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obtained 3

D/p= 0.0268&0.0013 ev,

T=303~1'K,
k2'/q= 0.0262&0.0001 ev.

'The probable error in the values of T and kT/q were not
obtained using the method of least squares which would give a
value much less than this. Generous allowance is made for
systematic uncertainty in recording ambient temperature.

It would appear that these results verify the relation
D/II, =AT/q. Although there have been other experi-
mental verifications of this relationship using colloidal
particles and ions, this is the first direct experimental
proof of the validity of this equation for electrons and
holes of which we are aware.

The authors would like to express their appreciation
to W. C. Westphal for assisting with apparatus, to
J. R. Haynes for advice and encouragement, and to the
Bell Telephone Laboratories for their hospitality.
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In this paper Einstein's unified field theory is modified, and some of the physical implications of the new
theory are examined. It entails: (1) a restriction of 4-current distribution, (2) an electromagnetic Geld con-
sisting of short- and long-range parts, (3) a finite self-energy for the electron, (4) a classical description of pair
production and annihilation as discussed by Feynman in his electrodynamics, (5) the Lorentz-force law
for a charged particle moving in an external electromagnetic field, (6) the bending of light grazing the surface
of the sun —the same as given by the general theory of relativity.

l. INTRODUCTION

~HE arguments for the necessity of a unified field
theory are well known, and therefore they will

not be elaborated at length. The author believes that a
correct and unified quantum theory of fields, with-
out the need of the so-called renormalization of some
physical constants, can be reached only through a
complete classical field theory that does not exclude
gravitational phenomena. It is true that one cannot
feel very optimistic about the quantization of a non-
linear classical field theory. But one hopes that this

difhculty may be overcome, partly, by starting the
quantization procedure with a Lagrangian' formula-
tion of the quantum field theory.

In this paper we propose a new version of Einstein's
latest unified field theory. ' The reasons for this modi-
fication will be made clear in the following. The same
formalism and notation of Einstein's theory are used.
The total field is described by a Hermitian tensor g p

given as

where
gap= +ap+&papv

+ap gap and pap gapv ~ ( 1)

so that we have
(g-p)"= (g-p). (1.2)

*Now at Laboratory of Nuclear Studies, Cornell University,
Ithaca, New York.' J. Schwinger, Phys. Rev. 82, 914 (1951).

"A. Einstein, The Meaning of Relativity (Methuen, London,
1951).

The dagger (j') stands for Hermitian conjugate opera-

tion. We also have the general aKne connection F„p given
by

'y 7 . 7
pap= pap+&pap. (1.3)

where
g= a(1—0—A'),

0= —',q„„yv" (is an invariant),

A= ',f""y„„(isa pseu-doscalar),

(1 4)

faP = paPPv y
2(—a)&

where ~ »" is zero whenever any two indices are equal
and is ~i for even and odd permutations. All indices
are raised by u t'.

We also have the contravariant tensor g
t' given by

g„gPw —gP

The Hermitian property of I'
p in the covariant indices

a and P is obvious.
Now, if we define u t' as the normalized minors of

Beta p= a, then, we have

a~„u»= 8~&.

The determinant of g p, because of (1.2), is real and
can be expressed as
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ap ap ae p

g =(—g)'~ +g
apg-=(- ) (.'+Af. )/(I-~-A).

In (1.6) we used the expression

bP A=f "q. P„.

(1.6)

(1.7)

The components of the aKne connection r& p are
defined by solving the equations

gap"y=gap p ger p
—galsrpp=0.

+

By splitting up symmetric and antisymmetric parts (or
by taking real and imaginary parts) of (1.8) it is easy
to show that

It can easily be shown that g P[=(—g)&g P] can be
expressed in terms of g p as

of G P
—2a PG= 8s—yT P are the phenomenological

descriptions of the sources of the gravitational field, but
the fact that covariant divergence of the left-hand side
vanishes identically has induced one to stick-in T p in
an ad hoc manner. In unified field theory we can start,
formally, in the same way and derive the sources of the
field direct from the elements of the theory itself.

We first note that if we multiply both sides of (1.11)
by g

P and use Eqs. (1.14), the identities

ape pv a
6 tl

= —~g Iw. (2.1)

follow immediately. The stroke ( ~) in (2.1) stands for

covariant differentiation with respect to
A

If (1.8) and (1.13) are granted, it can be shown that
the Hermitian tensor E p satisfies Bianchi-Einstein
identities for the nonsymmetric field derived by
Einstein' as

where t

g'[R-P;. R-~;P—»P;-j-=o
+— ++

V
t P t

» v v

aP 'I I' +O ('PPvPaa+ VvaPivP) v

l Pl

(2 2)
(1.9)

These identities hold for all fields satisfying (1.8) and
(1.13). It is now easy to verify the identity, with

are the Christoffel symbols formed from proviso (1.8) and (1.13),

~ap. 'Y

Equations (1.8), when solved with respect to P p,
g [ agTPga Y;P gvP;a]=0v+- ++

(2.3)

give'

'V 'V VP

PaP 2IaP++ vaPoav

which is equivalent to (2.1).
After performing the semi-colon covariant diGeren-

(1 10)
tiations and using

ap yv a
0 p 6

where the sign (o) stands for covariant differentiation

with respect to I' P, so that (1.10) is only an implicit
7

solution of (1.8), and I P= a»I P„ is defined by

IaW = vvaPv+ 'VPv, a+, PvaP,
Equation (1.11) represents the 4-current density, the
dual of which is

ap
(which follows from g+,~=0), the identity (2.2) can
be written in a suggestive form as

ap a pv pv

(g RPa 2' g Rav)[(a — 2g (Rav PjRvP a+RPju, v)v (2.4)

and (2.3) or (2.1) are equivalent to
ap a pv /lv

(g isa 2' g ~av) !la 2 g (ivav, P+ pvP, a+ vPPa, v)v (2 5)

3 =(1/3 l) """I.".
We add the four field conditions,

r.=r.',=0,

(1.12)

(1.13)

where (~~) stands for covariant differentiation with
respect to ChristoGel symbols formed from b,p which is
defined by

ap ap ap
b =g-/( —Detg-)l.

to Eqs. (1.8).
Equations (1.13) imply, because of (1.8), the four

equations

Hence,

and

ap ap ap

g = (—b)'*b, b=Detb P=Detg (2.6)

ap

6,p=0. (1.14)
'VP

ba„b = ba. (2.7)

2. THE EQUATIONS OF THE TOTAL FIELD

The existence of Bianchi identities have been of
great use in the mathematical formulation of the
ideas of general relativity. The right-hand sides

~ B. Kuryuno flu, Phys. Rev. 82, 289 (1951).

The form of (2.4) does not change with respect to the
transformation

R ~R P+(8 BP BPB ). —

' A. Einstein, Can. J. Math. 2, 120 (1950).
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ap a pv a
A Ruu 2~s 0 R—"+fbi( b)**—

and
P'(g a—s. ibsen a—"), (I)

R.s.,+Rs,..+R,.s= p(..~.,+~~,.+-~,.s) (II)

where, in I, the third term on the left-hand side is a
consequence of the covariant diGerentiation with re-

spect to, and f is a constant.vt
b

The minus sign before p' is very important and will

explain itself when we consider the solutions of the
field equations.

By contracting (I) with respect to P and n and ar-
ranging the terms, we obtain I as

This fact will be made use of in the Hamiltonian prin-
ciple of the theory.

When q s=0, (2.4) reduces to

ap a pv

(rt Gs„——',bsa G„„))~——0,

where 0 ~=(—a)~a i'; hence the symmetric tensor b s
may be taken as the generalized "metric" of the space-
time. From the conservation laws of general relativity
one might jump to the conclusion that the right-hand
sides of (2.4) ought to vanish so that they would con-
stitute a set of four field equations, but this is eoe-
sequitur. Instead, we shall follow the analogy with the
electromagnetic theory. In (2.4) the right-hand side
being a covariant divergence of a symmetric tensor
density [left-hand side of (2.4)$ has the appearance of
a generalized electromagnetic force density, that this
is so will be shown more explicitly later on.

The identity (2.4) can be satisfied by taking R,s=0
(Einstein's theory), or we may reconcile the two iden-
tities by putting R s )ig s (Schro——dinger's theory). ' In
both cases the field equations are over-determined
(since we also have Eqs. (1.14) the total number of the
field equations are 20; for consistency 8 identities are
required, but there are only 4+1 identities), and also
the forms of the identities are destroyed. It is very im-
portant to preserve the form of the identities, i.e., the
reconciliation of (2.4) and (2.5) can be carried through
by preserving the forms of "matter tensor" and "force-
density, " so that only in this way a consistent number
of field equations can be secured. The expression in the
bracket on the left-hand side of (2.4) can be regarded
as a tensor describing the energy and momentum of the
total field. We can think the same for (2.5) so that the
required unification of the physical fields will be
achieved, if we introduce a "fundamental constant" p
of the dimension of (length) ' by writing

that our field equations must reduce, in the absence of
q p, to the free field equations of general relativity.
Thus, we finally obtain

R-s=- p (.s-b-.),

R-s»+, Rs»-+, R»-a=, p—'I s»

(2.8)

(2 9)

aP
(2.10)

In this way we have obtained 18 field equations for 16
field variables plus two trivial identities that follow by
differentiation of (2.9) and (2.10). Hence, we have a
consistent number of field equations. Note that p' is
not a cosmological constant. The same field equations
can also be obtained from an action principle,

The term in curly brackets can also be written as

([-D«g'j'- [-D«g'j')
= (Q—b) [1—(1—M —L') &]

where
2XV„X L=

b-.b~~ 1
Xpv g y X ~ X Pb—g b—

In order to impose the conditions (1.14), we add the
term 0 ~B p and regard 8 as auxiliary field variable
which can be eliminated from the field equations.
Lagrangians of Einstein and Schrodinger theories are

and
Zgg= 0"t'R p

Ps= Det( —R s)& (or g ~R p
—2X(—g)&).

The variation of I=J' Zd x consists of adding the inde-
pendent sects of changing the field. components at

each point by 800 &, 801 p, 80B and of altering the
region of integration by a displacement bx& of the
points on the boundary surfaces. The first kind of
variations lead to the field equations and the second
one to the Bianchi-Einstein identities for the nonsym-
metric field. The variation of the first term in (2.11) is

given in Einstein's theory, and that of the second term
can easily be obtained.

3. CONSERVATION LAWS

Now, let us introduce the pseudo quantity

b pd4x=b)t [g &R s —2p'}(—b)~ —(—g)~}fd4x=0.

(2.11)

Rap= p aap+fbas

The constant fcan be de6ned by imposing the condition

' E. Schrodinger, Proc. Roy. Irish Acad. LI. A213 (1948).

where
8= A %.p (3 1)

(3.2)
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I' „=8log( —g)&/rix .

ap
The variation of (3.1), using A+., r =0, gives

where

ap 7 ap
68=-8-p~s +8-p~s .„

V

8~p= I'ap —
&p I'a, .

(3.4)

(3.5)

The Hamiltonian derivatives of 8 with respect to A
p

results in
ci8 ci aS8

Bg P BX78g P
= —R p. (3.6)

Multiplying (3.6) by S p, „, we get

ap ~ e ap—s,.R-p= (&W—s .W-p)
Bx'~

or we can write

(3.7)

s .,R—-p=-A, R—-p+- (~P—s .P-p) (3.g)
2 2 2 8xp

We can cancel the left-hand side of (3.8) by writing the
identities (2.2) as

ap ap
ss, rR~p= —ss (R~p. v+Rp~, ~+R». p)

-(s-R- —l»A-R, .),p (3 9)

On adding up (3.8) and (3.9) and using the field equa-
tions (1.14), i.e., we are again using the 4-hermiticity
conditions I' =0, it follows that

where

p

p
—0 (3.10)

which is the nonlinear part of

7 7 7 P 7
Rap= F~p ~ I ~r p+ F~pp» F~~I ~p= R~p+iR~p& (3 3)

where

tivity, and it is conserved. In the absence of matter,
when the field equations G p=0 are used, (3.12) consist
merely of the last term representing gravitational field
energy density.

A similar situation appears to be the case in
Einstein's theory. When the field equations R p=0 are
used in (3.11) the energy momentum tensor of
Einstein's field consists again of the last pseudo term
of (3.11), and there is nothing to take the place of the
matter in the ordinary sense, and Einstein's field
equations are not complete.

There is one important point to be noticed: Because
of the existence of the electromagnetic field the last
term of (3.11) differs considerably from its counterpart
2 in general relativity; e.g. , it cannot be made to
vanish at a point in any special coordinate system.
Despite this the pseudo term cannot represent the total
field energy density. '

The above arguments, as far as a nonsymmetric
generalization of general relativity is concerned, make
it clear beyond any shadow of doubt that the expression
(3.11) is the genuine energy momentum tensor of the
total field, and its form is most suggestive and provides
another argument in favor of the fact that the field
equations are neither R p=0 nor R p=hg p both of
which cause the vanishing of the field energy density.

If in (3.11) we use the field equations (2.8), we get

p p PV Pf

4~P%,= —P'L»(( —&)'—(—g)' —-'A v")+A 9'»&

—(s R., ,'b, s R„.)—+—-',(A,+„„b,8) (3.1—3).
The expression in square brackets in (3.13), when the
cubes and higher orders of q 's are neglected, reduces to

—(—~)'(s~ PV .W" 8"V.)—
The reason for not having a minus sign before gp

in (3.11) is due to the fact that the tensor R p defined
by (3.3) has an opposite sign to that of conventional
form of R p.

We may also define an energy-momentum 4-vector
by writing

4sp'Z =(S R ——,'»A R„,)
py.= t'Z.d., (3.14)

—(s R-.—l~ s R")+l(s .P"-~P)
is the pseudo stress-energy-momentum tensor of the
total field.

If we set p p
——0, (3.11) reduces to

4. LINEAR APPROXIMATIONS TO THE
FIELD EQUATIONS

a G.„—-,'»a G„.+-', (a,,Z„„—8,Z), (3.12)
The two spherically symmetric static solutions of

Einstein-Schrodinger theories were obtained by Papa-
petrou. It would be of great interest if one could obtain

p
where Z„„and Z are the corresponding expressions of

p
8„„and 8 in general relativity. The expression (3.12)
is the total energy momentum tensor of general rela-

5 B. Kuryunoglu, Proc. Phys. Soc. (London) A65, 81 (1952).' A. Papapetrou, Proc. Roy. Irish Acad. A52, 69 (1948),

(3 11) where g is a pseudo vector, and dop is a four-dimen-
sional surface element.

Finally it can be shown that, because of F =0, the
field equations are gauge-invariant.
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the same for the present theory. But this is found to be The remaining Geld variables are
more dificult in this case. In order to see more ex-
plicitly the form of the right-hand sides of the Geld
equations (2.8) we first introduce a constant q (with the b=i —h=u,
dimensions of an electric field strength) and write the
physical tensor g p as

g= —h+ (1—0),

b p= bp+—h p T'~,—
where

gaP =OaP+ 2 0'aP.
1 g

TOP —g u~P PPV PP,V P~P +PIP

The numerical value of q will be calculated in later From (1.11) and (1.12) we can write
sections. For the static spherically symmetric case the
right-hand sides of (2.8) have the forms ~pe = &~%~~a~

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

1—p'(~ii —b») = —p'~»~ 1—
(1—&'/V')'&

—P'(~» —b») = —P'o»(1 —(1—&'/g')'),

—P2(a2, —b») = —P2u22(1 —(1—E2/g2) &) sin'8,

where
8pfap =+a,

fap 2 papluAv 8aAp 8pAa&

(4.13)

(4.14)

and A are the potentials of the electromagnetic field.
Using (4.14), T'

p becomes

& ap=g&apglvv&pyv galvvpplv= (4&apfjcvflvv faafpIv)= &ap

With these results the field equations (2.8) reduce to
(p'(a—4 b)—= p'a

(
1-—

(1—E2/q2) &)
The comparison of these with the kinetic energy—moc2L1 —(1—22/c2)~] is most suggestive;v while the
latter puts a limit to the velocity of light, the former
puts a limit to the electric Geld strength E. Thus for the
consistency of the above expressions we have to impose
the condition

hap+ 2 (bap+p+p +a+p)+ 8g ppv8v pap
' +8a8P(4fpvfIvv)+ 2 (fag&Pp+fPlv&ay

bpfu ~")—=O'T-p (4 15)
where

J p= 8 Jp —8', and = 8„8„, and 8 = 8/8x, (4.16)
(4 2)

upon the electric field E.
Now the symmetric and the antisymmetric parts of

R pare

1' 'y V P v T Vz.p= (r.„,,—r.„,,+ r.,r„„—r.„r„)+r.„r,p, (4.3)

'y Y 'Y 'V P 1' Is 'Y

~ap= rap. v+raprvv ra~rvp r~prav rapov (4 4)

We split up the Geld variables in the form

gap= bap+hap+& papv (4.5)
where h p and y p represent weak gravitational and
electromagnetic fields, respectively, where we use the
convention x4=ict.

Let us assume that we can neglect

(1) the squares of h p,
(2) the cubes and higher orders of p p',

(3) gravitations, l and electromagnetic interaction
terms.
Then, using (1.9) and (1.10), one can write

and the coordinate conditions

8„h „=,'8 h, (h=h„-„) (4.17)

which is solved by
pap= 0v (4.19)

2 ~-p(x) =
)"L~-p(k)+ ~-p(k)3

&& exp(ik„x„)b(k„')d'k, (4.20)

are used. Because of the Bianchi-Einstein identities for
the nonsymmetric field the conditions (4.17) are con-
sistent with the field equations.

In the absence of charges we have

2. haP+8p'PPv8v'Palv+8a8P(4fpvfpv) P TaP (4'18)'
A general solution of the wave equation (4.18) for the
gravitational potentials h p can be obtained by ex-
pressing p p as a superposition of plain waves by means
of Fourier integral representation of q p. It follows,
by difFerentiation, from (1.11) that p,p satisfy

1I ~p=rl~p~ —~&v ~p~ (4.6)

where the coefficients y p are undefined, and b(k„2) is
Dirac's 8-function. The vector k„ is the wave-number.
four vector. For the functions h p we write

1r-p= 2 (8vh.p 8ph. v 8-hpv)— —

+2 (ppv~avv+ pva~pvv)+ ppv8v b'av+ pva8v pvp (4 7)
7 M. Born and L. Infe1d, Proc. Roy. Soc. (London) CXLIV,

A425 (1934).

—',h p(x) = Lh p(k)+h p(k) j exp(ik„x„)d'k. (4.21)

When these are substituted in (4.18), one obtains the
gravitational potentials as functions of Maxwell s radi-
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pzg
—2 = 2V/e4

where y =gravitational constant.

(4.23)

5. THE STRUCTURE OF THE ELECTRON

The most interesting feature of the unified field
theory is its restriction of the charge-current distribu-
tion. This is the essential deviation from Maxwell-
Lorentz electrodynamics and is expressed by the field
equations (2.9).With the above approximation it works
out as

where
( —«')J =0,

K'= 2P'

(5.1)

(5.2)

For an electron at rest the charge density, as follows
from (5.1), is

p = iJ4 —(e«2/——42r) e
—""/r,

so that

)t pdV=4zr t przdr=e.
0

(5.3)

For sufIiciently large z the function p behaves as a
delta-function multiplied by 4zr/Kz regardless of the
order of limits (r~0, K~ao ) or otherwise (K—& ao, r~0).
It is easy to see that when the origin r =0 is included
the function p is a solution of

where
(Vz —K') p = —eK2b(r),

b(r) = b(x)b(y)b(s).

(5.4)

When rationalized units are used Eqs. (4.13) can be
written as

ation field. To these solutions one adds the solutions for
free gravitational fields.

We identify 42 2 and its dual f p in accordance with
the Maxwell's equations (1.11) and (1.14) as

(Ã2 t3P31p 2212 j 4241) '+421 'P43)

=(zE1, zE2, zE3, Hi, Hz, H3),
(4.22)

(f23&f31)f12 j f41) f42& f43) (H11 H2) Hzj zE1) zE2) zE3)

By using (4.1) and comparing (4.15) with G p= 2V T—s
of general relativity, we get

Pap hap 2 graph) y= —h, Bpy p
——0.

The effect of the terms on the right-hand side of (5.7)
may be of significance only for heavy particles or for
an assembly of particles. The right-hand side of (5.7)
is a 4-vector and it is of course conserved. In general,
we are going to assume that the eGect of those terms
are equivalent to a delta-singularity and replace (5.7) by

where
(P K2)J Kzj

j.(x) = eb(x 5) V-(5)d—2,

(5.8)

b(x) =b(xi)b(xz)b(x3)b(x4),
(5 9)

and $ represent the center of the electron and V is a
four-vector of the second order.

The 4-vector j acts as the source of the 4-current J .
This may also be regarded as a boundary condition
imposed on the current density. We infer from (5.8)
that the charge distribution of the electron has a
range z '.

The electrostatic field due to an electron at rest is

E= de/dr= (e/r'—)[1 e"" «re ""]—, (5—.10)

from which the field at r =0 comes out as

is no more an unreasable description of the electron
than is the point electron model.

The second term —(e/r)r "" of p may be interpreted
as causing a force holding the electron to itself.

A further approximation to the field equations (2.9)
can be obtained by retaining gravitational and inter-
action terms in the equations. On multiplying both
sides of (2.9) by P»' we obtain

tr—KJ=&p I p~, (5.6)

Hence, using the expressions for the F's, after some
lengthy calculations we get

Cl ")Ja= " VJa 2(~1IV)Jap+(~YJp)~ave'

(2~2J~)~aV~2+ (2~2'fir p) 8p~a V2~+ (2~AV) ~3fap

(2 r7~V) ~aJ3 (47P4jVJa)Ver+4(47P~Vfa3) ~PV3V

X (47,f,.)8,4l, V (B.—B,V)J,+ (247,J.)B,V, (5.7)

where

q =(%)(1—e ""), (5.5)

A = —42rJ and 47„A„=O,

so that in a static spherically symmetric case the
potential p= —iA4 is given by

E(0)= e«'/2,

and the potential has its maximum at r=0 as

z2(0) = eK.

(5.11)

(5.12)

where we use the fact that, in case J =0, the electro-
dynamics is the same as classical theory.

Our charge distribution has the range of nuclear
forces (K will follow in the next section). It may be
objected that the charge of an electron is an indivisible
unit; therefore a shape factor K is out of place, but this

At r=0, p and E have a finite discontinuity.
8 A point electron may be regarded as an infinitely compressed

form of the actual (extended) electron, and for this process of
localization into a point an infinite amount of energy has to be
used. This may also be seen quite easily by expanding the delta-
function in terms of the eigenfunctions of a suitable energy
operator. I, of course, leads to the so-called infinite self-energy
of the electron in classical and quantum Geld theories.
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Unified field theory describes the charge density of
an elementary particle as a short range field. It is not
possible to measure the eGects of an electron "radius"
x ' by having two electrons collide with an energy of
the order tttc2. Quantum theoretically the wavelength
corresponding to this energy is 5/trtc, which is much
larger than v '. Thus it is impossible to locate the
electron at that energy better than within ft/22tc. During
a collision their average distance will never be within
a distance comparable with K '.

A solution of (5.8) can be obtained by means of
Fourier integral representation as

where

J ret(X) —&2 I trtret(X X )g (X )d4X

5 «(x) = Z(x) —-'2a(x)

(5.13)

are I.orentz invariant scalar functions, 9 and they vanish
outside the light cone and are singular on the light cone
so that the solutions (5.13) are causally correct. The
4-current J "' given by (5.13) is conserved.

It can easily be seen, by writing (5.13) in terms of
Fourier components, that

)00 8tP 8 ""
J4(x)dt=—

The equations,

A.= —42rJa.r ( —r42)J.= —t4'ja. r (5.14)

f

A = —42rK'~ E""(x—x')j (x')d'x', (5.15)

which means that electromagnetic field can be split up
as a "short-range" and "long-range" parts. Thus one
can regard a neutral vector meson field as part of the
electromagnetic field. Equations (5.15) are solved by

A "'(x)=42rr42) D"'(x—x')E"t(x'—x")

Xj.(x")d x'd *", (5.16)

where D'"(x) is obtained by putting x=0 in the ex-
pression of Erat(x). In actual case there was no need for
the definition of the current density J given by (1.11).

9 J. Schwinger, Phys. Rev. 75, 677 (1949).
' A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950).

in quantum electrodynamics, imply a two-particle
picture (photon+meson). Their combined form, i.e.,
a fourth-order equation in 3, have been discussed
extensively, "and it is found that a fourth-order partial
diGerential equation is not, because of occurrence of
negative probabilities, consistent with the physical
reality. In the present case this objection does not arise,
since Eqs. (5.14) can be replaced by

Equations (2.9) approximate to

( &—')oaf a= —&'J (5.17)

The tensor p is nonsymmetric; it can be symmetrized

by using a standard method" so as to secure the con-
servation of the angular momenta, but for the following

purpose its symmetrization is only of an academic
interest and, therefore, no attempt will be made for it.

For the static spherically symmetric case, in spheri-
cally polar coordinates diagonal components of ~

are given by

4~p2+ 2 p2E2 4~2p2+ 2 +2E2

dp 1 1dE' 1—22rE—+-— +—Sinter COS242

dr 4 r dr 2

1 dE' fdE~' dp .

X — —
( ( +4'—.2E2

2r dr ( dr ) dr

4trp 2+22 lp2E2 42r2pt+ 2 +2E2

dp 11dE—22rE—+-— +-,' sintlt sinter
dr 4 r dr

1 dE' trdE~ ' dp
X — —

~ )
+4~E—"E', (6.2)

2r dr ( dr j dr

"G. Wentzel, Quantum Theory of Fields (Interscience Publica-
tions, New York, 1949).

so that the second set of Maxwell's equations are to
be obtained by solving (5.17). In this sense, we can
say that the sources of the electromagnetic field are
contained in our field equations.

In the present theory, if one attempted to construct
an S-matrix of quantum electrodynamics in inter-
action representation, then the interaction Hamiltonian
would be @=—(1/c)J„""A„instead of (1/c)j„A„The.
former contains the invariant function Z"t(x—x').
Strictly speaking the S-matrix,

Z

I' exp —— @(x)d'x,
kc& „

when expanded will have, with each term, associated
various powers of 6'"(x) so that one expects the results
for any physical process to be convergent. It, of course,
is not possible to say without going into details, that
this proposition will be free of objections.

0. THE NATURE OF THE ELECTROMAGNETIC MASS

The energy-momentum tensor (3.13), when the
approximation procedure of Sec. 4 is used, can easily
be put into the form

42rPÃaP = P T'att+ 2fPaJaa+ 4 &apJaJa

tt~ap (favfar)+ 2 JAfaa

+2~-f"~sf" '&-sJ—af-" (»
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4~p'Z„= ,'p'-E' 4—~2p2+ ,'V2-E2

dp 1 1dE2—22rE—+—— +,' co-s28
dr 4 r dr

1 dE2
t dE t

2 dp
X — —

) )
+4~E—.2E2

.2r dr (dr) dr

42rP2X44= —-'P'E' —4 2rp2+2,'V2E2-

where the electrostatic field E is given by

if4, =E—,=(x,/r) )E), (s=1, 2, 3)

(6.3)

(6.4)

For the radial and transverse stress components we
have

(6.8)

which is the so-called Laue theorem. Thus, our electron
is a stable structure.

The integrals of the rest of Z e give

Z „dV=O, Z4„dV= Z 4dV=O, m/28.

tooo ~g&2 eor
q

2

t p'dV=42r
~

r'~ ——
~

dr= e'z', —
&4~ .) g~

(6.5)

dE2 ~
p dp

V'E'dV =4m r' — =0, E—dV = —-'e'~'.

and ~E )=Ei +E22+E22 is a function of r only.
By integrating 44 through the whole of space we

can calculate the constant z in terms of the mass and
charge of the electron. The following integrals will be
used throughout the following discussions:

f dydee
I E2dV=42r I

— r2dr=—22re2x
~0 dr dr

Now, a few words on the electromagnetic mass are
necessary. The potential y(r) reaches its maximum at
r=0, and it is q(0)=ex=2moc2/e. Since the entire
mass is contributed by an electromagnetic field with a
"short-range" and a "long-range" parts, then, from a
classical point of view in bringing a positron and electron
charge together all external fields are canceled out,
and an energy of 2nzoc' is released which is the rest mass
of these particles in virtue of their fields. This may
also mean that the rest mass of the two particles is
equivalent to the work done in separating them against
their mutual attraction after they "are created. ""
Similar arguments may be applied for the origin of the
neutral matter.

Now
—744= energy density= oc2,

where O.=mass density, so that

f—42rp' K44dV=-2'p' IE'dV+42r' I p'dV.

Hence,
mDC = gK8 )

K= 2m8c /e . (6.6)

Note that each term in the above contributes half of
the rest mass of the'electron. The appearance of the
factor 2 in (6.6) is a most important feature of the
entire theory. This we shall explain a little later. The
constant p follows as

p = (1/V2) z =v 2moc2/e2

The constant q, using (4.23), is

q= mec4/e2+y = 1.2X10" esu "' (6.7)

Thus the inequality (4.2) finds its most convincing
explanation. It follows also from (5.11) that

'l. EQUATIONS OF MOTION

It has been shown" that in the presence of an electro-
magnetic field the equations G p= —2pT p gave a
correct law of motion for a charged particle. It has also
been shown" that Einstein's theory gives no inter-
action between a charged particle and electromagnetic
field: a result that could be deduced immediately from
our discussion on the energy-momentum tensor of the
field.

In the present theory a particle is to be represented
as a concentration of the field energy density into a very
small space-time region where, contrary to the assump-
tion of a singularity, the laws of field are known and the
magnitude of the field strength can be expressed in
terms of finite but large numbers. Thus the application
of the methods of general relativity to the present case
is not suitable, and it has to be modified. The surface
integral conditions'5 of general relativity are empty in
this case.

It is quite easy to show from the assumption that
mass is entirely of an electromagnetic origin and from
the field equations that the equations of motion of an
electron in an external field have the correct form.

Now let
E'(0)/q'= 4 ymp2/e2

=4 gravitational force/electrostatic force.
"'From (6.7), (5.11), and (4.2) it follows that the rest mass of

any elementary charged particle satisfies the inequality:

oooo($
~
e(/gy= 10~ g.

(s) (e)

f e=f e+f.e
~ R. P. Feynman, Phys. Rev. 74, 939 (1948).
'3 L. Infeld and P. R. Wallace, Phys. Rev. 578 797 (1940)."L.Infeld, Acta Polonica X, 284 (1951).
"A. Einstein and L. Infeld, Can. J. Math. 1 (1949).

(7.1)



where
—S~p'g =8+2p2( —1)~—(—g) ~. (7.2)

In this case the 6eld variables g &=g», „and g
1' are

to be varied independently. The complete antisym-
metric tensor density A»= e»~Ay is the dual of A .
Kith the approximation of Sec. 4 we have

~=Vu Ji (AuP2u) 2w

the last term of which can be dropped from the action
principle, and we get

—42rP2 Qd4x= b)~(,'P'f„,f„,+-',-J„J„)d4x. (7.3)

Now, uslllg (7.1) we obtain

—4~)" 0'd'x=~Jl L'fufu+4p '-JuJu)d'x

(s)

f 2= proper field of the electron,

(e)f I2= external field.

Ke assume that the acceleration of the particle is not
too large, so that we can make use of a Lorentz trans-
formation.

When the field equations (1.8) are granted, then, as in
general relativity, the 6eld equations can also be obtained
from an action principle'

f') I@d4x=0,

From these results it follows that (7.4) is

(u) (u)
~«'I 1——

I d'+2~]' f"fu.d'x=o (7 |))
c23

P (e)
/=2)2«2(1 —22/c2)& — ~ A„J„d'x. (7.7)

Thus we have obtained the action function of Maxwell-
Lorentz theory. An electron behaves as a mechanical
system with the rest mass mo acted on by the external

(e)
field f p.

If we assume that the electron is moving in a con-
(&)

stant external field A„, then we obtain

' Bdh= )~2N«2(1 2)2/c2)—&dr e "A„—V„dtd2x.

Thus in a slowly varying 6eld the generally covariant
force law can be stated as

(7 8)

wllele Vu= dxu/dr,

+-c= 2 "s"A—~=(f-s ~~-s)/(1 fl ~')—', (7 9)

Now, we have

(e) (e) (e) (8)
f„„=BuA„—8.Au, r7„fu„=42rJ„

Using these equations in (7.6) and integrating by parts
and dropping the divergence terms we get

+-2'5 ' fu.fu.d'x+-,'6 f„„f„.d'x. (7.4)
GT' =S~pdx lx . (7.10)

We define the quantity 8 by

P (~) f (~) (~)

42rg= ~' @d2x+~l —,'f„„f„„d'x.

Hence,

42rb @d4x=42rh t Qdh,

(7.5)

%'e must mention the fact that these results could
also be deduced, without making the above approxi-
mations, merely from the fact that the expression (7.2)
is already contained in Z2' and contributes the total rest
mass 2222 of the electron. ln (7.8) 4',s refers to the
actual 6cld, l.c. thc cxtcrnal 6cld plus thc 6cld pro"
duced by the particles themselves.

6) (2r) (&)

@=Xf"f"+'p 'JuJu-
The last term in (7.4), because of B,f&'u„=0, drops out,
also in the rest frame of the electron we have (writing
42rJ for J )

p (~)—42r @d2x=x l E2dV+42r2p ', p2dV=42r222 c',
J 2 0 p

so that we can write

()
@d2x=m«2(1 —22/c2)&,

where @=velocity of the center of the electron.

+21h 1p2q 2E2

8p
V'-2'hi) ————,'p2q E +242g-2E2r—+82r2p2q '

8f

j. dE'—-g ~ +g 'sm'8 cos2p
2 t' Jl'

(dE) ' 11dE'
X ( ~

—-- +p'E',
L. dr ) 2 r dr

(S.i)

8. DEFLECTION OF LIGHT

For a static spherically symmetric field, Eqs. (4.15),
in spherical polar coordinates, give
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that because of (8.3), we have8p
P-', hpp —— ,'p—'g—'E'+4pyg 'E-+—81r'p'g '

dr
J (or+op sin'8 cos'pp)d V= JI (or+o«sin'8 sin'pp)dV

i JE—-q '— +q 'sin'tI sin'y
2 rdr

dp
P-'h

p
—— 'p'g —'-E'+4prq 'E +87—r'p'g '

dr and

= j/(or+op cos'8)d V=0. (8.9)

In (8.8) E„can be replaced by its maximum value/dEy ' 1 1 dE'

( dy ) 2 y dy ze «' where K can take two values K, and K„ for electron
and proton, respectively, so that

E =2o.(yysp. c'/o ')',

1 dE2—-q '- +q-' cos'8
2 r dr

pdEy ' 11dE'
x ( ~

+p'E'.
&dri 2r dr

All other components vanish because of spherical sym-
metry.

Now lf we consider the gravitatlonaj. fMM. of Rn

electron at rest the above expressions, when. integrated
through the whole of space, give

j"—Vh„dv= "—Vh„dv= I
—Vh, dv33

8pry=
J

V' h4«dV= 2epr' K'Pq '= 10p. (8.3)
Q2

The contributions of the terms on the right-hand side
of the equations (8.2) to the mass of the electron, except
the erst term, vanish. '6

From (8.3) it follows that for a macroscopic dis-
tribution of mass density Eqs. (8.1)—(8.2) can be written
RS

V h44= K00~

~ hll KOO+KplT1+KpO'p s111 i9 COS p,

Phpp ———«po+hpo1+ Kpo 1 sin'8 sin'pp,

V hp«= —Kpd+Kpo1+Kpop cos 8,

(8.4)

(8.5)

(8.6)

(8 &)

&= (1/4pr&')P~ E '= density of mass

per unit volume, (8.8)

Kp= Spy'r/C .

The densities O.i and 02 represent the rest. of the terms
on the right-hand sides of the equations (8.2). Note

'6 It is clear that the value of l~ given by (6.6} enables us to
regard m0, calculated as an electromagnetic mass, also as the
gravitational mass of a particle. The same constant m0 in Sec. 7
behaves as a mechanical mass. Thus electromagnetic mass=iner-
tial mass=gravitational mass, which is the statement of the
"principle of equivalence. " The constant ~ could also be calcu-
lated from (8.3}.

«p t o(r')dV'
h44 ————~' (8.10)

Kp
t

o(y')dv'
ha~= h22= h33=—

i

p o1(r') Kp 1 t op(r')dV'
dy~ (8.11)

4~3 ~ Jr—r'[

Hence, because of the second and third terms on the
right-hand side of (8.11), the potentials h11, hpp, hpp

are diferent from that of general relativity. But since
our main interest is, as will be seen in the foBowing, in
the partial derivatives of h~~, k~2, IE33, h44 with respect
to the coordinate x and integration of the results
between the limits (—~, ~), the contribution of the
second and third terms on the right-hand side of (8.11)
will, because of (8.9), vanish, vis. ,

pjh11 «'p p t' ~ (ds= —
~~ o(r')dV'

~
~dsj „ax 4~~ „axl ~r—r'[)

ICO——~t:o1(y')+ pop(y') jd V'
4 J

8( 1 ) Kp

X —
i

ids= ——MR-'
8 &( -'(] 2

M = ~o(r')d V'= total mas. s.

"This gives a density of matter of the order io' g cm
which is similar to the liquid drop model of the nucleus.

E '=4mp c'(yylp o'/e ')'. '"
If we put

V, = z(e'-/mpc')'= "volume of the particle, "
then, we get

o =P.(y1pp„/V. ).
With the arguments given at the end of Sec. 6 we

are now in a position to regard the system (8.4)—(8.7)
as representing the equations of a gravitational field
produced by the density r of matter. The solutions of
(8.4)—(8.7) can be written down at once, as
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t." 1 itL xpM
ds=- = 1.75 )„1.Bx 2xRt ~(r')

dr'= —
~

1+—,~ dV' ~(dx'+dy'+ds')
4~~

Now, if we neglect the term q 'T pdx"dx& in the ex- so that the deAection of light is
pression of the metric of the space-time, we can write

(8.14)

lip t o.(r')dV'q
+c'( 1——i ddt'. (8.12)

4~& [r—r'~ )

Hence, if I. is the velocity of light, we have approxi-
mately

gp | ~(r')
L=ci 1——

i dV' i,
/r r'l )—(8.13)

This result is the same as the one obtained by Einstein
in general relativity. The required deflection of light
passing near a strong gravitational held follows from

dv'= 0.

in complete agreement with the result of general rela-
tivity. "

The author is not aware of any other unihed held

theory comprising the results obtained in the foregoing.
We think that these implications of the theory are
important enough to warrant our conhdence in its
validity as a correct physical theory.

The author is grateful to Professor P. A. M. Dirac
and to Dr. C. A. Hurst for many useful discussions and
hnally to the Turkish Government for the award of a
scholarship.

' It can easily be seen that for x=0 the above theory reduces
to Einstein's version of the unified field theory.
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An extension of conductivity theory to high fields, subject to the usual simplifying assumptions, is carried
out for the cases in which the change of energy of an electron in a collision can be neglected. This yields a re-
lationship between mobility and relaxation time which is valid over a wide range of fields.

HE formal theory of conduction can be extended
simply to cover the case of high fields when the

scattering processes which give rise to the resistance
are to a good approximation elastic. This condition is
satisfied in monatomic solids for the range of tempera-
ture and field strength in which collisions are mainly
with acoustical modes of lattice vibrations and im-
purities. Experiments indicate that in germanium at
room temperature, for example, this is the case up to
about 4000 volts per cm. ' This condition is also satisfied
for electrons in a gas when the collisions are nonionizing
ones with atoms or ions.

The distribution function for the electrons in an
electric field will be denoted by f(k, E), where k is the
wave vector and K is the electric field intensity. If we
neglect crystal anisotropy, since the scattering is elastic
the distribution function in the presence of the field
will be nearly isotropic in k space. It can be shown that
it is a good approximation to take

f(k, E) =fp(k, E) fi(k L)cos8, — (1)

where 8 is the angle between k and the held direction,
chosen as the s axis, and fi is much smaller than fp.
In low fields, of course, fp will be the zero field equi-

*On leave from Brooklyn College, Brooklyn, New York.
' W. Shockley, Bell System Tech. J. 30, 990 (1951).

librium distribution. In the steady state, the rate of
change of f due to the field must be balanced by the
rate of change due to collisions, or

(eP/k) (af/Bk, )+(Bf/Bt), =0 (2).
It has been shown that probabilities of scattering by
lattice vibrations or imperfections are independent of
electric field intensity up to helds of the order of
6&10' volts per cm. ' In the approximation that the
scattering is elastic, transitions will take place to states
on the constant energy surface. Let the probability of
transition per unit time from a state near k to one of a
group of states in area dS' of the constant energy sur-
face be denoted by P(k, k')d5'. Then

(Bf/Bt), = — I Lf(k, K)P(k, k')

—f(k', E)P(k', k)]dS'. (3)

To carry this further it is necessary to assume that
P(k, k') =P(k', k) and depends only on the angle be-
tween k and k'. Since collisions can only redistribute
electrons around the constant energy surface, fp does
not contribute to this term. The rate of change of f,
may be found by considering an element of phase

J. Bardeen and W, Shockley, Phys. Rev, 80, 69 (1950),


