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difference between time and space velocity gradients is
negligible, and there may be, therefore, a non-negligible
difference between time and space microscales of tur-
bulence.

An extensive investigation is needed before complete
experimental results can be given concerning the rela-
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tion between time and space characteristics of tur-
bulence. This work is now in process in cooperation
with the National Bureau of Standards.$

¢ New experimental measurements, now in process, are being
made in cooperation with Dr. J. Laufer (National Bureau of
Standards) and Mr. I. Katz (Applied Physics Laboratory).
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The fluctuation-dissipation theorem relating spontaneous equilibrium fluctuations to the conductance in a
dissipative thermodynamic system is extended to the case of several variables, using a quantum statistical
analysis. The conductance matrix is shown to be subject to certain symmetry relations, providing a general-
ization of the Onsager reciprocity theorem. The susceptance matrix is also shown to be subject to similar
symmetries. The symmetries apply to all frequency components, and hence to arbitrary transient processes.

1. INTRODUCTION

HE theory of irreversible processes consists essen-
tially of two types of theorems. The first of these
theorems is the reciprocity relations of Onsager, treating
of the symmetry of the mutual interference among
several simultaneously occurring irreversible processes.!?
The second is the fluctuation-dissipation theorem, re-
lating the spontaneous fluctuations in an equilibrium
system and the parameter (the conductance) which
characterizes the dissipative aspects of an irreversible
process.*— The purpose of this and the following paper

is to extend the fluctuation-dissipation theorem to

several variables and to exhibit its relation to a general-
ization of the Onsager reciprocity theorem.

Both the Onsager theorem and the fluctuation-dis-
sipation theorem have been investigated by quantum
statistical and thermodynamic methods. In the present
paper we shall be concerned exclusively with the
quantum statistical analysis.

We shall show that the fluctuation-dissipation theo-
rem may be interpreted as a matrix equation when
extended to several variables. The mean square fluctua-
tion of a single variable (0% is replaced by a matrix,
the elements of which are the spontaneous mutual
correlation moments of two fluctuating variables (Q Q).
The admittance (and hence the conductance) is re-
placed by an admittance matrix, the element ¥ j de-
scribing the response of the variable Q; to the force V.

* This work was supported by the ONR, and the Bureau of
Ordnance of the U. S. Navy.
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Furthermore, we shall show that both the conductance
and susceptance matrices are subject to a symmetry
relation. The symmetries so established apply to all
frequency components and consequently are applicable
to arbitrary types of transient processes. An indication
will be given of the application of this reciprocity
theorem to steady-state processes.

2. THE ADMITTANCE MATRIX

In this section we shall define the admittance matrix
and develop a useful quantum statistical expression
for it.

We consider a system whose Hamiltonian in isolation
is Ho. Let the system be acted on by a perturbation
which induces the irreversible processes of interest. For
a single variable this perturbation may be written in
the form® V(§)Q(- -« gr* + * p» - +), in which V(£) is a time-
dependent scalar which measures the instantaneous
strength of the applied perturbation, and which there-
fore plays the role of a driving force, and in which
Q(+-gr - psr++) is a function of the coordinates and
momenta of the particles composing the system. For
the general case in which several simultaneous per-
turbations act, we shall write the total perturbation as
Zk Vk(t)Qk(' et 'Pr' . )

We shall assume the perturbations to be sufficiently
small so that first-order perturbation theory is valid.
As we shall see, this assumption linearizes the system
in the following sense. Under the influence of the per-
turbations, the expectation value of Q; becomes a
function of time, and if Q;(w) denotes the Fourier
component of the time derivative of this expectation
value, then Q;(w) is a linear function of the Fourier
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components V;(w) of the several driving forces. That is,

Qi(w)=—2x YV jr(w) Viw). (2.1)

The minus sign® is here included in order to indicate
explicitly the tendency of @; to be of such a sign as to
decrease the perturbing energy V ;0,4 The matrix {¥ )}
may be called the admittance matrix. The elements of
this matrix are, in general, complex, indicating by the
usual convention the phase relations between the re-
sponse and the several driving forces. That is,

Y ju(w) = gin(w) — ibu(w). (2.2)
The real and imaginary parts of the admittance matrix
are respectively the conductance and susceptance mat-
rices, {gs} and {b;}.

The method we use in order to obtain explicit ex-
pressions for the elements of the admittance matrix is
simply to compute the time dependent expectation
value of Q; in the perturbed states of the system.* The
initial state of the system is represented by an ensemble
in which the occupation numbers of the unperturbed
energy states are in accordance with the equilibrium
distribution associated with a temperature 7.

In the presence of sinusoidal perturbations V(?)
= V3" sinwt, the Hamiltonian for the system is

H:Ho(-..qr..., ...pr...)
+Zk Vko Sinthk(' . .qr. sy .Pr. . ‘),
HyY,=E,¥,.
Writing the perturbed wave functions as
QnZZm bnm(t)\llm exp(‘iEmt/h);
we find, to first order, that for n=m
21bnm(t) = —Zk Vk0<‘1/m| le \I/n>
exp[ —#(En— En+hw)/h]—1
X
E.—E,+hw
expl —i#(En— En—Hw)/k]—1
E,—E,—lw

(2.3)
where
(2.4)

(2.5)

, (2.6)

and for n=m
bna(®) =14 (1/38) 2k ViV | Qi ¥y (1— coswt) /w. (2.7)
The expectation value (®,|Q;|®,) of @, in the nth
perturbed eigenstate may now be computed.
The operator associated with @; is given by the
commutator [ H, Q;]/k from which, keeping only first-
order terms, we have

. 1
(Bn| Q5] Br)y= 7 2k Zmtn Vi Ea| Q5] En)

X{Em| Q| En)(En—En)

e~ iwt__ g—it(Em—En)/hi egiwt— g—it(Em—En) ki

En'—Em'f"hw En_Em—hw

+complex conjugate. (2.8)

¢ The negative sign was unfortunately omitted in Eqgs. (2.12)
and (2.14) of reference 3.
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Now to obtain the response for a macroscopic system
we average (2.8) over the ensemble. The summations
over both # and m may be replaced by integrations
over energy.? Introducing the density of levels p(E) and
the distribution function

Sf(E.)=(const.) exp(— E,/kT), (2.9

we find
A 1 00 [~4]
Q= f f GEdEnp(En)p(En)f(En) (Em— En)

X2k Vi B | Q5| En)(En| Qk| En)

{ eiwt_ eit(Em—-En)/h ]

E.—E, +hw
1 @ (]

_— f f AEndEnp(En)p(En) f(En) (Em— )
2hdy Yo

XZk Vk0<Elefl En><En ’ le E,,.)

[ et pit(Em—En)/} }

E,—E,—hw

-+complex conjugate. (2.10)
For large / the first integral becomes
iTw

= exp(ia) fo AEmp(Em) p( Em— 1) f( B — i)

X2k Vi En| Q5| En—hwXEn—tw| Q| En)

exp(iwt) p°
n f f AE A p(En)p(Er)
27 o Yo

(En|Qi| Ex)X(En|Qi| Em)
E,—E,+hw

Xf(En) (Em" En) Zk

and the other integrals may be evaluated similarly. Asin
reference 3, these integrals may be further reduced,
yielding

(Qj>= —sinwt Dk g Vil+coswt > b Vi, (2.11)
with
giw="%mw(1—exp[—hw/kT])

X f B p(Eo)p(Em+10) f(En)
0

X {<E'm+hw , Qk l Em><Em ' QJ’ Em+ﬁw>+ C'C-}

@ e p(Em)p(En)f(En)(En—En)
+2°’fo fo AEnd L (En— Ep)?— (he)?

XIM{(En| Qx| EnXEn| Qj] Em)},

(2.12)
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and

bjk= ww(l—exp[-—ﬁw/kT])
X [ B (En)o Eat 1) ()

XIM{(En+hw| Q| En)(En|Q;| Entliw)}
® ® P(EM)P(En)f(En) (Em_ En)

12 dEdE,
+ L j; EndE (En—Em)z_ (ﬁw)2
X {(En| Qx| EXEn| Qj| En)+-c.c.}.

3. THE SPONTANEOUS FLUCTUATIONS
IN EQUILIBRIUM

(2.13)

Having in the previous section investigated the re-
sponse of a system to a driving force, we now turn our
attention to the spontaneous fluctuations in equilibrium.
In particular, we shall compute the correlation moment
{Q;0x) of two arbitrary functions of the coordinates and
momenta of the particles of the system.

We shall find it convenient to first compute (Q,;Q),
from which the moment {Q,0x) may easily be obtained.
We proceed in this calculation by formulating the
expectation value of Q,Q; in a pure state of the system
and then averaging over all pure states in accordance
with the equilibrium distribution function. Since the
quantum-mechanical operators @, and @ do not neces-
sarily commute, the appropriate operator for which we
seek the expectation value becomes 1(Q,Q:+0xQ)).
The expectation value of @ ;@ in the unperturbed state
¥, is then

HE.| QQu+ Q@i | En)=1/21[F s (En— Enn)?
X{E| Ok EnXEm|Qi| Exy+c.c]. (3.1)

The summation over m may be replaced by an in-

tegration over E,. With the substitution
ho=|E,— En|, 3.2)

we then obtain
. L. 1 I
HEW Q0 Qs ED=— f ()
X160 | Qu| EuXEn| Q5] En-ics) p( Bt oY
1 0
e f (o)X E— o) Q4 E)

X{En| Q| En—FHw)p(En—hw)hdw+tc.c. (3.3)

We compute the macroscopic correlation moment by
summing over unperturbed states ¥,, weighting them
by f(E.) as previously. This summation may also be re-
placed by an integration over E,. Using the trans-
formation

E—E'+hw (3.4)

BARASCH, AND JACKSON

as before, we have the result

@

) O= dwhw?(1 fw/kT
(@00=> f whert(1-+exp[ — e/ RT])

x f QB (B p( B f(En)

X[ Ent10| Qt| En)Enm| Q;] Enttw)+c.c.].

Since the Fourier component of Q; is simply the
Fourier component of §; divided by iw, it follows that

3.5)

( )—lfmdhl [—fieo/ET
Q:Qk~2 0 wh(14+exp[ —fiw/kT7)

XUEn+h6| Q| En)En|Q;j| Enthwy+tc.c.].

These two equations constitute our desired expres-
sions for the correlation moments of the spontaneously
fluctuating variables in an equilibrium system.

(3.6)

4. THE FLUCTUATION-DISSIPATION THEOREM

A theorem has previously been proved® which is
equivalent to a relation between the diagonal elements
of the fluctuation-correlation matrix and of the con-
ductance matrix. In this section we obtain an extension
of this theorem to the off-diagonal elements of the
respective matrices.

Comparison of Egs. (3.6) and (2.12) yields directly
the theorem

gjk(a))_'—gkj((&)):l. 1)

w

2 0
(0:00== f dwoB(w, T)[
Here T

E(w, T)=1thot+ho[explho/kT)—1T7,  (4.2)

which is formally the mean energy at temperature 7" of a
harmonic oscillator of natural frequency w. It may be
noted that at high T (kT>hw), E(w, T), assumes the
classical limiting value of &7

It is sometimes useful to introduce fictitious fluctu-
ating forces defined in such a way that they would
induce the observed values of the fluctuating responses.
It is clearly possible to use relations of the form V=Z2Q
to transform (4.1) into an expression for the correlation
moments of these fictitious forces. Because of the
artificiality of such forces and because the expressions
for the off-diagonal elements become rather complicated
in such a formulation, we prefer to restrict ourselves to
the theorem as stated in Eq. (4.1). The diagonal form
of Eq. (4.1), written in terms of the fluctuating forces,
has been applied elsewhere to the problems of Brownian
motion, the fluctuating electrie field in the vacuum, and
pressure fluctuations in gases.®
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5. SYMMETRY PROPERTIES OF THE ADMITTANCE
MATRIX
In this section we shall consider certain symmetry

properties of the admittance matrix.
We have

ij(w7 A):—'gik(w) A)—ibfk(wy A)) (51)

where we have explicitly indicated that the admittance
matrix may depend upon an applied magnetic field,
described by the vector potential 4. We consider the
behavior of the admittance matrix under the simul-
taneous transformations j«»>k and A—— A ; that is, we
shall investigate the relationship of ¥ j(w, A) and
Vij(w, —A). It may be noted that the dependence of
V #(w, A) on the indices j and % and on the field 4
is only through constructs of the form (E,|Q;|En)
X{En|Qi| Em). The transformation j«k is equivalent
to the replacement of each of these matrix elements by
its complex conjugate. Thus, we are led to study the
behavior of the unperturbed wave functions and the
operators Qi (these being the quantities entering into
the matrix elements) under a particular operator 7.
This operator is so defined that applied to a given wave
function which depends parametrically on 4, it takes
the complex conjugate of that function and also re-
places 4 by —4:

T\I/(-"Q'”, A)
=U*(eogeee, oo —=A--0). (5.2)

The unperturbed wave functions may be chosen as
real in the absence of a magnetic field. In the presence
of a field, the momenta in the unperturbed Hamil-
tonian are replaced by (P,—e./cA,) and thence by
—ih[V,— (e,/hc)iA,]. Therefore, the convention which
made the wave functions real in the absence of a field
will cause them to involve both 7 and A only through
the product ¢4. The unperturbed wave functions are
therefore invariant under the 7 operation.

Similarly the classical function Q; is a real function
of the coordinates and of the quantities (P,—e,/cA4,).
The operator Q; is consequently a function of the
coordinates and of the quantities — [ V,— (e,/kc)id,].
Since the T operator leaves the square bracket invariant,
it merely replaces (P,—e,/cA,) by — (P,—e,/cA,). That
is, the symmetry of the operator Q; under T is equiva-
lent to the symmetry of the classical function Q; under
the reversal of all particle velocities.

In the above discussion we have, for convenience,
implied a scalar wave function and thereby ignored
spin. If spin is included the operator 7" must also be
considered as causing the reversal of all spins. The T
operator is essentially the Wigner time-reversal oper-
ator.” The symmetry of the operator Q; under T is then
equivalent to the symmetry of the semiclassical func-
tion Q; under the simultaneous reversal of all particle
velocities and spins.

7 A simple discussion of the time-reversal operator is given by
M. J. Klein, Am. J. Phys. 20, 65 (1952).
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Returning now to Eq. (5.1), we recall that ¥ j(w, 4)
depends on 7 and % only through constructs of the form
(En|Q;| En){En|Qi| Em). The simultaneous transforma-
tion jek and A——A4 corresponds to the application
of the 7" operation within these matrix elements. The T
operation leaves the unperturbed wave functions in-
variant, and yields a symmetry, in its action on the Q;,
which derives from the dependence of the Q; on the
particle velocities and spins. If both Q; and Qy are even
under the reversal of particle velocities and spins, then
Y ;i(w, 4) is invariant under the transformation con-
sidered. If both Q; and Qi are odd under the reversal
of particle velocities and spins, then ¥ j(w, 4) is again
invariant, whereas if Q; is even and Qr odd (or vice
versa), ¥V j(w, A) changes sign under this transfor-
mation.

Thus, we have derived our basic symmetry relations.
If Q; and Qk are both odd or both even under reversal
of the particle velocities and spins,

Vilw, A)=Yii(w, —A4). (5.3)

If Q; is even and Q@ odd (or vice versa) under reversal
of the particle velocities and spins,

Vi, 4)=—Vii(w, —A4). (S4)

It may now be noted that the general case, in which
the Q; and Q, are neither even nor odd in the particle
velocities and spins, may be easily subsumed under the
above analysis by a simple artifice. It is always possible
to write any given function Q; as the sum of two
functions, one even, =Q;® and one odd, =Q;®, in the
particle velocities and spins. The case in which there is a
single driving force associated with the single function
Q; may, therefore, be considered to be a special case of
the situation in which there are two independent driving
forces for Q;© and Q,®, these two driving forces being
taken equal:

Vij= Vj(s)Qj(s) + Vj(a)Qj(a),

Vj(s) = Vj(“) =V,

(5.5)
with
(5.6)

This device reduces any situation to one in which all
functions Q; or Qy are either even or odd under reversal
of the particle velocities and spins.

The symmetry theorem expressed in Egs. (5.3) and
(5.4) is a generalization of the reciprocity theorem of
Onsager. Whereas the Onsager theorem applies only to
relaxation processes, the above theorem applies to all
frequency components and hence to arbitrary transient
processes. Both the real and the imaginary components
of the admittance are subject to the symmetry re-
lations.

6. THE APPLICATION TO STEADY-STATE PROCESSES

The application of the symmetry theorem to steady-
state processes requires an extension of the analysis
and the introduction of a particular type of approxi-
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mation. This situation exists also in the application of
the Onsager theorem to steady-state processes.®® An
appropriate extension of the analysis will appear in a
subsequent paper, but it seems desirable to indicate
briefly here the general aspects of the relationship of the
symmetry theorem to steady-state processes.

It is immediately apparent that our formalism is not
appropriate for a direct application to steady-state
processes. The admittance as given in Egs. (2.12) and
(2.13) vanishes for zero frequency, whereas in a steady-
state process a time-independent force leads to a non-
zero time-independent response. A specific example
brings out very clearly the essential difference in the
situations described by our formalism and those appro-
priate to the study of steady-state phenomena. Con-
sider, in particular, the application of an electric field
to a conductor. As indicated in reference 3, this situation
may be described by taking the driving force V as the
applied potential difference and Q as Y, ex;/L; wherein
e; is the charge on the 7th particle, x; its distance from
one end of the conductor, and L the total length of the
conductor. The system which is properly described by
this Hamiltonian is an electrical resistor placed between
two condenser plates which impress the voltage V across
it, the resistor, however, #not being in electrical contact
with the external circuit. As indicated above, the time
independent applied driving force V eventually leads
to a vanishing current €. On the other hand, a steady-
state process results if the electrical isolation between
the conductor and the potential source is destroyed.
Whereas the distribution of electrons along the length
of the conductor is radically different from the equi-
librium distribution in the situation discussed (the
electrons accumulating toward one end of the con-
ductor), the effect of making an actual physical contact
between the conductor and the rest of the circuit is
to provide an external reservoir of electrons which
attempts to maintain the equilibrium distribution.

The above example suggests one approximate method
of applying our analysis to steady-state processes: this
method has been previously employed in a discussion
of the Onsager relations by one of us.? A steady-state
process may be considered as involving the action of
two distinct external agencies on the dissipative system.
One of these applies a perturbation to the system; the
second is an agency which attempts to restore the equi-

8 See H. B. Callen, Phys. Rev. 73, 1349 (1948).
9 H. B. Callen, thesis, Massachusetts Institute of Technology,
1947, unpublished.
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librium statistical distribution function. The analysis of
such a steady-state process may then be conveniently
carried out by an artifice which successfully avoids the
requirement of explicit consideration of the restoring
agency. We assume that the response § observed in
the steady-state is equal to the instantaneous response
Q() which would be exhibited at some particular
time 7 in a system which is not acted on by a restoring
agency but to which is applied, at time ¢=0, the driving
force V. We see that for such a system the distribution
function is of precisely the equilibrium form immedi-
ately after the application of the perturbation. If the
restoring agency is a very effective one, so that in its
competition with the applied perturbation it is able to
maintain very nearly the equilibrium distribution func-
tion in the steady-state process, the parameter = which
appears in our analysis will be very small; conversely,
weak restoring agencies and/or strong perturbations are
represented in our formalism by large values of 7. By
this device the action of the restoring agency is repre-
sented approximately by a single parameter 7, and the
analysis of steady-state processes is reduced to the
calculation of the response, at a particular time, of an
appropriately defined transient process; this latter type
of process being completely within the scope of the
formalism previously developed.

We consider, then, a system to which are applied the
driving forces

Vo, >0,

V)=
0, <0,

6.1)

and we seek the response at time 7. It follows immedi-
ately from Eq. (2.1) and from the transform 1/iw of
the unit step function that

Qi(1) =2k LpV",
Y ju(w)
1

w

6.2)
where

1 0
Lj=— f dw exp(iwT) . (6.3)
21 J_p

Q;(r) is to be interpreted as the time-independent re-
sponse in the steady-state process. It is evident from
Eq. (6.3) that the Ly satisfy symmetry relations identi-
cal in form to those satisfied by the ¥, these sym-
metries being the basis of the modern theory of steady-
state irreversible processes.® 10

108, R. DeGroot, Thermodynamics of Irreversible Processes
(Nor)th-Holland Publishing Company, Amsterdam, Netherlands,
1951).



