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On a Theorem of Irreversible Thermodynamics. II*
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The Quctuation-dissipation theorem, which relates the equilibrium fluctuations to the admittance of a
thermodynamic linear dissipative system, is generalized for more than a single extensive parameter. The
real part of the admittance is shown to be symmetric, supplying thereby an extension of the reciprocity
theorem of Onsager. The analysis is macroscopic and thermodynamic in nature, and is carried out for
adiabatic constraints as well as for microcanonical constraints.

1. INTRODUCTION

'HIS paper is a sequel to an earlier paper of the
same title, ' to be referred to as "I," and is the

thermodynamic counterpart of the preceding statistical
papeI'.

In "I"we established the relations

4

ables) is based on the Wiener-Khinchin formula,

1
G; (pi) =

~ dT(k;(t)g;(t+T))e '"', (—2.1)
(2pr)& ~

which reduces the problem of determining the spectral
density matrix G,j(ip) to that of determining the auto-
correlation matrix (f;(t)$j(t+T)). This latter quantity
may be written as

and
2

(P)=—kT dojo v(po) p

f
(b(t)$i(t+T))= ~ db' db'k''~'i(b' 6')

(1.2)

where (P) is the mean square fluctuation of an extensive
parameter in the frequency interval determined by the
range of integration, and where pe(co) and a~(o&) are
conductances which characterize the irreversible re-
sponse of the system to an applied force. The first of
the above equations applies to systems in which all
extensive parameters other than the one of interest are
held constant, whereas the second equation applies to
systems similarly constrained except that the con-
straint on the energy is replaced by the condition of
adiabatic insulation. In this paper wt.' shall generalize
these results to the case in which several extensive
parameters are permitted to fluctuate spontaneously,
and in which the several associated forces act on the
system to induce an irreversible composite process. The
analysis parallels the quantum statistical analysis of
the preceding paper and augments it by the considera-

tion of adiabatic constraints. The symmetry of the real

part of the admittance matrix is established by thermo-

dynamic reasoning, but that of the imaginary part does

not follow from our thermodynamic analysis.

2. THE METHOD

As in "I" the proof of the fluctuation-dissipation
theorem (here established for multiple extensive vari-

*This work was supported in part by the ONR under contract
with the University of Pennsylvania.' H. B. Callen and R. F. Greene, Phys. Rev. 86, 702 (1952).

2 Callen, Barasch, and Jackson, preceding paper, Phys. Rev. 88,
1382 (1952).

where W&($o' . $„')d$p' d$„' is the probability of find-
ing $p .$, in the range d$p' d$, ', and (7, $p' $p'l $;)
is the expectation value of $; at a time T after the
variables $p. t„had the value $p' $„'. Thus random
variable theory provides us with the spectral density of
the equilibrium Quctuations if we know the two quanti-
ties wi(to' ' '6.) and (T~ to' ' $~'l4) Now &1(to Et')

is the familiar distribution function of statistical thermo-
dynamics, so that the calculation of (T, $o' $„'lf;) is
the crux of the derivation. But the mean decay curve
(T $p ' ' ' $„ l (j) of a spontaneous extensive parameter
fluctuation is identical to the observed curve of macro-
scopic drift into equilibrium. The latter curve, Anally,
may be expressed in terms of the admittance matrix
describing such irreversible processes. Thus the con-
ditional mean (T, fp' .$„'l $,) can be written in terms
of the admittance matrix so that Eqs. (2.1) and (2.2)
yield the desired relation between G,, (ip) and I'„(pi).

During derivation of the connection between (T, $p'

$„'l$j) and Y;;, recourse is made to the principle of
microscopic reversibility, whereby (T, $p ' ' $ l $j) ap-
pears as an even function of 7. By this means we then
derive the symmetry of the real part of the matrix F'j,
obtaining a set of generalized reciprocity relations.

The derivation outlined is carried out for systems
under two distinct types of constraints. In the erst
type, all of the extensive parameters are either rigidly
fixed (microcanonical) or free to vary (these "canonical"
variables being those of which the fluctuations are
studied). In the second type of constraint, the micro-
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S=S(Xp, Xr, . , X„). (3.1)

The intensive parameters in the entropy language are

Fp= BS/BX—p, k=0, 1, , r. (3.2)

Here Fo is the inverse temperature, and the other F~
are simply —1/T times the corresponding intensive
parameters, in the more conventional energy language.

The instantaneous deviation of an extensive param-
eter x; from its equilibrium value X, is denoted by $,".

$;—=x;—X;. (3.3)

The intensive forces which enter into the succeeding
analysis are the intensive parameters of the driving
reservoir with which the system is presumed to be in
interaction. This reservoir is assumed to have charac-
teristic relaxation times small compared to the re-
ciprocal of any of the frequencies of interest, so that
it is always in quasi-static equilibrium.

Let P, (or) be the Fourier amphtude of the pth driving
force

canonical constraint on the energy is relaxed and re-
placed by the condition of adiabatic insulation. For
this latter type of system it is necessary to augment the
derivation by the construction of a theory of Quctua-
tions of several extensive parameters under adiabatic
constraint; this theory is given in Appendix A.

3. THE ADMITTANCE OF THERMODYNAMIC
SYSTEMS

In this section we recall brieQy the thermodynamic
definition of the admittance function which charac-
terizes the response of the system to an applied force
and the analytic properties of this admittance function.
%e state these definitions and analytic properties
appropriately to a system with several driven param-
eters.

%e frame our thermodynamic analysis in the "en-
tropy language, " in which the entropy S is taken as
the dependent function of the equilibrium values of the
energy Xo and the various other extensive parameters:

F;;(or)=pope;/BF;+O(orP), (3.7)

where the partial derivative is to be taken with all the
other intensive parameters held constant.

The causal relationship between the applied forces
and the induced response has its analytic statement in
the further requirement that the matrix elements Fr;(or)
have no poles in the lower half of the u-plane.

4. THE CONDITIONAL EXPECTATION VALUE

Having formulated a thermodynamic definition of the
admittance function, we proceed with the plan outlined
in Sec. II: We must calculate (r, $p' $,'~$,), the ex-
pectation value of $; at a time r after the set tp f„had
exactly the value Pp'

For a reason explained in "I" we may equate
(T $p ' ' ' $„~P ') to the decay function which describes
the macroscopic behavior of $; after the microcanonical
constraint fp $,=$p' $,

' is lifted. This decay func-
tion is simple to get. Rather than impose a constraint
which is to be lifted at t=O, we may instead impose an
appropriately chosen set of "forces" which is, again,
to be lifted at t=O. This set of forces, of course, is
chosen so as to induce the same initial macroscopic
state as would the constraints it replaces. That is, we
consider that until t=O the system is in equilibrium
with a set of applied forces F;+pF; of such magnitude
as to produce values X,+$,' of the set of x„. At time
t=O the applied forces are suddenly changed to Eo, Fj,

, F„,and the macroscopically observed value of $; at
time 1=r is (r, tp'. $„'~$,). The problem is now in a
form suitable for analysis in terms of the admittance
function. The applied forces are

OFT
(p'r t&0,

$f,=c p=p (jXp.

or

1 ~ 8F;
(34) &f,= Z 5p'

~

(2rr)& k-p BXp

oo

x .(f) —X+ l

I dor a .(or) e
(2rr)& ~

(3.5)

For sufficiently small amplitudes n, and P; will be
linearly related, thus defining the admittance matrix
I' '(~):

p~~ (~)=Z F '(~)P'(~). (3.6)

and let a;(or) be the Fourier amplitude of the jth ex-
tensive parameter

(pry & i
X

i

—
i 8(or)+

( 2] or(2rr) &

er'&or (4 2)

BF,
k (~)= 2 4 I

dor F"(or)/&or
(2rr)& ~,p=p BX„J

For this improper integral we take the Cauchy prin-
ciple value. The response to this applied force is,
according to Eq. (3.6),

The condition that a constant applied force leads to
constant values of the extensive parameters gives, as

x
I

—
I s(~)+

& 2) or(2rr) &

e'"'. (4.3)
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Equation (3.7) now gives

1 BPs f

g;(r) = ,'g -+ P—$
'

I «Y,,((a) pi'e' ' .(4.4)
2m~, r BXI, ~ „

theorem
2

(H;)= —-&
~

«~ '~s, ;(~) (5.6)

This formula is correct for r) 0, but to find $,(r) for
negative 7- we must invoke the principle of microscopic
reversibility. We here assume that the extensive param-
eters are even functions of the particle momenta and
that there are no magnetic or Coriolis fields; the more
general cases follow through precisely as in the previous
paper' in this journal. Then the principle of microscopic
reversibility insures that $,(r) is an even function of r,
whence

1 BF;(, ~o'" ~.'l~,)=—Z ~.'
BX, ~

0. SPECTRAL DENSITY UNDER ADIABATIC
CONSTRAINT

In the previous section we have found the form of
the Quctuation-dissipation theorem appropriate to a
system with several extensive parameters canonically
constrained and with all other extensive parameters
microcanonically constrained. We now wish to con-
sider the case in which the constraint on the energy is
replaced by the condition that the system is adiabati-
cally insulated; that is, no heat Qow is possible through
the boundary of the system. For such a system it is
most convenient to employ the energy language, based
on the fundamental relation

X[Y;,(~)+Y;,*(~)7e*"' (4.5)

S. THE SPECTRAL DENSITY OF THE
SPONTANEOUS FLUCTUATIONS

Xp ——Xp(S, Xi, , X,),
with the intensive parameters dehned by

Pp= BXp/BXp)s, xi, ~ ~ ~, x„.

(6.1)

(6.2)
Having now computed the quantity ('r, $p ' ' '$„'~ $&),

we may find the correlation moment ($,(t)$,(t+r)) by
Eq. (2.2), and thence the spectral density G;, (co) by
Eq. (2.1).Thus

Under the adiabatic constraint the first-order entropy
change is zero during a Quctuation, and the energy
change is simply

~~)
(6(t)4(t+ ))=—Z (M) i

2x &.I BXI,

hxp ——Q Pg, exp.
1

(6.3)

and

The forces are now taken as the energy language
X [Y't(~)+ Y'& (~)7 ~ (5'1) intensive parameters of the driving reservoir,

1 BP)
G* ( )= z (uk) '[Yl,(~)+Yl *(~)7 (5 2)

(2m. )& &,p BXp

00

p,(t) =P,+ j «t3, (pi)e'"'
(2ir)»

(6.4)

The fluctuation moment ($;$p) is well known from con-
ventional thermodynamic Quctuation theory for sys-
tems with canonical and microcanonical constraints. In
fact, we have

and the admittance function now has the dimensions of
coax/p rather than of coax/f As a fun.ction of &u we again
have the condition

Y;,(pi) =i' BX;/BP~) s+O(ppP), (6.5)

and the partial derivative is now to be taken with all
other intensive parameters (except P, and 2') and with
the entropy constant.

We then find, in analogy with (5.2), that the spectral
density matrix is

BFg
(5'6) = &&a-

& BXp
(5 3)

az,
G i(pi) = Z (46)& 'LY&i(pi)+ Yit*(~)7 (6 6)

(2x)~ &, i BXp
(2y &

G;,(a)) = —
(

—
i

ka& 'ps;, (~),
& ) (5 4) or

t'2) & BP,
G,;()=l —

i Z
Ez') & & OXIDE

(6.7)
where the conductance matrix O.q;; is the real part of
the admittance matrix where

~~it= 'p[Ytt(~)+ Yv*(~)7 (6.8)

Restricting ourselves temporarily to systems with
canonical and microcanonical constraints (the adiabatic
constraint will be considered in the next section), we
thus find

~s;,= p[Y't(~)+ Y*t*(~)7 (5 5)

By the de6nition of the spectral density, we now
have our generalization of the Quctuation-dissipation

The subscript U is now written explicitly to indicate
that o-& is the real part of the energy language ad-
mittance.
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In Appendix A we calculate the fluctuation moment where
($o$~) under adiabatic constraints as

(45i)= &TBXojBPi) s. (6.9) s= S(xo, x„,x„).

(A.2)

(A.3)
This gives the Quctuation-dissipation theorem for adi-
abatic constraints:

Now under an adiabatic constraint,

00

(hob) = IoT— d» &o &&(~) (6.10)
»o=P Poke. (A.4)

7. RECIPROCITY RELATIONS

We now show that the conductance matrix is sym-
metric under our assumptions of vanishing magnetic
field and parameters even in the particle momenta.
This symmetry is a generalization of the reciprocity
theorem of Onsager.

For simplicity we consider canonical and micro-
canonical constraints, although the theorem follows
identically for the adiabatic constraint. We have

But now
Ws= Qo exp([s —Sjjk). (A.5)

~$ r 8$ «82$
»o+ Q»o+-', Q»„»)

gp &=1 /gal k, l=1 ggpQg)

82$ g2$
+2 Q»o»o+ (Bxo)' +, (A.6)

&=1 BgpBgy Bgp

If we delete from our ensemble those states inconsistent
with (A.4) the probability (A.1) becomes

and
G,;(~)= —(2/x) ~a~-'~ s,,(~), (7.1) which becomes, using (A.4),

82$
OQ

G,;(~)= I d~(G(t) 4(t+ ~))~ '"' (7.2)
(2or)& ~ „

s—S=-', Q»o»&

g 2$ 8 $

o8iju =o8;; co.

Similarly, for adiabatic constraints,

&Uij = &Uji & ~

(7.5)

(7.6)

APPENDIX A. FLUCTUATIONS UNDER AN
ADIABATIC CONSTRAINT

Let us consider the thermodynamic fluctuations of a
system canonical with respect to several extensive
parameters g1, g2, , g„and under an adiabatic con-
straint.

The probability of a fluctuation to instantaneous
values gp, g1, , g„ is'

Now, according to the principle of microscopic reversi-
bility we have'

(t'(t)5 (t+~))=(&'(t) & (t—r)) (7 3)

and as we are dealing with a stationary random process
we can substitute t+7 for t in the right-hand member,
yielding

(('(t) t.,(t+ ))=(r, (t) r, (t+ )) (7.4)

With Eqs. (7.1) and (7.2) this immediately yields the
reciprocity theorem 8 8

()s=Pi ()+ ()
Bgg ggp /gal

(A.8)

We may apply (A.8) to a re-expressed form of (A.7):
B ( Po'ts-S=-,'P Bx.»,

Bx~ 4 T)
B (+2P

/

——f+PoP
»o& T& Bx ET)

t' Pal
=-,', P»,Bx

Bxt ( T).. s

+2P( +PoP(, (A.7)
BgpBgjt, Bgp

dropping the higher order terms. (These various deriva-
tives are, of course, to be evaluated at the "point"
x&——X&.) Now in general, for any quantity

r
B( )= ( )»o+P ( )»o,

Bgp k=1 Qgj

so under the constraint (A.4), which we denote by a
subscript s,

&(xo, , *,)= Qo

1
)(exp s—S+Q Po»o ——»o

k 1 T

B pi y+Ps
(

——/+PoP,
(

—
/

. (A.9)
»o& T) Bxo&Tj

(A. i) Now if we put

' L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931).
4 See M. J. Klein and L. Tisza, Phys. Rev. 76, 1861 (1949).

Po& B t'1 q

/

—
/, (A.10)

Bxo ( T ) BxoBxo Bxo 4T)
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Now the summation of the last two terms in the
summand gives zero, so

then (A.9) becomes

8 ( Pg)s-S=-', P Sx Sx,
k i Bxi g

—1 ~ 8Ps-S= P ~
Bx„)xi.

2T " '='BXi~ s
(A. 13)

8 (1l 8 (1i
+P

~

I+P&P, I I
. (A.11) ~e note that

Bx, ET j Bxo ET)

Now, using (A.S) again, we find Thus
BPt/BXi) s= BPi/BXk) s—=nii. (A. 14)

1 BPi:l
s—S=~ Q BxiBxi ——

T Bxi~ s

BPg y
~s=&0 mp — P ~

Bx,Bx, . (A.15)
2kT I,&=& Bx)j

8 1) 8 In this expression we must consider that explicit

p&
~ ~

+.p~
~ ~

(A 12) dependen«upon x, has b«»emoved by means of
Bxi ET) s Bx„(T& s Eq. (A.4). Let us put

Then

(7r,Bx;)=

r
a p, be.

kT ~=-

r

dxo
J

dx„m. ,Bx, exp P (xi„Bx„bxi
2k' n, t=i

1

Jt dxp' ' ' Jt' dx exp P cxgBxgBxi
2k+ a, i=i

(A.16)

the Kronecker delta.

Then (except at critical points) we may insert (A.15)

Bxg——2kT P, n„,
whence

(Bx;Bxi)=2kT Q i nii —'(Bx,m. i)

= 2kTNp

= 2kTBX;/BPa) s,

since BX;/BPk) s and BP„/BX;)s are inverse matrices.

(A.17)

(A.18)

(A.19)


