary.

Numerically, one can see that the method of meas-
uring the depolarization of returning neutrons will
require a value of Q which is n.ot too small. Assuming
for the sake of discussion that a depolarization effect of
about 30 percent is required for sufficiently accurate
measurements, then we see from Table I that observa-
tion of neutrons returning almost perpendicularly would
give such ao effect if 2r is about 0.99. This would mean
a depolarization probability Q per collision of approxi-
mately 1/200 or a difference in the scattering amplitudes
of about 20 percent. Smaller differences between the
two scattering amplitudes could then not be measured
with the aid of observations on returning beams.

The expressions for transmitted beams are given in
II (6.4) and (5.6) with the aid of II (5.13), (6.28), and
(4.23). They read as follows:

b 1 1
w(l g)=

2(~+~1) Po(b) Po(k)
2o.be ""'nS(n)

II(f, t) =
go(n)o oA'l'/I—

X ~ (15)(--b)(--e P.(b».(e
The quantities n, S(n), and m are defined by the rela-
tions

( n+1p
o=/ nlog

n —1)
~(n) = (1/2n) t:P'(n)/p'(n) j
~(z) =P.(z)P.(—z)

m= 1.43.

(16)

(17)

(18)

(19)

Similarly, II(0, $) is given by

b
11(0, P) =

(b 5—) P.(—t) P.(b)

The main difference between (10) and (11) is the
appearance of o. in place of the factor ~ and the replace-
ment of I'0 by I' . We repeat the definition of 0 in the
present case
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If a)&1, we have approximately

S(a)= 1—(m/u). (19a)

If the thickness of the slab is about ten mean free

paths (A1=10), then the transmitted current (in the
absence of capture) amounts to about 15 percent of the
incident or 17 percent of the returning current.

It is rather easy to find the values of II(l, $) for
various practically occurring values of o.. A simple
inspection of the structure of (15) shows that one has
it in one's hand by moderately increasing the thickness
to obtain sizeable depolarization eGects even if 0. lies

very close to 2; i.e., Q is very small. It is fortunate that
the decrease of the transmitted current with thickness
is so slow that even for thicknesses which are very
large compared to the mean free path, the transmitted
intensity forms a substantial fraction of the returning
intensity. The experimenter should find no difficulty in

choosing the proper arrangement with the aid of the
formulas here presented.

The paper by Borowitz and Hamermesh' has several

points in common with the present investigation; there
exist, on the other hand, fundamental differences' in the
treatment of the problem, the numerical results ob-

tained, and the interpretation of the solution.
The authors named start with the same transport

equation and equally use our expression for Q.' Since

they do not find themselves in the possession of our

analytic solution of the diGusion problem, they use an
approximate numerical method due to Wick to solve

the problem for the special case where the thickness of
the slab equals ten mean free paths. The determination
of the ratio of polarization is done in the same manner
in both papers.

The data given by Borowitz and Hamermesh as a
result of their numerical calculations of one single case
differ considerably from those obtained by our general

analytic solution as specialized for the condition dis-

cussed by the authors. Since we have at present no

(14) together with the values of Table I shows that the
transmitted intensity is approximately given by

~1 fo 1 r' gh
tw(l ~)d~=

& p 2(m+At) Po(po) & 0 Po($)

1.68
for $0= 1. (20)

1.43+Al

reason to doubt the correctness of our analytic solution,
we are forced to conclude that the numerical method
used is unsatisfactory. To illustrate the differences
occurring, we refer to their value for the transmitted
density of 0.3, while our value (in the absence of any
capture) is only 0.25. Similarly, they give for the trans-
mitted current, which constitutes probably the best
quantity observable, a value of about 8)&10 ', while

our analytical value leads to 15&&10 '. The reflected
current is given by those authors, in the absence of
capture, as 1, while we have a value of 0.85. Similar dif-
ferences exist in the values in the presence of capture.
We may conclude that these numerical diGerences are
suSciently big to aGect very seriously any attempts to
evaluate Q or the ratio of the scattering amplitudes with
the aid of these formulas.

The authors did not make calculations for the use of,
nor did they discuss, the method of observing the
depolarization of returning neutrons; it seems that their
calculations would not indicate any sizeable depolariza-
tion in this case. The authors give, furthermore, a dis-
cussion of the intensity transmitted and the choice of
the thickness most advisable for various values of Q,
which seems to us to be due to a mistake. They mention
in the text on pages 1291 and 1292 as well as in their
Table II that the intensity of the emerging beam in case
of a thickness of the slab of ten mean free paths is about
10 4 of that of the incident beam. Therefore, they advise
the experimenter to choose carefully between a very big
loss in intensity with increased thickness and a larger
depolarization obtained thereby. This statement must
be due to a misunderstanding of the formulas. The
transmitted current for the case discussed is, as we

have shown, not 10 4 of the incident or returning current
but rather 15 percent or, respectively, 17 percent of it.
We have pointed out at the end of the preceding para-
graph that the decrease in the transmitted intensity,
even for large thicknesses, is so slow that, in the case
of very small Q's, thick slabs may be chosen with great
advantage.

W. E. Meyerhof and D. B. Nicodemus, Phys. Rev. 82, 5
(1951), express the opinion (see their footnote 6) that the differ-
ences between our results, as announced previously (see reference
2), and those of Borowitz and Hamermesh are due to a wrong
labeling of their Fig. 3. We are unable to follow this opinion. In
'particular, the terminal value for the density of 0.3, as given in
Fig. 3 of Borowitz and Hamermesh, is conhrmed by their value
given in the text, namely 299&(10 '. Furthermore, as shown in
the text of the present note, there are (even larger) differences
which arise from comparison with the other diagrams of Borowitz
and Hamermesh.


