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where r is the zero field relaxation time. Equation (2)
then takes the form

(eE/k) (df/dk)+ (fi/r) =0,
for high as well as low fields. '

Since the isotropic part of the distribution will not
contribute to the current, the current density is given by

t t' kk 2j= ' e—cos8(—fi cos8) k' sin8d84gk, (7)
(2s)'

where m is the number of electrons per unit volume,
and the quantity in brackets is to be averaged over all
electrons. In terms of the mobility, this result is

e 1 d

3m k' dk

In this form the result is valid for low fields and high
within the limits that the scattering is nearly elastic.
It yields a field-dependent mobility at high fields be-
cause the electron distribution is field-dependent.

It is easily checked that this gives correct results in
all familiar low field cases. For example, in the case of
lattice or impurity scattering in nondegenerate semi-
conductors at low fields it gives the same mobility as
(e/m) (v'r)/(v'), which is valid for a Maxwell-Boltzmann
distribution. 4 At high fields it gives the correct drift
velocity for electrons in a gas, for which the high field
distribution is known. ' It has been pointed out by
Wannier that this expression for the mobility is de-
rivable in the high field case from the equation system
(17) of his paper. '

4 W. Shockley, Etecfrons und Holes in Semicondlctors (D. Van
Nostrand Company, Inc. , New York, 1950), p. 276.

~ See reference 3, p. 351.' G. Wannier, Phys. Rev. 83, 281 (1951).

where the integration is over all k space. Using (6) to
eliminate fi, we obtain

e2 errdfj= E' ~' r——k' cos'tI singdodgdk (8).
(2s)'m & ~ & dk

We now make the assumption that the energy surfaces
are spherical. The integration can then be carried out,
giving

j= E(k'rf) ——, f (k'r)dk —. (9)
3z2m o &o

For the mechanisms of scattering under consideration,
k'T vanishes at the lower limit, and the first term makes

'Essentially this equation is derived for electrons in a gas in
high 6elds in S. Chapman and T. G. Cowling, MuthemuA'cut Theory
of Non-Uniform Guses (Cambridge University Press, Cambridge,
1939), p. 346.

space along the ir vector parallel to E. Using (1), we no contribution to j.The expression can then be written
obtain
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Some preliminary applications of high speed computing to the analysis of experimental data on turbulence
are reported. A time correlation curve is determined from a recording of velocity Quctuations measured with
a single hot-wire anemometer. The shape of the time correlation curve differs from the shape of the longi-
tudinal correlation curve measured in the same fluid Bow. One must, therefore, be cautious in reaching
conclusions from experiments based on the assumption that time and space spectra of turbulence are
identical. A more extensive study of the relation between time and space characteristics of turbulence is in
process.

HEN the relation between a spectrum of tur-
bulence and a correlation coeKcient was first

found by Taylor, ' an assumption was made that the

*This work was supported by the U. S. Navy Bureau of
Ordnance.

' G. I. Taylor, Proc. Roy. Soc. (London) A164, 476 (1938).

turbulence pattern moves in the fluid stream without
changing. This assumption was necessary, since Taylor's
spectrum described a statistical characteristic of velocity
fluctuations at a fixed point of the fluid flow while his
correlation coeScient referred to simultaneous velocity
fluctuations along the mean velocity direction. Taylor's
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assumption is, of course, meant as an approximation
and in many cases its use is fully justified. In a held of
decaying turbulence the time-spectrum' cannot be
identical with the one-dimensional longitudinal spec-
trum'; if it were, there would not be any decay what-
soever. One must, therefore, be rather cautious in
reaching conclusions concerning the decay of turbulence
when these conclusions are based on the assumption
that the time-spectrum and the longitudinal spectrum
are identical. The relation between certain time and
space characteristics has been discussed elsewhere. "It
is difficult to establish a rigorous theoretical relation be-
tween these characteristics without other assumptions.
A direct experimental comparison between them may,
therefore, be valuable. The present note describes some
preliminary data obtained during the preparation of an
extensive investigation in this field.

Oscillographic recordings of the fluctuations of the
turbulent velocity made with a hot-wire anemometer
were used for this investigation. The measurements
(made available by Dr. G. B.Schubauer of the National
Bureau of Standards) were obtained in a wind-tunnel
at a point 10 feet downstream of a 3—,'-inch mesh grid
at a wind speed of 20 feet per second. The velocity was
determined as a function of the time by reading, on the
oscillographic recording, the velocity at 1779 instants,

spaced at intervals equal to approximately
1/3100 second.

Various statistical characteristics of turbulence, in-

cluding frequency distributions and second- and third-
order correlation curves, were then determined using
punch-card computing Inachines. 4 The second-order
time correlation coefficient for the turbulent velocities
I and I;&y,

' at two instants t; and 3;&~ separated by an
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' F. N. Frenkiel, Compt. rend. 222, 367 (1946).'F. N. Frenkiel, Proc. 7th Int. Congr. Appl. Mech. 2, 112
(1948).' Frenkiel, Edelson, and Rawling, Nav. Qrd. Lab. Memo 10815
(1950) (unpublished).

FIG. 1. Time-correlation coefficient E~(h) as a function of the
length of the oscillographic recording. The interval of time h and
the length of the recording e are expressed in multiples of 1/3100
second.
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FIG. 2. Time-correlation curve calculated using the total length
of the oscillographic recording (n=1779 corresponding to about
0.57 second).

interval of time h was calculated with the formula

i=n—A

R,(h)= g 55 I;+&'[ p (55;+&')'j-I,

' Dryden, Schubauer, Mock, and Skramstad, National Advisory
Committee for Aeronautics, Rept. 581 (1937).

with e= 1, 2, , 1779 and h the interval of time meas-
ured in multiples of 1/3100 second. Figure 1 represents
the time-correlation coefficient for several values of the
interval of time h as a function of the number of points
used for its computation. The curves show a general
trend indicating the limits toward which the correlation
coeKcient values appear to tend. Figure 2, representing
the correlation coefficient R~ as a function of h, is given
only as an illustration of the general shape of the time-
correlation curve. One notices immediately the large
negative values of the correlation coefficient for h in
the region of 0.02 to 0.04 second. None of the available
measurements of longitudinal correlation coefficients
made under the same experimental conditions present
such large negative values. ' While the length of the
oscillographic recording was too small to give very
accurate numerical values for the correlation coeffi-

cients, one can conclude from Fig. 1 that the negative
values of Rl(h) are of the order of magnitude of those
represented on Fig. 2. From these preliminary investi-

gations, it appears that the time-correlation curve has
a sensibly diferent shape than the longitudinal corre-
lation curve.

If the time correlation curve R, (h) is compared with

the longitudinal correlation curve R,(hU) (U is the
mean velocity and hU =x is the distance between the
two points for which the correlation between the
55-velocity components is measured), one may expect
that the difference between R~ and R, will decrease as h

decreases. However, even if this difference is negligible

for small h, it does not necessarily follow that the
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difference between time and space velocity gradients is
negligible, and there may be, therefore, a non-negligible
difference between time and space microscales of tur-
bulence.

An extensive investigation is needed before complete
experimental results can be given concerning the rela-

tion between time and space characteristics of tur-
bulence. This work is now in process in cooperation
with. the National Bureau of Standards. '

6 New experimental measurements, now in process, are being
made in cooperation with Dr. J. Laufer (National Bureau of
Standards) and Mr. I. Katz (Applied Physics Laboratory).
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The fluctuation-dissipation theorem relating spontaneous equilibrium fluctuations to the conductance in a
dissipative thermodynamic system is extended to the case of several variables, using a quantum statistical
analysis. The conductance matrix is shown to be subject to certain symmetry relations, providing a general-
ization of the Onsager reciprocity theorem. The susceptance matrix is also shown to be subject to similar
symmetries. The symmetries apply to all frequency components, and hence to arbitrary transient processes.

1. INTRODUCTION

'HE theory of irreversible processes consists essen-
tially of two types of theorems. The 6rst of these

theorems is the reciprocity relations of Onsager, treating
of the symmetry of the mutual interference among
several simultaneously occurring irreversible processes. "
The second is the fluctuation-dissipation theorem, re-
lating the spontaneous fluctuations in an equilibrium
system and the parameter (the conductance) which
characterizes the dissipative aspects of an irreversible
process. ' ' The purpose of this and the following paper
is to extend the Quctuation-dissipation theorem to
several variables and to exhibit its relation to a general-
ization of the Onsager reciprocity theorem.

Both the Onsager theorem and the Quctuation-dis-
sipation theorem have been investigated by quantum
statistical and thermodynamic methods. In the present
paper we shall be concerned exclusively with the
quantum statistical analysis.

We shall show that the Ructuation-dissipation theo-
rem may be interpreted as a matrix equation when
extended to several variables. The mean square Auctua-
tion of a single variable (Q') is replaced by a matrix,
the elements of which are the spontaneous mutual
correlation moments of two fluctuating variables (Q,QA).
The admittance (and hence the conductance) is re-
placed by an admittance matrix, the element I',& de-
scribing the response of the variable Q, to the force VA.

*This work was supported by the ONR, and the Bureau of
Ordnance of the U. S. Navy.' L. Onsager, Phys. Rev. 37, 405 (1931);38, 2265 (1931).

~ H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945).
3 H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
4 J. L. Jackson, Phys. Rev. 87, 471 (1952).' H, B. Callen and R, F. Greene, Phys. Rev. 86, 702 (1952).

Furthermore, we shall show that both the conductance
and susceptance matrices are subject to a symmetry
relation. The symmetries so established apply to all
frequency components and consequently are applicable
to arbitrary types of transient processes. An indication
will be given of the application of this reciprocity
theorem to steady-state processes.

2. THE ADMITTANCE MATRIX

In this section we shall define the admittance matrix
and develop a useful quantum statistical expression
for it.

We consider a system whose Hamiltonian in isolation
is Ho. Let the system be acted on by a perturbation
which induces the irreversible processes of interest. For
a single variable this perturbation may be written in
the form' V(t)Q( q, . p„),in which V(t) is a time-
dependent scalar which measures the instantaneous
strength of the applied perturbation, and which there-
fore plays the role of a driving force, and in which

Q( q, p, ) is a function of the coordinates and
momenta of the particles composing the system. For
the general case in which several simultaneous per-
turbations act, we shall write the total perturbation as

g& VA(t)Q&( '
q p )

We shall assume the perturbations to be suKciently
small so that 6rst-order perturbation theory is valid.
As we shall see, this assumption linearizes the system
in the following sense. Under the influence of the per-
turbations, the expectation value of Q; becomes a
function of time, and if Q, (&o) denotes the Fourier
component of the time derivative of this expectation
value, then Q;(&o) is a linear function of the Fourier


