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A mathematical theory is given for the propagation of electromagnetic waves in electron-ion streams
composed of N discrete beams. The solution, which is fully relativistic, is obtained in vector form by an
extension of Hansen's theory and takes explicit account of the initial and boundary conditions. When
certain restructions are placed upon the transverse boundary conditions the general solution satisfying
arbitrary initial conditions can be expanded in terms of a complete orthogonal set of elementary vector
solutions. For this case the necessary and sufBcient conditions are found for amplification and instability
both in the terminated and the unterminated stream. The correct physical interpretation of the conventional
"Ansatz" solutions is found together with the conditions under which they are valid. One is then able to
distinguish amplified growing waves from reverse waves attenuated in the reverse direction. Finally the
analysis is extended to the continuous velocity distribution. It is shown that the present treatment differs
significantly from Landau's theory for the thermal plasma and the consequences of this are discussed.

i. INTRODUCTION

~HE development of electronic tubes such as the
traveling and space-charge wave amplifiers and

the discovery that sunspots and solar flares can produce
excess noise radiation has led several writers' ' to
extend the magneto-ionic theory of Appleton to the
more general case where the medium contains moving
electron-ion streams. However there is considerable
disagreement over the physical interpretation of these
theories, particularly as to the conditions under which
a medium can amplify a given initial disturbance or
radiate nonthermal energy into free space. Furthermore
some of this work is open to criticism on purely mathe-
matical grounds, especially in those treatments which
assume a continuous velocity distribution in the stream.

It is probable that much of the trouble has arisen
because the mathematical analysis upon which these
theories are usually based contains no explicit reference
to the initial and boundary conditions, a procedure the
dangers of which have been recently emphasized by
Pierce. '

It has not proved possible to carry through, in closed
form, a complete solution for the propagation in an
electron-ion stream which satisfies arbitrary initial and
boundary conditions, but this can be done when certain
restrictions are placed upon the latter. The resulting
solution covers cases of considerable practical impor-
tance, which enable one to form an unambiguous
picture of the physical nature of the propagation in a
moving ionized medium. In particular it enables one to
discriminate between waves that are excited directly
and those that are excited only by reflections, to 6nd
necessary and sufficient conditions under which amplifi-
cation or instability can take place, and to compare the

'V. A. Bailey, Australian J. Sci. Research A.1, 351 (1948);
Phys. Rev. 83, 439 (1951).' E. P. Gross, Phys. Rev. 82, 232 (1951).' D. Bohm and E. P. Gross, Phys. Rev. 75, 1851, 1864 (1949).

4 A. V. Hae8, Proc. Inst. Radio Engrs. 37, 1 (1949).
~ J. Feinstein and H. K. Sen, Phys. Rev. 83, 405 (1951).' J. R. Pierce, Bell System Tech. J. XXX, no. 3, 626 (1951).

energy carried by the radiation field to that carried by
the moving space charge.

The first part of this paper is largely mathematical
and the nature of the solution is discussed only in
general terms. The theory is applied to specihc cases
to establish the physical conditions which can lead to
amplification and instability in nature.

2. SIMPLIFYING ASSUMPTIONS AND INITIAL
CONDITIONS

The theory of propagation in moving ionized media
has been developed along three main lines to apply
respectively to gas discharges, to the ionosphere, and to
electron wave tubes, and the simplifying approximations
employed have naturally depended on which of these
cases is to be studied. In the present paper the analysis
has been restricted as little as possible consistent with
the over-all aim of getting a complete solution under at
least some physically realizable boundary conditions.
However when a choice has to be made it has been
taken with the last two applications in mind rather
than with the case of the gas discharge. In fact the
starting point of this paper is the fundamental article
by Hahn' on electron beams and, as far as possible,
the symbolism has been chosen to coincide with his.
On this standpoint the limiting assumptions are as
follows.

(I) Linearity. We consider the small signal case, where the
square and cross product terms of the time dependent field and
space-charge quantities may be neglected, when the Maxwell-
Lorentz equations become linear.

(2) Rectilinear porn. We assume that the stream is composed of
a system of N superimposed beams of charged particles, both
electrons and ions, moving in rectilinear unaccelerated paths.
Ideally such a Qow can be established as discussed by Hahn. ' In
the text we restrict ourselves to the case where all these paths are
parallel and where the external force system consists simply of an
axial magnetic field. The extension to the cases where the beams
are not all parallel and where the external magnetic field has a
transverse component can only be achieved with a considerable
increase in complexity and in a Cartesian system of coordinates.

' W. C. Hahn, Gen. Elec. Rev. 42, 258 (1939).
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The general case, where the charged particles follow nonrectilinear
paths under arbitrary external fields, appears as yet quite in-
tractable in a relativistic theory.

(3) Uniform pox. We assume that the beams are uniform in
cross section so that the dc velocity and space charge density in
the stream are independent of position. The analysis will therefore
not be applicable to a slipping stream, but the limitation appears
essential if the initial conditions are to appear explicitly in a
solution in closed form.

(4) Collisions. Owing to the discrete nature of the space charge
and the presence of ions and neutral molecules both electron-
electron and electron-ion scattering will take place. In this paper
we follow the usual procedure and treat the stream as if it were a
charged jelly. That is we take e/m equal to its experimental
value while letting e and m tend to zero. The effects of scattering
are then allowed for by introducing a force term v,m, v, into the
into the Lorentz force equation where v, is the collision frequency
of a particle mass m, and velocity v, .

This procedure is taken over from the propagation theory of the
ionosphere; its extention to the general electron-ion stream is of
dubious validity. Thus in a thermal plasma the velocity distri-
bution of the charged particles will presumably be everywhere
Maxwellian, but when nonthermal beams are present scattering
will change the velocity distribution along the beam; since this
is a nonlinear effect it cannot be allowed for by our theory which
will only apply when the scattering frequency v, is small. Another
objection to this procedure is that it cannot allow for the produc-
tion of radiation by free-free transitions the cross sections of
which are proportional to e' so that the total incoherent radiation
is proportional to Xe' or eI which tends to zero on this approxi-
mation. This fact must be borne in mind when considering the
escape of radiation from an electron-ion stream. However despite
these drawbacks we should get a qualitatively accurate approxi-
mation for the effects of scattering on coherent phenomena such
as amplification or instability.

(5) Initiul conditions. We assume that the stream is excited by
an arbitrary initial spatial distribution of disturbance concentrated
between the planes s=o, s=d, and by a time dependent disturb-
ance at the plane z=o which is not necessarily a surface of discon-
tinuity in the medium.

The principal symbols used in this paper are as
follows:

a= (0, 0, 1); a unit vector parallel to the s axis.
Bp = (0, 0, &p); the dc magnetic ffux density.
c; the velocity of light in vacuum.
—e„ the electric charge on particles of the sth beam.
E(x', x', s, t), H(x', x', s, t); the electric and magnetic

field vectors.
Ei(s, t), Ht(s, t)/=1 —3; coefficients in the vector ex-

pansions of E(x', x', s, t), H(x', x', s, t), respectively.
k; the L;transform mate of z.
E,= 1/(1 —ptp '/c')
mp„m„ the rest and relativistic transverse mass of

particles of the sth beam, respectively.
L, M, N; fundamental vectors Vg(x', x'), VP(x', x') Xa,

p(x', x')a, respectively.
N; the number of individual beams of charged particles.
P; the mode parameter; V'P(x' x')+p'P(x' x') =0
r, (s, t); a factor of the space charge density. p, (x', x', s, t)

=r, (s, t) y(x', x').
up, ——(0, 0, ptp, ), v„' the dc and ac velocities of particles

of the sth beam, respectively.
(x', x', s); generalized cylindrical co-ordinates.
6p,

' the dielectric coefficient of free space= 1/(@pc').

pp,
' the magnetic permeability of free space=4m 10

v„collision frequency of particles of sth beam.
pp„p, (x', x', s, t); dc and ac space charge density of

particles of sth beam respectively.
P(x', x'); the scalar quantity from which the vector

solution is derived.
co, the L&-transform mate of t.

e,Bp/m——, ; the cyclotron angular frequency of
particles of sth beam.

Grp = (—e,pp, /pp m )'; the plasma angular frequency of
particles of sth beam.

Qp
' angular frequency of external signal.

L&(f(z, t) }=f'(s, co) =f'; the Laplace transform of

f(z, t) with respect to t
L (f(o t)}=f'(o )=f'(o).
I, (f'(s pp) }=f* '(0 co) =f' ' the Laplace transform of

f'(s, ~) with respect to s.
1-*(f(s,0)}=f'(&, o) =f'(0).

N

VXE= BB/Bt, VX—H= P p, v, +BD/Bt,
s=l

(3.1)
N

V D=gp„ v' 8=0

where the summations are taken over the N electron
velocity classes. Since the electron Bow is in vacuum
we have the further relations:

B=ppH, D= ppE, (3.2)

where pp=4prX10 P and pppp ——1/c'.
Since the charge associated with any one beam is

conserved we have the N conservation equations

Bp,/Bt+V (p, v,) =0, (s=1 1V). (3.3)

Finally each charged particle moves under the
Lorentz force equation which for particles of charge
—e, may be written

(8/Bt+v, +v, V)m, v, = —e, ( +Ev, XB)

(s= 1 . .1V), (3.4)

where m, =mp, (1—sP/c') & is the transverse relativistic
mass, and. v, is the collision frequency appropriate for

3. AN ELEMENTARY SOLUTION

We shall now obtain an elementary solution for the
Maxwell-Lorentz equations in an electron-ion stream
of uniform cross section composed of Ã discrete super-
imposed beams moving, with dc velocities, upi, Qp2
' ' ' NpN and dc charge densities ppl pp2 ' ' ' ppN respec-
tively, under the action of an external axial magnetic
field of Aux density B= (0, 0, Bp). The conditions under
which the general solution can be represented as a
linear sum over a set of orthogonal elementary solutions
are discussed below.

The electromagnetic fields satisfy the Maxwell equa-
tions which in MES units may be written
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P v Pp up a+P1supsa+Ppsvlay (3.5)

m, v, =m p( vp+ v q, ) (1—up, '/c') '*

—mp, (1—u '/c') '*(u '/c')(vg a)a, (3.6)

where a=(0, 0, 1) is a unit vector parallel to the
direction of Row. Zero-order quantities are denoted by
a zero subscript and first-order quantities by a subscript
1 which will in future be omitted.

The time dependent part of Eqs. (3.1), (3.3), and
(3.4) may therefore be written

VX E= upBH/—Bt,

VXH=Q(p up a+ pp, v,)+ppBE/Bt ~ (3.7)
v E=QP,/.„v H=o

particles of the sth beam. In what follows we shall feel
free to omit the subscript s whenever this may be done
without ambiguity.

In the small signal theory we express the field and
charge variables as the sum of a time independent and
a time dependent quantity, and neglect second-order
time dependent terms. In the present case

vp = (0, 0, up ), Ep= (0, 0, 0), Bp= (0, 0, &p),

where the s-axis is taken parallel to the direction of How.

Hence, to the first order, we may write

of the attraction of this method. Furthermore the
scalar stream function, defined by

only exists when

Vf, = (m, v, —e,A), (3.10)

v.X [VX (m, v, —e,A) ]=0, (3.12)

suGers from similar limitations.
None of these alternatives will be employed here;

instead we shall employ a method similar to that
developed by Hansen" in the theory of antenna radia-
tion in which a set of independent vector solutions are
derived from a scalar quantity.

In a source free medium the field vectors all satisfy
the dissipative wave equation

VX (m, v, —e,A) =0, (3.11)

where A is the vector potential. Equation (3.11) is not
a consequence of the Maxwell-Lorentz equations but an
additional restriction imposed upon them which is not
satisfied when, as in the present case, the charged
particles have a dc component of velocity in the
direction of the external magnetic field. The vector
stream function of Gabor, ' which may be used under
the more general conditions when

BP,/ctt+Vp, up, a+pp, Vv. =o (s=1 ~ ~ 1V) (3.8) v(v C) —vxvxCyh'C=o, (3.13)

(8/Bt+ v,+up, a V) [m,v,+m, (up//c')

X(1—up//c') '(v, a)a]
= —e,[E+v.XBpa+ @pup, a XH] (s= 1 N). (3.9)

These are the equations to be solved subject to the
initial conditions stated above. The conventional pro-
cedure used by Bailey' and other writers, ' ' is to look
for plane wave solutions where all quantities have a
time-spatial dependence of the form expi(h x+ ppt), and
thus obtain a characteristic equation relating k and ~.
Despite its simplicity this method has many drawbacks.
In particular it breaks down when the electron velocity
distribution is continuous and has to be modiied in
electron tube theory where the cross section of the
stream is normally circular-cylindrical rather than
rectangular. The principal objection however arises
from the difFiculty of interpreting the characteristic
equation without knowing the actual boundary and
initial conditions of which this "Ansatz" procedure
takes no explicit account.

A possible line of attack is to make use of the stream
function introduced by Bunemann into the theory of
the magnetron. In principle, with this method, one
does not have to restrict oneself to the linear approxi-
mation, but the diGerential equations determining the
stream function are normally too complex to be solved
except for the small signal theory. This removes much

' O. Bunemann, C.V.D. Report, Mag. 37 (1,944) (unpublished);
also L. R. Walker in Microwave Magnetrons, MIT Radiation
Laboratory series No. 6 (McGraw-Hill Book Company, Inc.,
New York, 1948).

where h'=op~' —ig.p~, and where all quantities are
assumed to vary with time as exp( —icut).

If f is a solution of the scalar wave equation,

V'f+ h' P=0 (3.14)

and if a is a constant unit vector, then three inde-
pendent vector solutions of Eq. (3.13) are

L'=Vy(x'x', «), M'=Vy(x', x, «)Xa,
N'= 1/hvX M',

where (x', x', «) are generalized cylindrical coordinates.
Hansen showed that a complete general solution can

be constructed of elementary solutions of the type of
Eq. (3.15) when P(x', x', «) is any function satisfying
Eq. (3.14) and the boundary conditions.

In charge free space such a solution can also be
carried through in spherical coordinates, though not in
more complex coordinate systems, but this is not
possible when moving charge is present.

For our present purposes it is more convenient to
select as independent vectors the time independent
orthogonal triad

L= Vy(x~, x'), M=vy(x' x') Xa, X=y(x' x)a, (3.16)

where a is the unit constant vector (0, 0, 1) and 4&(x', x')
is a scalar function.

By analogy with the charge free case, we are led to

' D. Gabor, Proc. Inst. Radio Engrs. 33, 792 (1945).IW. W. Hansen, Phys. Rev. 47, 139 (1935).
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look for a solution of the field variables of the form

E=E,(s, t)L+Ep(z, t)M+Ep(s, t)N,
and

operations clearly leave the form of F invariant, while
the scalar product of a or V with F is a scalar linearly
proportional to P(x', x'). Thus

H=H, (s, t) L+Hp(z, t)M+Hp(s, t) N. (3.18)
while

Similarly for the velocity variables we shall look for
a solution

a F=fy, (3.26)

V F=[ p'f1—+Bf0/Bz]y. (3.27)

we get
FXa= —fpL+ f1M, (3.23)

which leaves the general form of F invariant. However,

vx F= 8f,/BsL+ (f, 8f,/Bz)M f,v—pea. (3.24)—

If we apply this last result to the Maxwell equation,

VX E= tspBH/Bt, —

we see that Eqs. (3.18) and (3.19) are only self-con-
sistent for all (x', x') if P and V'P are linearly related,
that is if P satisfies the two-dimensional wave equation
(3.20), where p' is a scalar quantity independent of
(x', x', s, t)

Accordingly we get that

V XF= 8f0/BzL+ (fp 8f1/Bs) M+PpfpN. —(3.2&)

The scalar operations in Eqs. (3.7) to (3.9) on the
other hand either involve taking the scalar product of a
field or space charge vector with V' or with a, or oper-
ating on a vector with 8/Bt or a V—= 8/Bs The last tw. o

v, = v1,(z, t)L+v„(s, t)M+vp, (z, t) N

(s= 1 1V), (3.19)

and shall show that Eqs. (3.17)—(3.19) are consistent
with the Maxwell-Lorentz equations (3.7)—(3.9) provided
that p(x', x') satisfies a two-dimensional wave equation
of the form

V'y(x' x')+P'y( 'xx') =0. (3.20)

E1(s, t), etc , sh. ould not be confused with

(E,~, E,~, E,), the components of E(x', x', s, t), which
are given by

E,i(x', x', s, t) =E1(s, t)[By/Bx']/h1
+Ep(z, t) [By/Bx']/hp,

E. (*1, xo. z. t) =E,(., t) [By/8 ]x/h, ' (3.21)
—Ep(z, t) [By/Bx']/h1,

E.(x', x', s, t) =E,(z, t)y.

The fundamental vectors L, M, N form a mutually
orthogonal triad so that a linear vector equation in-
volving those three vectors alone will be everywhere
satisfied if and only if the coefficient of these vectors
on each side of the equation be everywhere equal.

Now if we inspect Eqs. (3.7) to (3.9) which are to be
solved we see that the vector operations are of two
kinds; namely taking the vector product of a field or
charge variable with either V' or a. If the latter operator
be applied to a vector of the form

F= f1(s, t) L+fp(z, t)M+ fp(s, t) N, (3.22)

a(z, t)y=o, (3.29)

when E, H, and v, are all of the form of Eq. (3.22) and

p satis6es Eq. (3.20).
If these equations are everywhere to be consistent

we must have

~(z, t) =p(z, t) =q(z, t) = a(z, t) =O, (3.30)

except in the trivial case when g(x', x') =—0.
On substituting for E, H, v, from Eqs. (3.17)-(3.19)

in the continuity equations (3.8), we get

(8/Bt+ up. B/Bz) p. = pp.[ p—'v, .+8—.3 /Bz]If'

(s= 1 N), (3.31)

using Eq. (3.27), so that we may write

p, (x', x', z, t) = r, (s, t)P(x', x') (s=1 X) (3.32)

where

(8/Bt+up 8/Bs)r = —pp [—p'v„+ Bv„/Bs]
(s=1 1V). (3.33)

From the scalar Maxwell equations of (3.7) we get

P'E,+BE,/B—s= gr, /00, (3.34)
—p'H1+ BH0/Bz =0. (3.35)

From the vector Maxwell equations of (3.7) we get

BH2/Bz Q ppgv1g+ 008E1/Bt&

Hp BH1/Bz =p pp&vp&+ pp—BE0/Bl, (3.36)
P'Hp=g(up, r,+po.vp, )+008E0/Bt, .

and
uoBH1/Bt = BE0/Bs;—
tspBHp/Bt= (Ep —BE1/Bz); i

u0BH0/Bt = p Ep.

Finally, from the Lorentz force, Eq. (3.9), we get

(8/Bt+ v.+up, 8/Bz) m.v1,

e [El+u0 t10H2]+m 00H v2

(8/Bt+ Va+upgB/Bz)mavpg

= —e,[E0—up, t10H1]—m, M , H„v1

(8/Bt+ v,+up, B/Bz)m, E,vp. —e.E0, ——

(3.37)

(3.38)

where
00Sr, =e.B0/m, (3.39)

From this it follows that the vector equations of
Eqs. (3.7) to (3.9) reduce to equations of the general
form

n(z, t)L+P(z, t)M+y(z, t)N=O, (3.28)

while the scalar equations are all of the form
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I f(z, t) exp( i&et)dt-,
p

L '{f'(z ~)) = f(z, t)
(3.40)

and

1 ~—illf
2n'J —ao —ii y

exp(ipot) f'(z, co)d&o,

L,{f'(z (o)) = f* '(k, po)

f'(z, po) exp( ikz)d—z,
p

L,—'{f' '(k, &o) ) = f'(z oi)
(3.41)

—V2

f*'(k, pp) exp(ikz)dk
2' oo &f2

y~, y2 are positive real numbers such that all the
singularities of f (z, &o) lie above the line Im(po)+pi ——0
and all the singularities of f* '(k, co) lie above the line

Im(k)+go=0 in the complex &o and k-planes, respec-
tively. "

There is no agreed nomenclature for double Laplace

is the cyclotron angular frequency associated with
particles of the sth beam, and where E,= (1—up//e') '.

These equations are just sufficient to determine the
set of unknown quantities in terms of the initial condi-
tions. It follows that a particular solution of Eqs. (3.7)
to (3.9) can be found in the form of Eqs. (3.17) to (3.19).

To this stage the solution is valid even when the dc
quantities are arbitrary functions of s. We now assume
that these quantities are all independent of position,
and take the Laplace transforms of Eqs. (3.33) to
(3.38) first with respect to t and then with respect to z,
where

L{f(z,t))=f'(z, )

or Fourier transforms of the Maxwell equations. The
present choice has the virtue of being self-explanatory
and seems as good a compromise as any. We shall
normally write f' '(k, oi) as f" while f'(0, oi), which
defines conditions over the initial surface a=0, will be
written f'(0). Similarly f*(k, 0) will be written f'(0)
whenever this may be done without ambiguity.

Applying these transformations to Kq. (3.33) we

get, for r, ' ', the equation

i (pi+ up, k)r,"= r,*(0)+up, r, '(0)
—po L

—p'zl "+i»8.*'—pp. '(0)j (3 42)

From Eq. (3.37) we get for H' ' the equations

ioitipHi*'= —pkEp*'+ poHi*(0)+Ep'(0),
zoivpHp*' = [Eo ' tkEi ' +El (0)j

+ H(0)' ""'
ipot oH, * '= —p'Ep*'+tioHp*(0).

From the transform of Eq. (3.35), Hp*(0) is given in
terms of Hi*(0) by the equation

ikHp*(0) =p'Hi'(0)+Ho(0, 0), (3.44)

while, from Eq. (3.34), Eo*(0) is given in terms of
Ei*(0) and r,*(0) by the equation

—p'Ei*(0)+pkEo*(0) —Eo(0, 0)=Zr, *(0)/po. (3 43)

Taking transforms of Eq. (3.38) and eliminating the
magnetic field components by Eq. (3.43) we get three
equations for v&,

' ' which may be solved in terms of
E&' ' and the initial conditions. Finally, taking trans-
forms of Eq. (3.36) and eliminating r,*', Hi*', and
v&,

' ', we get three linear nonhomogeneous equations
for E&"which, in matrix notation, may be written

S(k, po)5(k, co) =K*(k, oi)+St(k, oi), (3.46)

where S(k, po) is the row matrix (E,* ', E&* ', Eo* ').

$(k, oi) is the 3&&3 matrix with element ui (k, a&)

defined by

M 1 . Mp MbMbv
k' ——+—Q

C C Mbv MH

1 ZMp MbMH

C Mbv MH

5(k, (o) =
NpMp Mb

ik+
Mbv MH—

1 ZMp MbMH

C Mbv MH

pMp'M bv

p' ik+ —Q
C2 M bv2 MH2

M 1 Mp MbMb„
kp+ pp +

C2 C2 Mb
2 MH2

p uppolicop

C2 Mb
2 MH2

1 QpMHMp

2
Mb

2 MH2

MpM—1—P
C - +MbMbv-

1 +p MbvMp
p' 1+—,2—

Mb Mbv MH

(3.47)

where
~p= po+u„k and po p, op+up. k —— „ii(3.4—8)

» It will be noted that these transforms are rotated through an
angle m/2 in the complex k and co-planes from the conventional
definitions for the Laplace transforms, so that a direct comparison
may be made between the present analysis and the "Ansatz"
procedure.

and Po~=p( e,po,/oprrt, )'*—is the plasma angular fre-
quency associated with the sth beam.

It may be noted that Mp Mb, Mb„+, and up all
depend on s and therefore must be included under the
summation sign.

@*(k,&o) is the column matrix with elements Ci*(k, or)
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proportional to the values of the field and space charge variables at a=0, defined by

Qpglp

Ci (kp &) bklEi (0) tootboH2 (0) 2 ~1LE (0)] bootbopo»~1Lvs (0)]
2

NpQ)p

C2 (k, oo) = —&kEo'(0)+&oitboHi'(0) Z ~oPE'(0)7 &o—otbopo»~2[vI (0)]
C2

(3.49)

Cp*(k, &o) =P'Ei'(0)+ Q
NpCOPp ( CO i P Bp (ZCOp

Nor, '(0)+ppvb, '(0)
( 1+ )

—
(

AiLE'(0)]+~tbopohiLv, '(0)] [
My Opb„) Nb ( C

and Kt(k, o~) is the column matrix with elements Cbt(k, oo), proportional to the values of the field and space
charge variables at t=0, defined by

QpQ) p

Cit(k, oo)= Ei—'(0)+ik tboH2 (0)+tip+ 62[H*(0)7+boopodiLv& (0)]
g2 C2

()
Ep(0, 0)—P'p pH o*(0)

co&p c k

COP (a' r,*(0) pp, vp, * 0
Cp~(k, ~)= — E,*(0)—»g-

c2k Goy k

i oi pp p(p'+ k') mp(up' iHp(0, 0)
Cot(k, co) =—Eo*(0)— Hi*(0) —tip' hipH'(0)] —ioopphot v, *(0)7—

C2 C2 k
(3.50)

f oop Rdpp
+P'»I —,~pLH*(0)]— ~ot v.*(0)]

I

~

&1'.

where

~1+] (boibP1+ooHF2)/(pohcy piH ))
~oP'] = ( ~+pi+—t~ Fb)/o(~b, ' ~H'),o

'o (3.51)

and F is any one of E&*(0), H&'(0), etc.
By Cramer's rule the solution of Eq. (3.46) may be

written

Et*'(k (v)= Q t C *(k oo)
m=1

+C t(k, co)]A i(k, po)/det5(k, oo), (3.52)

where A~i(k, ~) is the co-factor of a~i(k, or) in the
matrix S(k, co) defined by Eq. (3.47).

We have thus obtained an elementary solution of the
Maxwell-Lorentz equations of the form of Eqs. (3.17)
to (3.19), where

(1 y2 00—g +2

Ei(s, t)=
~

—
~

exp(ioot)d~ exp(iks)dk
&2or 3 —00

3 A &(k, oo)

X P LC *(k, )+C (k, )],(3.53)
detS(k, oo)

together with similar expressions for Ht(s, t), vi, (s, t)
and r, (s, t), which is valid inside the electron-ion stream
provided that tt(x', x') satisfies the two-dimensional
wave equation (3.20).

It still remains to find the transverse boundary
conditions satisfied by the elementary solution. For the

stream of infinite cross section the transverse boundary
conditions require only that the solution be well behaved
at infinity. We show below that this is so if we restrict
our choice of p, in Eq. (3.17), to the real numbers
—~ (p( oo, when the general solution satisfying
arbitrary initial conditions can be expressed in terms of
a continuous orthogonal set of elementary solutions.

For the stream of finite cross section the transverse
boundary conditions are only satisfied by a single
elementary solution under the limited conditions dis-
cussed in Sec. 4.

4. THE GENERAL SOLUTION FOR THE STREAM OF
INFINITE CROSS SECTION

The elementary solution of Eq. (3.53) does not
satisfy arbitrary initial conditions. On the contrary it
was assumed that the initial conditions depended upon
the transverse coordinates in a manner determined
uniquely by the particular choice of the scalar P(x', x')
from which the solution was derived. Specifically we
assumed that the initial spatial distribution of velocity
modulation on the sth beam at time t=0 could be
written in the form

v, (x', x', s, 0)=vi. (s, 0)VQ —vo, (s, 0)a X&Q

+vo, (s, 0)Pa, (4.1)

where 4 satisfies Eq. (3.20) and a=(0, 0, 1) is a unit
axial vector, together with similar assumptions as to
the initial values of the transverse components of the
electromagnetic field and the velocity and density
modulations at the surface a=0.
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It follows that the general solution can only be
expressed by an integral representation over the set of
elementary solutions if an arbitrary vector field can be
expressed as an integral over a set of terms of the
general form of Eq. (4.1).

The proof that this is possible involves the classical
theory of orthogonal integral representation which is
amply covered in the literature. The only new feature
of the present case arises because of the vector nature
of the expansion. To illustrate this let us consider the
solution in the special case of a Cartesian coordinate
system.

In Cartesian coordinates (x& y, s, t) a typical solution
of Eq. (3.20) is

solution of Eq. (4.1) in the form

y
2 —i &l+aa p —i'&2+0&

Ei(m n s t)=
I

—
I

" daa II dk

XEi* '(m& n, k, o&) exp[i(ks+o&t)]. (4.7)

By the superposition principle the general solution
may then be expressed by the fourfold integral

1 ) 4 goo o0 —sV1+oo

E(x' x', s, t)=
I

—
l

dm II dn II dk
(2&r) —N& &—aa &-;a,—m

—'t +2+00

X I dk exp[i(ks+o&t)5{E&*'(m, n, k, o&)V

y(x, y) =exp[i(mx+ny)7, (4.2)
~ —sp2—ao

where m'+n'=p', when the general solution can be
given by an integral representation over the set of

P(x, y) obtained by letting m, n take all real values in

the range —~ &m&~, —~ &e&~ as long as an

arbitrary vector field can be expressed in the form

1 l 2 ca &0

F(x, y, s, t) = l
—

l
dm, I dn{fr(m, n, s, t)V

—fi(m, n, s, t)a XV+ f,(m, n, s, t)a}

Xexp[i(mx+ny)]. (4.3)

To prove that this is possible we first obtain a
Fourier integral expansion of the three scalars
F a, (V aB/Bs—) F and a [VXF], and then apply the
Fourier integral theorem to show that

00 ~ 00

f,(m, n, s, t)= I dx dy(a F)
J „

Xexp[ —i(mx+ny)], (4.4)

~00
~

00

f, (m, n, s, t)= dx dy(V —a&)/Bs) F
(m'+n') &

Xexp[—i(mx+ny)], (4.S)

00 ~00

fi(m, n, s, t)= dx a [VXF]
(m'+n') & „

5. THE STREAM OF FINITE CROSS SECTION

For the stream of finite cross section the transverse
boundary conditions are satisfied by a single elementary
solution only in the very restricted case when

(i) The boundaries of the stream coincide with one or
other of the orthogonal cylindrical coordinate
surfaces.

(ii) The tangential components of the electric vector
are identically zero at the boundary of the stream.

(iii) The electromagnetic fields decompose into inde-
pendent TE and III modes for which E~(s, t) —=0—=Ei(s, t) and Ei(s, t)=—0, respectively. As in the
single-beam theory of Hahn, ' this is only possible
wherl Go& 0) or 6)& ~ or (op =0.

It is implicit in Hahn's analysis' that these conditions
are necessary even for the simple case of the single
beam stream excited in the symmetrical mode. To show
that they are sufBcient for the general case let us
assume that the boundary of the stream coincides with
the coordinate surfaces

S 8]) CQ j g —E]) (S.i)

—E,* '(m, n, k, o&)a XV+E; '(m, n, k, aa)a}

Xexp[i(mx+ny)]. (4.8)

That the set of elementary solution is orthogonal
follows immediately from the Fourier integral theory.
A similar analysis can be carried through in any other
orthogonal cylindrical coordinate system.

and that &t&(x', x') is separable in (x', x') so that we may
Xexp[—i(mx+ny)], (4.6) write

provided that F and its first derivatives belong to
gi( —ao ao ).

Let us suppose that an expansion of the form of Eq.
(4.1) has been carried through for all the given initial
vector fields v, (x', x', 0, t), E(x', x', s, 0), etc In each.
expansion we then select the component appropriate to
a particular choice of m, e and obtain the elementary

y(x', x') =X(x') F(x'). (S 2)

Eon=0 (S 3)

where n is a unit vector normal to the boundary
surfaces of Eq. (S.1). From Eq. (3.21) we have on

When condition (ii) is satisfied the transverse
boundary condition may be written
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substituting in Eq. (5.3), that

E&(s, t)X(a)F(x') =0 a=ai, a&, bi&x'&boy

E&(s, t)X(x')P(b) =0 ai&x'&ap, b= bi, b2)

together with

(5.4)

(n) [cjX/Bx'j, ,=[BY/cjx'],* p=o;
a aiy as~ b biy b2

and
Ei(s, t) =—0—=Ep(s, t),

which is possible if and only if condition (iii) is satisfied.
In this case the boundary conditions define two

independent sets of orthogonal eigenfunctions in terms
of which the general TE and the general TM solution
can be expanded, respectively.

In the special case where the boundary surfaces
reduce to a pair of coordinate surfaces x'=a~, a2, and
when P(x', x') is independent of x' a certain simplifica-
tion results when conditions (i) and (iii) are met as
then general transverse boundary conditions can be
satisfied independently by either the TE or the TM
modes.

Even in this case, however, the transverse boundary
conditions cannot in general be satisfied by a single
elementary solution. The only exceptions occur when
the moving stream is replaced by a stationary plasma
or when co&,—— and only the TE waves are excited.
The solution is then electively the same as that for a
dielectric filled wave guide which has been extensively
analyzed in the literature. "

When the limiting conditions (i)—(iii) are not satisfied
the general solution cannot be represented as an
orthogonal sum over a set of the elementary solutions,
and the initial conditions cannot be included explicitly
in the solution as developed here. Essentially this is
because we have taken too simple a form for the
elementary solutions. However elementary solutions of
a form complex enough to satisfy arbitrary transverse
boundary conditions have not yet been found. It may
be that complete orthogonal sets of such solutions do

'~ J. A. Stratton, E/ectromugeefzc Theory (McGraw-Hill Book
Company, Inc., New York, 1941).

Ei(s, t) I'(b) (BX/Bx')/hi

Ep(s, —t) (X(x')/h2) [8I'/Bx']. ~=p
——0, (5.5)

b=b~, b2 and a~&a'&a~,

Ei(s, t) (X(a)/h2) (BF/Bx')
+E2(s, t) (V(x')'/h, )[BX/Bx'j,~ .=0, (5.6)

a= ag, ag and bg&x'&b2.

If these conditions are to be satisfied for all 0&s&d
and all t) 0 we must in general have either

(i) X(a)=F(b)=0) a=ai, ap, b=bi, bp
'

(5.6)
E,(s, t)=—0,

or

1 w

P(s, 0) =— f(kp) exp(ikps)dkp
2X oo

(6.1)

Alternatively we can assume that the initial dis-
turbance is concentrated at a single point in the medium
when formally it may be expressed by the Dirac
8-function. This procedure is also quite general since
an arbitrary initial disturbance may be expressed by

"R. Q. Twiss, Services Electronics Research Lab. Tech. J. 1
(1951)."L.Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).

not exist and it is certainly open to question as to
whether they can be derived from a single scalar
quantity.

At present our only resource is to fall back upon an
"Ansatz" and develop the method given by Hahn' in a
form appropriate to the vector solution of this paper.
In this procedure one represents the general solution as
the sum over an infinite set of partial waves the propa-
gation constants of which are determined by the angular
frequency co. The amplitudes of these waves can then
be found in terms of the initial and terminal boundary
conditions by matching across the terminal surfaces of
discontinuity at a=0 and 2'=d. Unfortunately the
transverse distribution functions associated with the
allowable propagation modes in the stream form a
nonorthogonal and indeed overcomplete set. One there-
therefore has to introduce an auxiliary set of orthogonal
functions which do form a complete set in the region
over which the matching has to be carried out. Both
the initial conditions and the solution in the stream
have then to be expanded in terms of this auxiliary set,
thus giving an infinite sequence of infinite equations to
determine the amplitudes of the various partial waves,
the exact solutions of which involve the ratio of two
infinite determinants.

This procedure is straightforward and can, in princi-
ple, be used to yield an approximation of arbitrarily
high order as we have shown elsewhere, " but even in
the simplest cases the algebra is very heavy and the
solution too complicated to throw light on the physical
nature of the propagation. Accordingly it will not be
considered further here. For the rest of this paper we
shall confine attention to the elementary solution of
Kq. (3.53) and assume that the transverse boundary
conditions can be satisfied for suitable real values of p.

6. THE SOLUTION UNDER PARTICULAR
INITIAL CONDITIONS

In earlier treatments of the unbounded plasma it has
been customary to assume an initial distribution of
disturbance which depends upon s as exp(ikps), where
ko is an arbitrary real number.

As pointed out by Landau" this choice involves no
loss of generality in a small signal theory since any
initial disturbance that is physically realizable can be
expanded as a Fourier integral of the form
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the integral equation

(6. ) Et'(s, co) = P LC "'(ko, co)A t(ko, co)/det2I(ko, co)]
m 1

Both these choices have advantages which can be
combined by assuming that

Et(s, 0)=Et(ko) exp(ikos)+Et(so) ct(&—&o), (6.3)

together with similar expressions for the other field and
space charge variables. In this case the Laplace-Fourier
transform of Et(s, 0) with respect to s is given by

Et*(k, 0)=Et*(0)=Et(ko)/i(k —ko)

+Et(so) exp( ik—so) (6. .4)

Substituting from Kq. (6.4) in Kq. (3.52), we have
that

Et*'(k, co) = Q LC *(k, co)+C„*'(k,co) exp( —ikso)
m=1

+C "(k, co)/i(k ko)]A—„t(k, co)/detS(k, co) (6.5)

where C *'(k, co), C "o(k, co) are given by Kq. (3.50)
with Et'(0) replaced by Et(so) and Et(ko), respectively,
and where C *(k, co) depends only upon the time-
dependent fields at a=0.

Now Et*'(k, co) as given by Kq. (6.5) is a mero-
morphic function of k which is O(k ') as kazoo along
the line Im(k)+y& ——0, while it can be shown by direct
expansion of Kq. (3.47) that all the poles of Et* '(k, co)

except that at k—k0=0 occur at the zeros of the equa-
tion

N

II L(coo; '—colr, s')(coo~, .colr, .)]det5(k, co) =0. (6.6)
e=l

A rational equation for k of the (41V+4) th order. "
If we had used an "Ansatz, "and assumed that all ac

quantities were proportional to expLi(ks+cot)] one
would have obtained Kq. (6.6) as the characteristic
equation relating k, co though further discussion would
now be needed to determine whether the zeros of the
first two factors ever gave nontrivial roots or whether
all the solutions could be derived from the zeros of the
characteristic determinant,

det8(k, co) =0. (6.7)

This point is clearly particularly relevant for the
continuous velocity distribution when N—&~, and we
show below that Kq. (6.7) does not yield all the solutions
in this case.

If k„(co) be any root of Kq. (6.6), then Et'(s, co),
defined by

~—'om

Et'(&, co) =— exp(iks)Et' '(k, co)dk, (6.8)
2T 00 &72

may be expressed as a sum of partial waves by the
'~ Using Eqs. (3.44) and (3.45) it can be shown that there is no

pole at k=0.

3 4N+4

Xexp(ikoz)+i+ P ct. t(k co)LC„*(k„,co)
m=1 n 1

+C *'(k„, co) exp( —ik„so) U(s so)

+C oo(k„, co)/i(k„—ko)] exp(ik„s), (6.9)

where U(s) is the Heaviside unit step function, and
where cc t(k, co) is the residue of A t(k, cd)/det5(k, co)

at the pole k=k„.
This result is derived on the assumption that all the

roots of the characteristic equation are distinct, which
will be the case except at a finite number of points in
the complex ~ plane. As co tends to the value at which
k, (co) =k, (co), say, the terms proportional to exp(ik„s)
and exp(ik, s) tend to infinity. However their sum
remains finite and tends uniformly to a limit propor-
tional to

sin(k„—k,)s
exp(ik„s) Lim s exp(ik„s). (6.10)

k„—k,

Therefore Et'(s, co) may be expressed by Kq. (6.9)
even when some of the k (co) are equal as long as the
infinite terms are grouped so that their sum is finite.
This will always be possible unless Et'(s, co) has a
singularity at a multiple root in the co-plane. In this
case however the point lies by definition above the line
Im(co)+go=0 along which Et'(s, co) is to be integrated

Instead of discussing the solution in the general case
we shall consider separately the three special cases
where the medium is excited (i) by an external signal
incident on s=0 at t=0, (ii) by an initial disturbance
concentrated at the point s=so, (iii) by an initial
sinusoidal distribution of disturbance. Between them
these cover most of the cases of physical interest. The
physical situations to which they apply have been
discussed by Feinstein and Sen. '

The Externally Excited Medium

In this case where we take C "=—C ~0—=0, the solution
of Kq. (6.9) is not expressed entirely in terms of known
quantities since C *(k„,co) depends upon E,'(0), H, '(0)
(s=1, 2), which are determined by the boundary con-
ditions at s=0, s=d, on the transverse components of
the electromagnetic field. These conditions yield four
independent linear nonhomogeneous equations relating
E,'(0), P, t(0) to the external fields and the initial
density and velocity modulations on the stream which
are just sufhcient to determine the former quantities
uniquely.

In the general case, the elimination of these unknown
quantities is very cumbersome, and not essentially
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t)s Lim (—k„/co).

Furthermore the expressions for E, '(0), H, '(0) in-
volving the terminal boundary conditions can be
expanded as a sum of partial waves which can be
interpreted as arising from successive reflections at the
terminal boundaries. If E,'(0), H, '(0) have any poles in
the complex cv-plane below the real axis, instability will

result due to the presence of reflected waves.
When the stream consists in part of reverse beams of

charged particles, the solution for the terminated
stream becomes prohibitively complicated. The density
and velocity modulations on the reverse beams at s=0
can no longer be given a priori but depend on the
manner in which these beams enter the interaction
space. However when the terminal surface at s=d is
infinitely remote, things become much simpler since,
as is proved below, the space charge waves associated
with the reverse beams can only be excited by reflection.
Accordingly, the density and velocity modulations on
these reverse beams at a=0 can be determined immedi-
ately from the requirement that the amplitudes of the
reverse space charge waves, for which

Lim (k„/co)) 0,
4)~00—$+l

(6.11)

be identically zero.
Even when d—+~, it is not possible to evaluate

' R. Q. Toss, Phys. Rev. 84s 448 (1951).

diferent from that given in an earlier paper, "referred
to hereafter as I, for the special case of pure transverse
propagation. The principal conclusions will therefore
be stated without the mathematical proofs which are
straightforward extensions of those in I.

To begin with, let us assume that all the beams
composing the stream are moving in the positive direc-
tion, and let us consider the contribution to the solution
at (s, t) from a partial wave with propagation constant
k„(co). As shown in I, this depends upon the asymptotic
nature of k, (co) as co~~ —imp.

From Eq. (3.47) it can be shown that two of the
roots of Eq. (6.6) +co/c as u&

—&" and therefore are to
be associated with the reverse field waves. As in I it
can be shown that these waves can only be excited by
reflection, and do not contribute to the solution at s
until a time t) (2d —s)/c.

Two other roots such that k~ —co/c as co~" corre-
spond to the forward field waves. The remaining space
charge waves have propagation constants for which

k (—(o/u„)(1+p„) r=1 X,

where e„ is a small quantity —&0 as cu—+~ which can
take one of four diferent values for given r.

It can be shown as in I, that a space charge or
forward field wave will not contribute to the disturbance
at a point s until a time

explicitly the transient solution,

1 oo—ill
E,(s, t)=

2Ã ——ill
exp(i~t)E~'(s, o&)d", (6.12)

where M is chosen to exclude all the partial waves for
which the inequality of Eq. (6.11) is satisfied. However,
the condition that the transient part of the solution
decays with time must be established by a separate
investigation. This steady-state solution is the same as
that obtained by an "Ansatz" in which the character-
istic equation is solved for k with co= Op.

One important result of this discussion is to settle the
ambiguity between amplified growing waves and grow-
ing waves attenuated in the negative direction, since
the latter satisfy the inequality (6.11).

It is usually a simple matter to identify the reverse
field waves, except perhaps in the neighborhood of the
cyclotron frequency, but more care is needed to dis-
criminate between the forward and reverse space charge
waves.

The Medium Excited at a Single Internal Point

In this case C "'(k, ~) =0, but C *(k„,a&) must be
found in terms of E~(sp), etc. , from the terminal bound-
ary conditions at s= 0 and s= d.

In a frame of reference in which all the beams in the
stream are moving in the positive direction one can
extend the analysis of I to show that the reverse field
waves do not exist in the region s&so until a time
t) (d—s)/c, while in the region s&sp they provide the
only terms that contribute to the disturbance as long
as t&s/c. As in the case of the externally excited
medium, the space charge waves can be grouped in sets
of four such that the front edge of their contribution to
the disturbance propagates at the velocity N„of the
associated beam. If we now transform to a new frame
of reference in which some of the beams are moving in
the reverse direction, it follows that none of the space
charge waves associated with these beams contribute
to the disturbance in the region s) so in the new frame.
More generally we conclude that no partial wave can
be excited directly in the region s&so by an internal
disturbance originally localized in the region s(sp OI

except in the very simplest cases. The difficulties arise
largely because the k„(o&), and therefore E&'(s, &o), are
multivalued functions of + which cannot in general be
found explicitly, since this would involve the algebraic
solution of an equation of the (4K+4) th degree.

It may be however that the only contribution to
E&(s, t) which does not decay with time is that propor-
tional to exp(iQpt), where Qp is the angular frequency
of the external signal. In this case we have the steady-
state solution

4N+4

E'(s, t)=i P n t(k~, Qp)C *(k„Qp) exp[i(k„s+Qpt)],
n=M
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by an external disturbance incident at z=zo, if the
associated propagation constant obeys the inequality
(6.11).

For the infinite unterminated medium it can be
shown that E~'(s, pp) is given by choosing C„*(k„,co)

so that

C„*(k„,m)+C„*'(k„,co) exp(ik sp) =0 (6.13)

for all k (pp) for which the inequality (6.11) holds good,
and

C *(k, pp)=0

for all other k„(pp). These 4K+4 equations are just suffi-

cient to determine the 4K+4 unknowns in C *(kp, &o).

The Medium Excited Sinusoidally

In this case it can be shown, along the lines employed
in I, that the only term of Et'(s, &o) that contributes to
Et(s, t) for t&s/c and t&(d —s)/c is that proportional
to exp(ikps), so that

Et'(s, ra) = Z (Ciao'(ko, ~)A~t(kp, ar)/detS(ko, &o)j
m~1

&&exp(ikps) (6.14)

for t &s/c and t & (d—s)/c. For the infinite unterminated
medium where s=d —s= pp, it follows from Eq. (6.9)
that

C *(k„,co)+C '(k„, pp)/i(k„—kp) =0 (v=1 4&+4).

Since Et'(s, a&) is a rational function of &o, 0(~ ') as
co—+~, we have immediately that

4M+4

E((s, t) =i Q P„(exPLi(kps+Po„t) j, (6.15)

where co„ is any root of the characteristic equation (6.6)
with k=kp, and where p„~ is the residue of

P C "'(kp, pp)A„~(kp, a))/det5(kp, ru)
m=1

at the pole co=co . The solution of Eq. (6.15) is the
same as that given by an "Ansatz" in which one solves
the characteristic equation for co with k= ko.

If some of these characteristic roots lie in the lower
half of the complex co plane for certain ranges of ko,
then an initial spatial disturbance with Fourier compo-
nents in these ranges will build up exponentially with
time since in general the p„~ are all nonzero.

However one cannot decide without further discus-
sion whether the stream is amplifying or unstable since
the two phenomena are indistinguishable if the initial
distribution of disturbance is sinusoidal. To diGerentiate
one must consider the stream excited by a disturbance
concentrated initially at z= zo. If the disturbance
remains finite within a finite distance of z=zo for all t

then the stream is stable in this particular frame of
reference and vice versa. In practice the distinction is

only important in a frame of reference in which all the
charge is moving in one direction, when only the
reverse field waves exist in the region z &zo of an infinite
unterminated medium. Hence in this case one would

only expect instability to arise if one of the or that lie
below the real or axis for some real ko can be identified
as a field wave, that is if

Lim Lpp„(kp)/kp]= &1/c.
It:~co-iyg

This is rarely if ever the case. In general it is ampli-
fication rather than instability that can arise. in an
unterminated stream.

This discussion serves to underline the similarities
between the two alternative "Ansatz" solutions. It is
misleading to assert that one solution gives conditions
for instability, the other conditions for amplification.
As has been pointed out by Feinstein and Sen, ' the
physical diGerences between the two lies only in the
diGerent initial conditions, and either solution can be
used to find whether amplification is possible in an
unterminated stream. If the infinite stream is neither
unstable nor amplifying, this can be shown more easily
by solving the characteristic equation for or for arbitrary
real ko, than by examining the steady-state solution,
since, in the latter case, one must also prove that any
growing waves are also reverse waves. On the other
hand the former procedure can only be applied to the
terminated stream when the solution can be represented
by standing waves as in the charge free resonator with
perfectly conducting walls. If such a resonator is filled

with moving charge one has to use the steady state
analysis to find the resonant frequencies, which are
given, in this case, by the values of &o for which H, '(0)
is a maximum. Admittedly, to the first approximation,
the only eGect of the moving charge on the field waves
is to alter the eGective dielectric constant of the medium,
and to this order the resonant frequencies may still be
found from the roots of the characteristic equation for
+. However this procedure goes badly astray when the
energy carried by the space charge waves becomes
comparable with that carried by the field waves, as
happens in the neighborhood of the cyclotron frequency
or when the charge velocity approaches that of light.

7. THE CONTINUOUS VELOCITY DISTRIBUTION

Until now we have assumed that the electron-ion
stream consists of a finite number of separate beams.
When the number of these beams becomes very large,
as in the case of a thermal plasma, the discrete analysis
becomes excessively complicated and one is led to
approximate the discontinuous velocity distribution of
physical reality by an idealized continuous distribu-
tion. '~

The solution of Eqs. (3.47) to (3.52) can formally be

"It must be remembered that one is here concerned with the
actual velocity distribution at a given time rather than with the
ensemble average distribution.
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applied both to the discrete and the continuous case if we get
we replace the summations over the X electron-ion
beams by Riemann-Stieltjes integrals. To justify this
step one has to show that the operations of evaluating
the integral of Eq. (6.8) and proceeding to the limit
E—+~ are commutable. The proof is a straightforward
exercise in e-analysis and will not be given here since
its validity does not appear to be in dispute. When the
stream is composed of two or more kinds of particles,
electrons and ions say, one distinguishes between the
separate velocity distribution and replaces terms such as

~ oe—iy1

Ep(s, t)=
2' ~ —m—iyI

exp(irpt)Es'(z, &p)drp, (7.3)

tc2

g(u)du/kp( p+iukp)
CQ 'R1

Es'(z, rp) = (7.4)

1—cops it fp(u)du/(pp+ukp)'
24/

+Qs bv, eJI, s
2

s—~ bv, e tJttH, e

by a sum of Riemann-Stieltjes integrals of the form

and where u&N2 are the limits of the continuous velocity
distribution.

If fp(u) has a first derivative throughout the range
ut&u&us the denominator in Eq. (7.4) may be written
in the equivalent form,

P =tpH=v=0, (7.1)

in which the stream is excited by an initial sinusoidal
distribution of density modulation of the form

p (z, 0) =g(u) exp(ikpz). (7.2)

The general case is discussed briefly below.
If in Eqs. (3.47) to (3.52) we make the further

substitution

rp p'(u) K(u) = rpp' fp(u),

+pi I &ai + bv, t +
dl

i=i ~ u, i pip. , P(u) —(plrP(u)

where L is the number of difI'erent particles and

reer i(u) = (eBp/mpi) (1 u'/e—') &, pp p„, i(u) = re+uk —ivi(u).

For the sake of simplicity however we shall assume in
this section that there is only one class of charged
particles, though the more general case does lead to
new results when the axial magnetic field is nonzero.

In the continuous case the "Ansatz" solution breaks
down in that it does not yield the complete solution.
This was pointed out by Landau in his criticism of
Vlasov's theory" of the thermal plasma but the former's
treatment is also open to objection, since it is only
rigorously valid for the physically impossible case where
the velocity distribution of the charged particles is
analytic up to infinite velocities. It is possible to modify
Landau's theory to cover the case where the electron
velocities are always finite, but the solution then be-
comes much more complex, while it is only valid when
both the dc and the ac velocity distributions are
analytic functions of velocity.

Accordingly we shall develop an alternative theory
valid for any form of velocity distribution. In order to
compare this procedure with that followed by Landau
we shall consider the special case

p tt2

1—pip' duff p(u)/du j/kp(pi+uk p),
~up

as long as fp(ui) =0=fp(up), when our solution is iden-
tical with that of Landau allowing for the change of
symbolism

The difference arises at the next stage in the inversion
from the co-plane onto the real t axis and centers on
the treatment of the integrals

Ii 'g (u)du——/(pi+ uk p),
J„~

(7 5)

Is fp(u)du/(re+——uk p)',
a uy

which are undefined when rp+ukp=0.
As defined by the Laplace integral,

(7.6)

Ep'(s, oi) = Ep(s, t) exp( irpt)dt—
JQ

only converges on and below the line Im(cp)+pi=0,
and in this region Ii, Ip and Es'(z, cd) are single valued
analytic functions of ~.

However to find Es(z, t) explicitly it is desirable to
use Eq. (7.4) to define Es'(z, rp) by analytic continuation
in the upper half of the complex ~ plane. One way of
doing this is to insert a cut along the real ar axis between
the points

co = —Nykp, co = —N2kp.

This removes the singularities of I~ and I2 which are
now single valued analytic functions of co all over the
accessible regions of the rp plane, and Es'(s, rp) is now
a single valued function of co everywhere analytic
except at the isolated poles at the zeros of

's A. Vlasov, J. KxptL Theoret. Phys. {U.S.S.R.) 8, 291 {1938);
J. Phys. (U.S.S.R.) 9, 25 (1945).

1—ppp' t fp(u)du/(rp+ukp)'=0
~ t4)

(7.7)
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dg
ppkp 'pl 1 pip (u2 ul)/(pp+u2kp)(M+ulkp)

This term is nonzero even when zo' ——0 and corre-
sponds to the so-called "gas modes" discussed by
Bohm and Gross. ' Finally a third term arises due to
the fact that the I2, of Eq. (7.6), has a discontinuity
as one crosses the cut equal to

22ri [dfp( Dp/kp)/du]/kp, —

when fp(u) has a derivative for all ul&u&u2. The
presence of such terms is ignored in the usual "Ansatz"
solutions which often omit the "gas modes" as well.

Admittedly I2 becomes continuous across the cut if
we represent fp(u) as the limit of a series of square
pulse functions

where
fp(u) = f(22) u„&u&u +l, 22=1 M,

u~+l —u„=6u= (u2 —ul)/M,

which can be done as long as fp(u) is integrable in the
sense of Riemann.

However this simplification only arises in the special

We now form a closed contour from the line

Im(pp)+ pl =0,

and the infinite upper half-circle together with contours
around the isolated poles of E'(2, pl) and around the
cut, within which Ep (s, co) is everywhere analytic and
0(pI ') as 00~~.

By Cauchy's theorem the integral of Eq. (7.6) for
t)0 is equal to 2m-i times the sum of the residues of the
isolated poles of E2'(s, pp) together with the contribution
from the contour around the cut taken in a counter
clockwise direction. By Jordan's lemma the contribution
from the infinite half-circle is zero.

The contribution from around the cut is in general
nonzero, as is shown in Appendix II for the special case
where g(u) and fp(u) are analytic functions of u, and
can be split into three separate terms. The Grst term
arises when one of the zeros of Eq. (7.7) lies on the cut.
As we show in Appendix II this is never the case when

fp(u) is analytic in the neighborhood of the real axis in
the complex I plane, but such zeros do occur when

fp(u) is discontinuous, as witness the simple case

fp(u) =fl ul & u & u,

fp(u) = f2 u&u& u2

The second term in the integral around the cut arises
because Il, of Eq. (7:5) ha, s, in general, a discontinuity
equal to 22rig( —00/kp) as we cross the cut from the
upper to the lower half of the complex or plane at the
point co= 00. As a typical example consider the case

g(u) = fp(u) =1 u, &u&u2)

where the integral around the cut is equal to

case of Eq. (7.1). In general the characteristic determi-
nant is discontinuous across the cut whatever the form
of fp(u), except when fp(u) can be represented as the
sum of a series of 8 functions. This last case is trivial
since the stream now reduces to a system of discrete
beams when the cut is redundant.

The procedure, that we have just outlined, is the
normal one in transform theory valid whatever the
nature of fp(u) and g(u) as long as these functions are
integrable in some sense. In particular there is no need
for fp(u) and g(u) to be analytic functions of u; they
can be represented by a sum of 8 functions or of square
pulse functions or by a power series, whichever is the
more convenient.

However this is certainly not possible in the treat-
ment given by Landau as we show in Appendix III.

When plrr, v and p2 are all nonzero we see by inspection
of Eqs. (3.47) to (3.50) that cuts must be made in the
co plane along the lines

pp = Mlr —ukp+zv(u); N = ukp+zv(u); pp = —ukp,

which all lie on or above the real co-axis.
A similar procedure must be followed for the medium

excited by an external signal or by an initially localized
disturbance before inverting from the complex k plane
onto the real co-axis. In this case also the contributions
from the cuts are, in general, nonzero and can be of
importance particularly in the noise theory of the
terminated stream.

8. DISCUSSION

The vector solution of this paper can be applied in

principle to a stream of charged particles with different
charge/mass ratios and arbitrary velocity distributions
under arbitrary initial and boundary conditions. Unlike
the theories that employ a stream function one is not
restricted to the case of zero axial magnetic field and
since the analysis is fully relativistic there is no need to
treat the transverse and longitudinal Gelds separately.

However the general theory is very complex and in
this paper we have discussed only the special case where
the solution satisfying arbitrary initial conditions can
be expanded as a sum over a complete orthogonal set of
independent elementary solutions. Such an expansion
can always be carried out for the stream of infinite
cross section, but for the Gnite stream it is only possible
under the limited transverse boundary conditions of
Sec. 5. Each elementary solution can then be expressed
explicitly in terms of the initial conditions by means of
a double Laplace transform.

The use of a Laplace transform was introduced by
Landau" in his theory of the longitudinal oscillations
in a thermal plasma. However his treatment is only
valid when the ac and dc velocity distribution functions
are analytic, and, in its original form, can only be
applied to the unphysical case where the electron
velocity distribution extends to infinity. The solution
of this paper is free from these restrictions and contains
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terms, which are inevitably omitted in an "Ansatz"
solution where one assumes ab isis'0 that all ac quanti-
ties are proportional to exp[i(k z+cvt) j.This "Ansatz"
procedure, which is used by the majority of writers,
only gives the necessary conditions that a solution
should satisfy the Maxwell-Lorentz equations. It is
therefore much less informative than the more rigorous
Laplace transform analysis which gives the complete
solution under given initial conditions, and from which
one can find both the physical interpretation of the
"Ansatz" solutions and the initial conditions to which
they correspond.

In one "Ansatz" procedure one solves the character-
istic equation for or in terms of fixed k= kp, where kp is
a real propagation constant, and obtains 41V+4 possible
modes of oscillation, where E is the number of discrete
velocity beams. We have shown that this solution only
applies in general to the infinite unterminated stream
excited by an initial distribution of disturbance propor-
tional to exp(ikoz). For the stream terminated at z=0
the solution is only valid for t(z/c except in the very
special circumstances discussed in Sec. 6. If any of
the roots of the characteristic equation lie in the lower
half of the complex ~-plane for certain real kp, then an
associated initial disturbance will build up exponentially
with time. However one cannot tell from this whether
the stream is amplifying or unstable, a distinction that
is important when the stream is excited by a disturbance
confined initially to a small region of the stream. We
concluded on heuristic rather than rigorous grounds
that the stream would only be unstable in a frame of
reference in which all the charge is moving in one
direction if one of the growing roots was associated
with a field wave; that is if Lim(co /ko) = ~1/c as
kp—+~ i r2, w—here cv (kp) lies below the real ~ axis for
some real kp and where p2 is chosen so as to avoid any
multiple roots of the characteristic determinant. The
distinction between instability and amplification is
usually unimportant in a frame of reference moving
with the stream as both processes will normally occur
together.

The alternative "Ansatz" solution is found by solving
the characteristic equation for k in terms of fixed
M= Qp, when one obtains 41V+4 possible values for the
propagation constant. This solution applies to a stream
excited at a material boundary by an external signal of
frequency Qp, and is only valid when the transient part
of the solution for the singly terminated stream decays
with time. The conditions when this last restriction is
satisfied can be found from the first "Ansatz" solution
when all the charge is moving in one direction. However
when reverse beams are present together with amplified
growing waves the stream is often unstable so that no
steady-state solution exists.

In order to interpret this solution one must be able
to distinguish between waves that are directly excited
at the incident surface a=0, and those that can only be
excited by reflection from some subsequent surface or

region of discontinuity. When all the charge is moving
in the positive direction we showed in an earlier paper"
that the asymptotic value of the propagation constant
of the reflected waves is given by Lim[k„(QO)/Qo]
=+1/c as Qo—+~ —iyi. When reverse beams are
present we have shown that the associated space charge
waves can only be excited by reflection so that we now
have the general result that Lim[k (Qo)/Qo])0 as
Qp~~ —iy~ for all reflected waves and vice versa.

Although the two "Ansatz" solutions correspond to
quite diBerent initial conditions, there are many simi-
larities between them. In particular either procedure
can be used to find whether the unterminated stream
can amplify. This is contrary to some earlier interpre-
tations where one "Ansatz" is used to find whether the
stream is unstable the other to find whether it can
amplify. To some extent the confusion is merely a
matter of terminology, but it can easily lead to false
conclusions. Thus some writers have argued that ampli-
fied growing waves can exist in a stream even if all the
roots of the characteristic. equation lie on or above the
real axis in the ~-plane. However in this case any
growing waves with propagation constants in the lower
half of the complex k plane are always reverse waves
attenuated in the reverse direction.

The vector solution of Eqs. (3.17) to (3.19) is valid
even when the dc quantities such as Np„p„etc. , are
functions of s. In this case one can integrate Eqs.
(3.33), (3.37), and (3.38) to find r, '(z, co), H~'(z, ~), and
vi, '(z, &v) explicitly in terms of E&'(z, co). On substituting
in Eq. (3.37) one gets a system of integro-differential
equations for E&'(z, &o), but these can no longer be
reduced to algebraic equations by a Laplace transform
with respect to s and small progress has been made
toward their solution.

The theory can also be extended to the case where
the dc magnetic field and the dc velocities have trans-
verse as well as axial components as discussed in
Appendix I. However this can only be carried through
in Cartesian coordinates and the algebra in the general
case is very cumbersome. The best hope is then to look
for some approximate solution in which, for example,
one considers only the transverse or only the longi-
tudinal part of the solution. The errors involved in this
and similar simplifications are discussed.

Acknowledgment is made to the Admiralty for
permission to submit this paper for publication.

APPENDIX I
In the text the dc components of the external mag-

netic flux density and of space charge velocity were
assumed to be of the form Bo=(0, 0, 80) and uo
= (0, 0, No) respectively. We shall now show how the
analysis may be extended when these vectors possess
transverse components so that Bp= B p+Bpa, up=u p

+soa where B,o a=u, o a=0 and B o, u p are constant
vectors independent of position. In order to maintain
the steady-state flow it is necessary to introduce
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additional dc E-fields but as these do not aGect the
small signal ac equations they will be left unspecified.

Assuming, for the moment that u„p =0 the only
eBect of the transverse components of the dc magnetic
field is to add additional terms to the Lorentz force
equation which, in its linear approximation, may now
be written

(8/ctt+ i,+up, ct/Bs) (iu, v,+bio,K, (up, o/c') (v, a)a)
= —e,[E+v,XBpa+tcpup aXH+vsXB p] (I.1)

di8ering from Eq. (3.9) in the term v.XB p.

The elementary solution derived above for the case
B,p ——0 relied on the fact that all the vector Maxwell-
Lorentz equations could be expressed as linear combi-
nations of the three fundamental vectors L, M, N
defined in (3.16). These vectors determine an auxiliary
coordinate system in which we may express B,p by the
vector equation

kp cp/kp) as a Taylor series in (co/kp+u) to give

g(u) =g(—~/ko)+ 2 g"(—~/ko)(u+~/ko) "/u l.
n~l

If we substitute in Eq. (7.5) and integrate we get

(up+ cp/ko )
!I,=g(—~/ko) log!

oui+ cp/kp)

g"(—co/ko) ( co l "
! up+ —

!
—

! ural —!
nn!kp E. ko I 4 kp I

As we cross the real or axis at the point or = —ukp: Qp,

u~&u&u2, the logarithmic term in I~ changes from

iorg(+ it) =in g( —Qp/kp)—

just above the real or-axis to

B o=BoiL+BooM, (I.2) ing—( .u) =——i—n.g(—Qp/kp)

where Bp~, Bp2 are scalar coefficients that dePend uPon
(x', x') in such a manner that B p is a constant vector.

Substituting for B p in Eq. (I.1) and assuming that
v, is given by (3.19) the term v, XB,p may be written

v.X B,o= -BoonpA L-Boinp. 4»
+ (Bongos Boovlg) [V4']'/4 N. (I.3)

just below the real or-axis.
Similarly if fp(u) is analytic we may write

fo(u) = fo( ~/ko)+—2 fo"( ~/k—o)(u+~/ko) "/u'
e I

when substituting in Eq. (7.6), and integrating term
by term we get

In the general case where P is any solution of the
two-dimensional wave equation (3.20) consistency
requires that

fp( —cp/ko)
72=

kp2

u2 —u)

(up+ co/kp) (ui+ cp/kp)

Boca(x', x') and Bpc[V'P(x' x')]'/P(x', x') l= (1, 2)

must both be independent of (x', x'). This is only
possible in Cartesian coordinates and then only when
the solution of Kq. (3.20) is expressed as a traveling
wave

P(x', x') =exp[i(lx+my)],

where 0+m'= p'
In this case B«p*(x', x'), the complex conjugate

of P(x', x') when B,p as defined by Eq. (I.2) is indeed
independent of position, so that a consistent solution
can be obtained.

A similar discussion shows that the same restriction
must be imposed on the coordinate system when the dc
velocity has transverse components. In the latter case
especially the algebra becomes extremely cumbersome
and its importance does not seem suKciently great to
warrant even a summary of the solution.

APPENDIX II

When g(u) the ac velocity distribution function of
Sec. 7 is analytic we can immediately find the
discontinuity in Ii, defined by Eq. (7.5), as we cross
the real or axis.

Since g(u) is analytic we may expand g(u) =—g(u+co/

fp ( co/kp) (up+ co/koan

!+ log!
kp' E ui+ co/kpi

f"( ~/ko)—
+ Q — [(up+ co/kp)

"-'—(ui+ co/kp) "-'],
=i (u —1)e!koo

which has a discontinuity of

2n.i[fo'(—Qo/kp)]/koo

across the real ~-axis, when or = —ukp—=Qp and u~ &u &u2.
It follows from this that the characteristic equation

of Eq. (7.7) has no zeros on or immediately above the
cut between the points —uoko&co& uikp if f,(u) is
analytic, except possibly at the zeros of fp'( —Qp/kp).
However these zeros form a set of measure zero if fp(u)
is an integral function of u as do the zeros of Kq. (7.7)
so that this possibility can effectively be ignored.

APPENDIX III

In the solution given in Sec. 7 for the stream with
a continuous velocity distribution it was only necessary
that fp(u) and g(u), the dc and ac velocity distribution
functions should be integrable.

However in the alternative solution given by Landau"
it is necessary that fp(u) and g(u) be integral functions
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(a) (b)
Fzo. 1(a), (b). Contours of integration in complex u plane for analytical continuation of I&, Is in complex cu plane.

of u, while this writer's procedure has to be further
modified when one allows for the fact that no material
particle can have a velocity greater than c.

Instead of inserting a cut in the complex co-plane,
Landau obtains the analytic continuation of Es'(s, o&)

by deforming the contours of integration of I& and I2,
defined by Eqs. (7.5) and (7.6), respectively, in the
complex u plume. For values of a& lying in the lower half
of the complex a& plane the point u= —co/k, lies in the
upper half of the complex u plane if kp is positive and
the contour of integration may be taken along the real
u axis, contour A in Fig. 1(a). Provided that fs(u)
and g(u) are integral functions of u this contour may
be deformed into contour 8 without affecting the
value of I~ and I2. Let us now suppose that the point
u= —oi/ks is allowed to move into the lower half of the
complex u place to the point I' s, crossing the real axis
between u&&u&u2. The contour 8 may now be de-
formed into the contour A' giving a different value for
I&I2 than that obtained by integrating along the contour
A. By this means one can obtain an analytic continu-
ation of IiIs and Es'(s, &o) into the upper half of the
complex co plane. However this procedure does not
lead to a single valued expression for I~I2 since the

point P2 could have been approached by a path that
crosses the real u axis outside the range ui&u&u2, as
shown in Fig. 1(b), when the contour 8 can be deformed
back into the contour A. Admittedly this di%culty
does not arise in the case considered by Landau when
(ui, us)=—(—~, ao), but when urus are finite we must
insert cuts into the real u axis in the ranges —~ &u& ui,
u2&u& ~ to ensure that I~, I2 are single valued. In
this case I~, I2 are undefined at values of co= —ukp

where u lies on these cuts and we must introduce a
corresponding system of cuts into the complex co-plane
in the ranges —~ &~&—u.kp, —uykp&G0&'.

Thus Landau's procedure leads to no increase in
simplicity over the alternative we have followed in the
text, while it is only valid when fs(u), g(u) are integral
functions of u. Furthermore some of his conclusions as
to the nature of the solution for the thermal plasma
have to be modified appreciably when one takes account
of the fact that

~
ui ~, ~

us
~

are both less than c, since it
is not now possible to deform the contour of integration
of Eq. (7.3) into the upper half of the complex oi plane
outside the range —u2kp&o) &—uikp. The physical
consequences of this are discussed.


