salt was replaced by a specimen cut from solid crystal, either hollow or having wall clearances.

As the existence of a helium II film in the tube connecting the capsule with the pumping system (up to 40 cm of its length in helium II bath when a membrane was not used, and 6 cm of its length in vacuum jacket when the diminished effect was observed) is a necessary condition for the appearance of the phenomenon, it could be perhaps considered as an extreme case of the fountain effect, producing cavitation of the helium II within the powder. The oscillations could then be explained by assuming consecutive coolings of the helium II film and warmings of the helium II in bulk, above the powder, with re-entries of the liquid into the colder powder.

In view of these observations, caution should be exercised with remote control experiments in assuming thermal equilibrium when a powdered paramagnetic salt is diluted with helium.

+ This work was carried out under a grant from the National Research Council of Canada.

## $p - n$  Junctions Produced by Growth Rate Variation

R. N. HALL General Electric Research Laboratory, Schenectady, New York (Received July 29, 1952)

ORE than a hundred uniformly spaced  $p-n$  junctions have Jeen produced in an ingot of germanium by periodically varying the rate of growth of the crystal from a properly doped melt. The amount of an impurity picked up by a growing crystal is determined by the segregation constant  $k<sub>1</sub>$ <sup>1</sup> which has been observed to depend upon the growth rate even when the accumulation of impurities ahead of the ingot is made negligible by thorough stirring of the melt.<sup>2</sup> The preparation of  $p - n$  junctions by growth rate variation requires the presence of two opposite type impurities whose segregation constants vary at different rates with growth velocity.

Pronounced growth rate effects have been observed in the segregation of antimony during the solidification of ingots of germanium, as shown in Fig. 1. These data were obtained by con-



FIG. 1. Effect of growth rate upon the segregation of antimon during the growth of a germanium crystal.

ductivity measurements of a tri-crystal grown from a melt, using a bundle of three differently oriented seed crystals, Concentration of impurities in the melt ahead of the growing interface was made small by rotating the ingot at 200 rpm to provide thorough stirring.

Most p-type impurities such as Ga and In show much smaller changes in segregation constant. It follows that an ingot grown from a melt doped with the proper amount of antimony and either gallium or indium will be  $p$ -type when grown slowly and  $n$ -type when grown rapidly. By cycling the growth rate of an ingot, it is possible to produce a large number of uniform and evenly spaced  $p-n$  junctions, each cycle producing two junctions having somewhat different characteristics. A wide variety of impurity distributions may be produced by changing the shape and amplitude of the growth cycles. In particular, this technique makes possible the growth of junctions having much smaller impurity concentration gradients than are produced by techniques previously reported.<sup>3</sup><br>Gradients less than  $10^{-16}$  cm<sup>-4</sup> are readily obtained and give rise to junctions having very low barrier capacities and high Zener breakdown voltages.

It is believed that the change in segregation constant with growth rate shown in Fig. 1 results largely from nonequilibrium conditions which prevail within the crystal near its growing surface. When the crystal is growing very slowly, the ratio of the impurity content in the solid to that in the liquid is given by the equilibrium segregation constant  $k_0$ . Because of the difference in binding energy at the surface of the crystal, it is to be expected that the composition of the surface layer of the crystal will be different from that in its interior. After each surface layer of the growing crystal is covered by a new layer, its composition will tend to approach the equilibrium value for the solid. If new layers are added too rapidly, however, the impurities have insufficient time to exchange with the surface, and material having a nonequilibrium composition will be grown.

The above mechanism leads to the following variation of segration constant with growth rate:

$$
k = k_0 + (k_s - k_0) \exp(-v_i/v).
$$

Curves fitted to this equation are drawn through the experimental points in Fig. 1. The constant  $v_i$  is the growth rate for which the time interval between the deposition of successive layers to the crystal is equal to the relaxation time for the change in impurity content of a layer which has just been covered up. This time interval is comparable with the time required for antimony to diffuse a few angstroms in solid germanium as estimated from its measured diffusion constant.<sup>4</sup>

<sup>1</sup> R. N. Hall, Phys. Rev. **78**, 645 (1950).<br><sup>2</sup> The dependence of segregation constant upon melt stirring was discussed by J. A. Burton and W. P. Slichter at the IRE and AIEE Conference on Semiconductor Device Research i

## Production of Photomesons in Deuterium\*

JAMES KECK AND RAPHAEL LITTAUER Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York (Received August 20, 1952)

&HE reaction

$$
\gamma + d \rightarrow \pi^- + p + p' \tag{1}
$$

is being studied by detecting the meson in coincidence with a recoil proton. Since the deuteron is a loosely bound structure, it was expected that in a fair fraction of the cases the process should be characteristic of that for a neutron moving with the momentum distribution of the deuteron, the role of the proton being only that of a spectator. The present letter is a report of an investigation primarily of this "spectator process. "

The experimental arrangement is shown in Fig. 1. 0.50-cm targets of  $D_2O$  and  $H_2O$  were irradiated by 310-Mev bremsstrahlung. Mesons emitted at  $90\pm10^{\circ}$  with an energy of  $56\pm9$  Mev were identified by their specific ionization and range in a coincidence-anticoincidence telescope of three scintillators. The recoil protons were counted by a Na(Tl) crystal 6.55  $g/cm^2$  thick, a range corresponding to that of a 69-Mev proton. Their energy was measured with a pulse-height analyzer. The cross section for the process (1) was obtained as a function of both the proton energy and angle by making a  $D_2O-H_2O$  subtraction. The  $H_2O$  count was about 30 percent of that for the  $D_2O$ .