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values and is thus equal to case € and § are nth roots of unity but the system of
Eqgs. (5.1) remains otherwise unchanged.

In conclusion, it is a pleasure to acknowledge the
kind hospitality of The Institute for Advanced Study
and to thank many of our friends for the healthy
pessimism they showed during the early stages of this
work.
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which is precisely (2.4). Needless to say, in the nX#n
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A general theory of the magnetic hyperfine structure in diatomic molecules, including states other than
13 states, is given. The magnetic hyperfine interaction is derived from the Dirac equation for the electron
in the molecular potential field. First-order hyperfine structure formulas are given for the various vector
coupling schemes characteristic of molecular states. The !Z magnetic hyperfine structures are obtained from
second order hyperfine interactions. Applications to the N0 and 00" microwave spectra are discussed.

1. INTRODUCTION

HE general theory of the nuclear hyperfine struc-
ture observed in atomic spectra has been worked
out and discussed extensively,! and even the detailed
features of the observed spectra are quite well under-
stood. No such general treatment has apparently been
given for diatomic molecules. In the case of diatomic
molecules with no resultant electronic spin or orbital
angular momentum (1), satisfactory phenomenological
treatments of the magnetic interaction of the nuclear
moment with the electronic currents, in the form of an
I-J coupling with the molecular angular momentum
vector, have been given.? Investigation has shown? that
this effect arises for the most part from the effect in
second order of the nondiagonal matrix elements of the
nuclear magnetic interaction with the electronic cur-
rents. The interaction of the nuclear electric quadrupole
moment with the electronic currents in these molecules
has also been treated satisfactorily.? The development
of microwave spectroscopy and molecular beam tech-
niques have made it possible to examine the hyperfine
spectra of paramagnetic gas molecules, i.e., molecules
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in states other than 'Z. The present paper is devoted
to the general treatment of the hyperfine spectra of
diatomic molecules. For molecules with nonzero elec-
tronic angular momentum, it may be anticipated that
the nuclear moment interaction with the electrons will
be of the order of magnitude of atomic magnetic hyper-
fine couplings, and thus will be very much larger than
typical nuclear electric quadrupole couplings. The
strength and mode of the vector coupling of the nuclear
spin to the various angular momentum vectors in the
molecule will therefore be primarily determined by the
magnetic interactions, and it will be sufficient in almost
all cases to evaluate only the diagonal values of the
electric quadrupole interaction, in a vector coupling
representation determined by the magnetic interaction.
The greater part of the present work will thus deal with
the theory of the magnetic interaction of a single nu-
clear spin with the electronic currents in the various
kinds of molecular states.

Typical features of the molecular magnetic hyperfine
interactions may be compared with those of atoms. The
interaction with electronic spins in the atomic case is
treated quite differently in s states (L=0) and non-s
states.! For non-s states, the spin coupling may be
written as the interaction of two point magnetic dipoles
in the form 3(I-R)(S-R)/R5—(I-S)/R3, where R is the
space vector from nucleus to electron. For s-states, this
interaction vanishes (as does the orbital interaction),
and the actual hyperfine coupling must be accounted
for by a more refined treatment of the magnetic inter-
action. The most satisfactory method of treating the
interaction of the nuclear magnetic moment with the
electronic currents is via the Dirac equation for the
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electron.! Advantage may be taken of the spherical
symmetry of the potential field in which the electron
moves to reduce the interaction for s-states to the form

Wass= (16/3)wgrpopn,*(O)I-S, (L.1)

where ¥,%(0) is the electron density at the origin (posi-
tion of the nucleus).

In the case of the diatomic molecule the potential
field possesses only axial symmetry and no classification
of states according to a total angular momentum quan-
tum number can be made. Thus, there can be no separa-
tion of the hyperfine interaction into characteristic s-
and non-s forms. Nevertheless, effects similar to the
atomic s-state interaction are found. In particular, a 22
or 32 molecular state with total rotational angular
momentum zero shows a nonvanishing hyperfine
structure.

For molecules, there is also the complicating feature
of the introduction, in addition to the electronic / and s,
of a third vector, the molecular rotational angular mo-
mentum. This brings about the well-known molecular
coupling states (Hund’s case ¢ and case b),% and makes
possible a number of different nuclear spin couplings.
These possible couplings will be treated in detail in
later sections.

2. THE MAGNETIC INTERACTION OF NUCLEAR
MOMENT AND ELECTRONS

The general form of the interaction of the nuclear
magnetic moment with a single electron has been given
by Breit and Doermann.! Their Hamiltonian was de-
rived by reducing the Dirac equation for the electron
in the field of the nucleus from four component form to
the approximately correct two component Pauli form.
The hyperfine perturbation was obtained from the
latter equation. Due to normalization difficulties, their
result contains a non-Hermitian term which must be
arbitrarily excluded.

We will derive the Pauli equation in a form suitable
for our purposes by applying a series of unitary trans-
formations to the Dirac Hamiltonian. This procedure,
an extension of the method of Foldy and Wouthuysen,®
avoids the normalization difficulty. A treatment of this
problem using the Dirac equation with explicit con-
sideration of normalization has recently been given by
Karnaugh.”

We write the Dirac Hamiltonian in the conventional

form
Ho=Bmc?—eV+ca- (p—(e/c)A). (2.1)

We apply to this Hamiltonian three successive unitary
transformations of the form

H,'= 6iSiHi_16_is", (22)

5 G. Herzberg, Molecular Spectra and Molecular Structure: I.
Spectra of Diatomic Molecules (D. Van Nostrand Company, Inc.,
New York, 1950), p. 218.
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where, if §=—VV,
S1=—1icBa-{p— (¢/c)A}/2(mc*—eV),
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1ef¢ ]
————a- 8},
2(mc*—eV)
—i 222 2.3
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We are left finally with

L (9]

2
2mc?
n tec? [ eA) ] 2.4)
P — . —— , . 8 .
8(mct—eV)? 7 (p c 7

+terms of order 1/(mc?? and higher. In the above,
[4, B] denotes [AB—BA]. This Hamiltonian yields
the Pauli equation as

1 e 2
-2 (2
2m c
c%eh

+W[a- (p—l-gA),' o 8]]¢=0, (2.5)

taking the electron charge to be —e. In the third term,
the divergent denominator has been set equal to 2mc2.
A term proportional to ux® has been neglected. The
hyperfine part of (2.5) may be written in terms of the
electronic orbital angular momentum L’ as

ok 2u-L 2iu 2e%h
+—=8-[oxAT+

Hy=pBmc*—eV+

2me  r®

in which S=¢/2, and we have set E+4mc*-eV =2mc?
in the denominator of the first two terms. In the case
of an atom, Eq. (2.6) becomes

ng“WN{[I-L} 3I-1)(S-r) I-S]

73 r?

S-[&'XA], (2.6)

4m?c?

L 2mc?e*8,r [ I-1)(Sx)
1 -
[E+eV+ mcﬂzl_ r?

The first term gives the hyperfine levels for non-s states
and is zero for s-states. The second term may be

'TI-S“. @.7)
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written, after a partial integration, as (1.1). This term
is proportional to the charge density at the nucleus, and
is nonzero for s-states only.

Expression (2.6) will be the basis for our treatment
of the hyperfine spectra of molecules. In the remainder
of the paper we will write

2mc?e?8, /[ E+eV+mc? )= 8(r), (2.8

since the terms with this coefficient (except for neglected
relativistic corrections, significant only for heavy nuclei)
give appreciable contributions only from the region near
the nucleus.

3. MOLECULAR QUANTIZATION

The rigorous theory of the quantum states of dia-
tomic molecules, and in particular the approximate
nature of the separation of rotation, vibration, and
electronic motion have been discussed by Van Vleck
and Kronig.® In a first-order theory of molecular hyper-
fine structure, it is necessary only to know the particular
vector coupling representation of the electronic spin
and the orbital and rotational angular momenta. The
most important of these representations are Hund’s
case a, in which the spin is strongly coupled to the
internuclear axis by the spin orbit interaction, and
Hund’s case b, in which the spin is decoupled by
“gyroscopic” terms in the kinetic energy, and the spin
vector is added to the total angular momentum of the
molecule. Which of these vector coupling schemes most
nearly describes any molecular state depends on the
relative magnitudes of the spin orbit coupling and the
gyroscopic term (proportional to %2/2I). In both of
these cases, the component of electronic angular mo-
mentum parallel to the internuclear axis is a good
quantum number A, and the separation of levels corre-
sponding to different values of A is characteristically
much greater than the level splittings due to rotation,
spin orbit coupling, A doubling, or hyperfine structure.
In this paper we shall be concerned for the most part
with hyperfine and other interactions which are diagonal
in A. Higher order effects due to matrix elements of the
various interactions which are nondiagonal in A we
consider in Sec. 7.

4. THE MAGNETIC HYPERFINE INTERACTION IN A
MOLECULAR COORDINATE SYSTEM

The coordinate system for the molecule consists in
the first place of a rectangular coordinate system XV Z
fixed in the laboratory and with the center of mass of
the molecule at the origin. The orientation of the inter-
nuclear axis in this frame is given by the polar and
azimuthal angles 6 and ¥ with respect to the Z axis.
The positions of the electrons are described in a rec-
tangular coordinate system %'y, fixed in the molecule,
with 2’ along the internuclear axis and &’ constrained to

8R. de L. Kronig, Band Spectra and Molecular Structure

(Cambridge University Press, Cambridge, 1930); J. H. Van Vleck,
Phys. Rev. 33, 467 (1929).
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F16. 1. Coordinates of the electron in the molecular frame of
reference. The nucleus is located at I and the center of mass of
the molecule at 0.

remain in the XV plane. In the usual treatment of the
molecular problem,® an approximate separation of the
Hamiltonian into electronic, vibrational, and rotational
terms is made, and the wave function is the product of
three corresponding factors:

Y=y, 5", 2 Wr(R)¥r(6, ¥).

(The electron spin may be quantized in the laboratory
or in the internal coordinate system according to Hund’s
case b or case a, respectively.)

We shall express the magnetic hyperfine interaction
[expression (2.6)] in the internal coordinate system,
replacing x’y’z’ by cylindrical coordinates p’¢z’ where
#'=p’ cosp and y'=p' sing. It is clear that the ¢
dependence of the electronic wave function is of the
form

(4.1)

exite/(2m)h, (4.2)

(The effect of the degeneracy in Z=A is described in
Sec. 6.) To obtain the matrix elements of (2.6) diagonal
in A we shall first average over ¢.]

In the first term of (2.6): (2e/2mc)un-(r1Xp)/7:,
r; is the vector from the nucleus to the interacting
electron. It is convenient to express this in terms of the
orbital angular momentum about the center of mass.
From Fig. 1, we note that r;=r—7k’, where r is the
distance from the center of mass to the nucleus with
spin; and k’ is a unit vector in the 5’ direction. This first
term becomes

2grpop e
Lotk L——2y-[k'Xp],
2me

713

4.3)

where Li=rXp and po=eh/2mc.

The second term of (4.3) has no matrix elements
diagonal in A.

The second term of expression (2.6) may be expanded,
and the only terms which do not vanish on averaging

1 Throughout the paper the term “matrix elements” will fre-
quently be used for operators which have been averaged over the
electronic coordinates, but remain operators with respect to the
spin and rotational coordinates.
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over ¢ are
u-S 32 3y 32,2
__‘_"+,uz'S::’ } lly'Sy { #z'Sz' (4-4)
e 75 " "

The third term of expression (2.6) contains the factor
S- & XA, which may be written as

, uXn & , S-r;
S| &'% 3]= —u-S+8u—.

71 71 7

4.5)

The expansion of Eq. (4.5) in cylindrical coordinates
and the integration over ¢ yields

) 8,,"p’+g,/2'
[& XA]-S=———;;—-—;‘-S
1.7

=

8'p

3

(l‘z'sz’"}‘ ﬂu'sy’) -

peSe,  (4.6)

3

71 71

where 8, and &, are the p’ and 2’ components of the
electric field produced by all charges except the inter-
acting electron.

We now collect the terms of expressions (4.3), (4.4),
and (4.6), and form the complete expression for the
effective magnetic hyperfine operator for all matrix
elements diagonal in A. We designate the angle between
the molecular axis and the vector 7, from the nucleus
to the electron by x=tan='p’/z:’ (see Fig. 1), and write
& =e8. We obtain the operator in the form

al Ly+bl-S+4cI.:S,, (4.7)
where
a=2grpoun(1/71*)n,
e22mc? &,0" /24 8.2
b= 2gr#oﬂzv[ :
[E+eV+mc?]? 743
3 cos?y—1 ]
w3l (48)
i €2mc? 8,0'/2— 8,21
c=2gruoun
[E+eV-+mct]? e
3 3 cos?’x— 1]
2 713 Av,
1
! s
F
J
/IN £ ' ﬂ "
AT 4 A 5 A

a a
« 6 b 6
F16." 2. The three molecular coupling states including nuclear
spin. The various coupling possibilities for case b are discussed in
Sec. 5 and appear in Fig. 3.
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with the signs as indicated (uo positive). This expres-
sion (4 7) may be employed to discuss all features of
the hyperfine spectra in both Hund’s case ¢ and case b
arising from matrix elements diagonal in A. The quan-
tities in brackets [ Ju are to be averaged over the
electronic space coordinates for the particular states.
The first term of b or ¢ yields a nonvanishing contribu-
tion only in regions closer to the nucleus than the
classical radius of the electron, €2/2mc?. In this region
the nonvanishing component of the electron wave func-
tion is spherically symmetric (within our approxima-
tion). If we write §,/p’= &7 sin?x and 8,31 = &,71 cos?x,
upon performing the average (assuming spherical sym-
metry) we obtain

2 6(r1) 3cos?x—1
b=2glﬂo#1v[— —-—————‘] ,
3 n? 2,3 A
(4.9)
3 cos?x—1
c =3g1Mol-lN[ ] .
7 A
The term in & with coefficient 8(r;) arises because of
the quasi-relativistic treatment leading to expression
(2.6), and represents the departure of the actual hyper-
fine coupling from that expected from the interaction of
two-point dipoles. If the electronic charge distribution
were exactly spherical, the term 3 cos?’x—1 would
vanish and the term referred to above would give the
whole hyperfine structure. In this case Eq. (4.7) reduces
to the Fermi formula for s-states, Eq. (1.1). On the
other hand, if this “‘s-term” interaction was absent we
should have 3b4-¢=0. Thus, the value of 364-c from
any observed spectrum is an indication of the presence
of some spherical charge density bearing a free spin near
the nucleus.

If more than one electron contributes to the total
orbital or spin angular momentum, the hyperfine inter-
action operator has the form of expression (4.7), but
the coefficient [Eq. (4.9)] contains a term from each
interacting electron.

5. COUPLINGS AND MATRIX ELEMENTS

We consider now the vector coupling possibilities of
a single nuclear spin to the various angular momenta of
the molecule. In principle, representations can occur in
which the nuclear spin is quantized either in the labora-
tory coordinate system or in the internal coordinate
system of the molecule. Now a coupling of the nuclear
moment to the internuclear axis will come about through
the magnetic interaction with the electronic orbital
angular momentum (and with the electron spin in
Hund’s case ). This interaction is the analog of the
coupling of the electron spin to the molecular axis which
leads to Hund’s case @, but is about 1000 times smaller
in magnitude since the magnetic moment of the nucleus
is much smaller than that of the electron. The “gyro-
scopic” terms which act to decouple the spin from the
axis are of the same order of magnitude for molecular
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and electronic spins since they depend on the spins
rather than the magnetic moments of the particles.
We may distinguish the following important cases of
vector coupling as (a) case a.: Hund’s case ¢ with the
nuclear spin space quantized with respect to the inter-
nuclear axis. (This includes the case where S=0);
(b) case ag: Hund’s case a with the nuclear spin space
quantized in the laboratory frame. (This includes the
case where S=0); (c) case bg: Hund’s case b with the
nuclear spin space quantized in the laboratory frame.
The vector coupling possibilities are shown in Fig. 2.
The several possible coupling schemes for case b are
discussed later in this section.

Actually, because of the weak magnetic coupling of
the nuclear spin to the molecular axis, case @, is
expected to be of extremely rare occurrence, and in the
interests of brevity will not be considered here.®

Case a

The magnetic hyperfine operator (4.7) may be
written as

alyLo+b(ToSe+I,S,)+ @+ Sy (5.1)

The second term has only nonzero matrix elements
which are off-diagonal in Q, and hence, in a molecule
which is in a good case ¢ state, the effects of this term
will be very small and are neglected here. For a discus-
sion of this term in cases intermediate between Hund’s
case ¢ and case b and in 'Z states, see Sec. 7. Thus, the
part of expression (5.1) diagonal in A becomes

LeA+(40)Z]I =dl- K, (5.2)

where d=aA+(b+c)Z, and Kk’ is the unit coordinate
vector along the molecular axis. The magnetic hyperfine
structure problem in case ag is thus reduced to the
calculation of the diagonal value of Eq. (5.2) in a repre-
sentation in which the electronic wave function is that
designated as Hund’s case @, and the nuclear spin is
quantized in the fixed laboratory system. To express
this result, we require the matrix elements of the com-
ponents of the unit coordinate vector k' in the fixed
system. In Appendix I are given such matrix elements
for the vectors of the internal molecular coordinate
system. We write the matrix of (5.2) first in the “de-
coupled” representation in which JImgm; are good
quantum numbers. Expansion of the scalar product and
reference to Appendix I yield for the matrix elements
diagonal in J

d I-J. (5.3)
JT+1)

It should be pointed out that the coefficient of the 7, J
coupling varies with J. We may make use of the addi-

9 R. A. Frosch, dissertation, Columbia University (1952) (un-
published).
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ISKF3Fmg

ISKF Fmg

ISKJFm,

Fi1c. 3. The three simple coupling cases in case bg. The “good”
quantum numbers are indicated in each case.

tion formulas of Condon and Shortley!? to obtain the
matrix elements in the weak field 7JFm r representation:
(JIFmp|1-k'|JIFmp)

DF(F-I- D—JJ+1)—-I(I+1)

27(J+1)
(IJFmp|1-K'|IJ—1Fmp) (5.4)
1 (J—Q)t
=t— [ (F+J-D)(F+I1-J+1)
2 J(4J2—1)}

X(F+I+T+1)(I+I-F) ]

The J—J 41 matrix element follows from the Hermitian
property of the matrix. It is expected that the effects of
matrix elements nondiagonal in J will be small (inas-
much as the rotational energy is very much greater
than the hyperfine structure) and may be taken into
account as a second order perturbation.

Case b;

Here both I and S are space quantized in the labora-
tory coordinate system. We may write expression (5.1)
as

aA(I-K)4-5(I-S)+c(I-k')(S-K'). (5.5)

In a completely “decoupled” representation (good
quantum numbers are ISKmmmgsmg) the matrix ele-
ments of I-k’, S-k’, I- S may be evaluated directly from
Appendix I, and the last term calculated by matrix
multiplication. The zero field problem is rather compli-
cated, however, inasmuch as it involves the coupling of
the three vectors I, K, S. The simplest possibilities are
(see also Fig. 3)

K+I=F, K+S=J, I+S=Fs,
F1+S=F, J+I=F, F;+K=F.

We shall refer to these three representations as the F,
J, and F; representations, respectively. The good quan-
tum numbers are indicated in Fig. 3 for each case.
The part of the Hamiltonian®of the system which
must be discussed in the determination of the appro-
priate representation for this case includes the hyper-
fine couplings of expression (5.5) and the electron spin
orbit interaction contained in the third term of Eq.

10 E. U. Condon and G. H. Shortley, Theory of Atomic Specira
(Cambridge University Press, Cambridge, 1951), pp. 69, 71.
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(2.5). The appropriate part of this term may be written

eh a
o-[EXp]=— Ziuoz{ 8,—(Sy sing—S, cosg)
Am?c? 74
1 9
+8,,[—— —(S cosp+S,y sing)
p dop

9 _ 8y 0
+—(—Sz sing+Sy cos<p)]+S,r— —}, (5.6)
ap’ p 9o

where S=¢/2. Only the last term of (5.6) yields matrix
elements diagonal in A. In case b, S is quantized in the
laboratory frame, and it is appropriate to write the
part of (5.6) diagonal in A as

8, 8, S-K
2u02A(——) S-k’=2uo2(——) A (5)
P, Av P, Av K(K+1)

for” the term”diagonal in K. Thus the electron spin
orbit interaction represents a coupling of S to K. For
states with A>%0, expression (5.7) will in general be
much larger than the hyperfine coupling term (5.5),
and thus the J representation will be approximately
correct. For 2 states, however, (5.7) vanishes, and the
remaining effects of the spin orbit coupling are obtained
from the second-order effects of the matrix elements of
(5.6) between Z and II states. This coupling of S to K,
known as p doubling for 2Z states,® may be shown to be
of the form

[LL|T)
const peB [K(K+1)S 1
v
. +const w3 (S1)?, (5.8)
where S 1 is the appropriate one of S.=+1S,, and simi-
larly for L1. The first term of (5.8) becomes finally
constant S-K. The second term may be written as
constant (52— (S-k’)?) and is a somewhat complicated
coupling of S to K, as is seen from the discussion of
expression (7.8) in Sec. 7. These couplings are of much
smaller magnitude than (5.7) and are possibly of the
same magnitude as the hyperfine interaction. A similar
formula obtains for 3T states.!
Although the hyperfine level pattern can in principle
be obtained from any of the three representations Fy, J,
F; by writing out the complete matrix of the hyperfine

R. A. FROSCH AND H. M. FOLEY

interaction (5.5) and the spin orbit coupling (5.6) in
this representation and solving the secular determinant
directly, it is usually much more convenient to choose
a representation in which the diagonal values of (5.5)
and (5.6) are large compared to off-diagonal elements.
In this case the energy levels may be obtained by second
order perturbation theory.

Hyperfine Matrix Elements in Case bg

We give here the complete matrix elements (diagonal
in A) of the operators I-k’, I-S, S-Kk’, from which the
hyperfine energy levels may be calculated by matrix
multiplication according to (5.5), for the following cases:

(a) Fsrepresentation: I-S I.K/,S-k/,forall I, S, K,
(b) J representation: I-S, I.K/, for all I, S, K; and
S-K,forS=%,1andall], K,
(c) F,representation: I-S, S-K, for all 7, S, K; and
I.X,for7=%,1andall S, K.

Diagonal values of S-k’ in the J representation and of
I-k’ (for all S and I, respectively) may be written down
directly from the vector model. We have made use of
the results of Racah,'* Condon and Shortley,!® and
Bardeen and Townes? in calculating these matrix ele-
matrix elements. Details of the method are given in the
dissertation of Frosch.® The actual formulas for the
energy levels and spectral line frequencies in these
representations are rather complicated, and it has not
appeared worth while to work out the complete formulas,
which may be obtained from the matrix elements below.
One example is worked out in Sec. 10. The notation
(|A/B|) refers to the element of 4 or of B. When a
double sign appears either the upper or the lower sign
is to be taken throughout. Unlisted matrix elements are
either zero or follow directly from the Hermitian prop-
erties of the matrices in the usual manner. We note,
first of all, that in all representations

(KK'iK)=A/K(K+1),

Fy(Fat-1)—S(S+D+1(I+1)

(STF3LSIF;)=

2F5(Fst+1)

(Kik:K—1)=(K2— A2} K(4K2—1)}, (5.9
(IS:1/S:1S)=(KS:1/SiKS)=(KI:1/S:KI)=1.
Now
(KF3F|I-S|KF;F)
=3[Fy(Fs+1)—I(I+1)—-SS+1)]. (5.10)
We note
(5.11)

[(Fs— S+ D) (Fst-SHI+1)(S+I—Fot- 1)(Fs+S—I) J*

(SIFLiSIF;—1)=4

1 M. H. Hebb, Phys. Rev. 49, 610 (1936).

2F[(2F3—1)(2F5+1) ]

12 G, Racah, Phys. Rev. 61, 186 (1942); 62, 438 (1942); 63, 237, 368 (Eq. 4) (1943).



MAGNETIC Hfs IN DIATOMIC MOLECULES 1343

The similar quantities for .S are obtained by interchanging I and S and inverting the double sign. Then,
(F:KF|I-K'/S-K' | F3KF) = 3(KiK'iK) (Fl/SiFo) {F(F+1)— F3(Fat+1)— K(K+1)},
(FsKF|I-K'/S K| F3K—1F) = +3(Kik'iK—1)(F;i1/SiF5)
X[(F+K—F3)(F+F3— K+1)(F+Fs+K+1)(Fs+K—F) ],
(F3KF|1-K'/S-K' | F3— 1KF) = F3(K:K'iK) (F4il/SiF;—1)
X[(F+F3;—K)(F+K—F3+1)(F+Fs+K+1)(Fs+K—F) ]}, (5.12)
(F:KF|1-K'/S K |F;—1K—1F)= —}(K:k'iK—1)(F4i1/SiF;—1)
X[(Fs+K+F+1)(Fs+K+F)(Fs+K—F)(Fs+K—F—1) 1},
(F;KF|1-K/S K | Fy+1K —1F) = 3(KiK iK— 1) (Fl/SiFs+1)
X[(F+K—F3—1)(F+K—Fy)(F+F3— K+1)(F+F;— K+2) 4,
In the J representation,

(JIF|1-S|JIF)=YLLD (JiSIN{F(F+1)— T (J+1)—I(T+1)},

UIF|LS| T~ ) = ST TS~ D[F+T~ D+ T~ TDE+T+ T+ 0+, 1
where
J(J41)—K(K+1)+S(S+1
(KSTiSiKSJT)=(KS:SiKS) ( )~ I+5¢ ),
27(J+1) 5.14)
[(U—K+S)+EK+S+1)(K+S—T+1)U+E=S)] '
(KSTiSiKST—1)=F(KSiSiKS)- )
2[@I+1)(27—-1)]
Now,
(IF|L-K |JIF)=3(JiK{F(F+1)—J(J+1)—II+D)}, (5.15)
(JIF| LK |J—1IF) =23k J—-)[(F+J— D(F+I—J+1)(F+IT+T+1)(J+I-F) ], )
where
JJ+1)—-SE+1D+K(K+1
(KJTK'iKJ)=(Kk":K) ( )5 HE( )
2J(J+1)
J—S+K)J+S+EK+1)(SH+K—-T)J+S—K+1)]
(KJ§k'§K—1])=:l:(K§k’§K—-1)[( X ) X 2 )
27(J+1)
J—=S+K)J+S+EK+1)(S+K—-JF+1)(JT+S—K) ]}
(KJK:KT— 1)=:F(K§k’§K)[( X ) i 2 , (5.16)
2LI+1)(2T-1)]
J—=S+K)J+S+EK+1D)JT-S+K-1)(J+S+K)]
(KJk':K—1J—1)=(Kik'iK— 1)[( i ) ( 2 ,
[I+1D7-1071
[S+K=N)I+S—K+1)(S+K—-T-1)(J+S—K+2)]}
(KJik":K—1J4+1)=— (Kik'iK—1) .
20+ DLRI+1)QI+3)]}
For S=1, In general, for all S, the diagonal elements are
(KJ=K—-%|S'K|K—1J=K—1% (KT|S-K'|KJ)
=4 (K2—-A%)Y2K, (5.17)
and for S=1, - _AMJUHD-K(E+1)-S5(S+1)} (5.19) '
(KJ=K|S-K|K—17=K) 2K(K+1) '
_ (K*— A%} (K+1)} In the F, representation the matrix elements are to be
KQ2K+1)} ’ obtained from those in the J representation by inter-
(5.18) changing I and S, and letting J become F;.
(KJ=K—1[S-K'|K—1J=K~1) In the case of triplet states, where two electron spins
(K2— A2)} add to a resultant S=1, in addition to the matrix
=t (K—1)L elements given above there are also some elements be-

KQ2K—1)} tween the triplet states and singlet states of the same
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values of A. These connect states with considerable
energy difference, and are considered as higher order
effects. The appropriate matrix elements of the hyper-
fine operators may be obtained using the methods out-
lined by Frosch,? in conjunction with the formulas of
Condon and Shortley.!?

The effect of the “s-state” part of the magnetic hyper-
fine interaction obtained specifically from the relativistic
treatment, discussed in Sec. 4, becomes especially
apparent in the case of the zero rotational state of a 2
electronic level (K=0, A=0). The appropriate repre-
sentation is F;, and the diagonal hyperfine energy level
formula is

F@H{F(F+1)—-S(S+1)—I(I+1D)}. (5.20)

In Sec. 4, it was shown that the nonvanishing of the
coefficient of this expression is directly related to the
presence of a distribution of electron spin moment near
the nucleus similar to that of an atomic s-state.

Matrix elements in the partially decoupled repre-
sentation in a weak magnetic field (quantum numbers
ISKFympimg, ISKImymy, ISKF3mpsmx) may also be
obtained from the above operators using the formulas
of Condon and Shortley.!

6. THE EFFECT OF THE LAMBDA-DOUBLING

The treatment of hyperfine interactions in the previ-
ous section has been concerned only with matrix ele-
ments diagonal in A. Before discussing the effects due
to interactions connecting electronic states of very
- different energies, it is appropriate to consider the effect
of the near degeneracy of states of value £Q (%A in
case b). This degeneracy is raised in some order of the
perturbation theory by the action of a part of the kinetic
energy of rotation which was neglected in the separation
of rotation and electronic motion.8 The matrix elements
of this operator are given in Sec. 7, expression (7.9).
The correct linear combinations of the degenerate wave
functions are the symmetric and antisymmetric func-
tions, e.g., [ f(AZ)4=f(—A—=)]/(2)% in Hund’s case a.
For both case ¢ and case b, we write these as
[f(+)=£f(—=)]1/(2)%. The matrix elements of the hyper-
fine operator now may be written as

(a) Diagonal in A doubling state:

(Zﬁ:}ﬁm )=%{(+ |H]+)
(6.1)

tri
o symmetric

antisym.
+(=H|-)£2(=H|+)};
(b) Off-diagonal in A doubling state:

ti .

i, PRty )

symmetric

=H{(+H|+H)—(=|H|-)}, (62

where the matrix elements (4 | H|+) etc., are obtained
from the f(4), f(—) states, in which A is a good quan-

tum number. The matrix elements (+|H|+) and
(—|H|—) are thus diagonal in A and are among those

symmetric
antisym.
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already derived in Sec. 5. For case ag, the hyperfine
matrix elements diagonal in A and @ are of the form

LaA+(b+c)2]-K). 6.3)

The matrix elements of this operator which are also
diagonal in J are the same for the states 4=Q whose
degeneracy is removed in A doubling. The matrix
elements nondiagonal in J are of opposite signs for =Q
so that (+|H|+)=—(—|H|—) for AT==£1.

In addition to the magnetic hyperfine elements
diagonal in A of Sec. 5, there are also matrix elements
connecting states differing in A by AA==1, 42, Thus,
there are interactions between the degenerate states
for II states only. Some of the matrix elements are
diagonal and some off diagonal in J, and they yield the
various quantities of Eq. (6.1). The hyperfine matrix
elements nondiagonal in A and Q are worked out in
Sec. 7, and we employ here expression (7.3) written as

(+[H| =)= (|| —I)(Se+iS)I- (x'+iy). (64)

We shall give here explicit formulas for the hyperfine
splitting for a case ag ?II; molecular state, neglecting
the hyperfine matrix elements nondiagonal in J. The
matrix elements for AJ=21 may be worked out from
Sec. 5 and the Appendix. Thus, we have for the sym-
metric and antisymmetric A doubling states

Wea=(+|H|+)=(+|H|-),

with
b+c 1)
)= (e )
2 J27(+1)
(+IH|—)——d(JjIJ (6.5)
S+ '
where
d=(+10¢|—1I)

gI,UO#N[ (5(”1) 3 .
=— ——) sin%x | .
2 1’12 7’13 Av

Electronic wave functions which contribute to this
+II——II matrix element will vanish near the nucleus
sufficiently rapidly so that the first term of the above
expression for d will be negligible compared to the
second.

For case b molecular states the same symmetry
properties of the matrix elements obtain as in case ag
and the discussion given above applies for case b with
the rotational angular momentum K replacing J. Ex-
pressions similar to Eq. (6.5) may be developed from
the formulas of Sec. 7, with the important difference
that in case b the electron spin is quantized in the
laboratory rather than in the molecular frame.

7. SECOND-ORDER EFFECTS

In this section are considered effects which arise from
those matrix elements of the magnetic hyperfine inter-
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action [Eq. (2.6] which are off diagonal in A, or off
diagonal in A in Hund’s case a. Levels which correspond
to different values of the axial orbital angular momen-
tum A, or in case ¢ to differentel ectron spin com-
ponents, are in general separated by energy intervals
which are very large compared to the hyperfine inter-
action energy. The special features due to the @
degeneracy (A doubling) are treated in Sec. 6. These
second-order effects in the general case give only small
corrections to the first-order hyperfine structure, the
theory of which is developed in Secs. 4 and 5. There are,
however, several special cases in which these effects are
of importance. In addition to the A doubling effects,
there is the large class of molecular states with no first-
order hyperfine structure, e.g., ! states, in which these
second-order effects (and the nuclear electric quadrupole
perturbation) constitute the whole of the hyperfine
structure. The treatment of the hyperfine level structure
in molecular cases intermediate between Hund’s case a
and case b also involves some of these off diagonal
matrix elements.

The matrix elements of the first term of Eq. (2.6),

e u-L'
mc 78
may be written
1
2g1p.0pN(A *—;[IzzLx/’—i—Ier,,"] Ail). (7.2)
(8

The magnetic interaction of the nuclear spin moment
with the electron spin moment [Eq. (2.6) ] yields matrix
elements off diagonal both with respect to A and with
respect to 2. The elements off diagonal in A arise from
the terms in (2.6) of the form (I-r)(S-r), which appear
both in the ordinary spin-spin interaction and in the
‘relativistic’ term. The terms which contribute off
diagonal matrix elements may be expanded in the
molecular frame of reference as

3 8(ry)
2g1#0ﬂ1v[—-8—' ]

71 (8}

3

sin?y )
% ' 4 [6—2“9(1,;'—{-1'11,:)(S,:+iS,,r)

+ e e(I—il) (S —1Sy)]
+siny cosx[e~*e[(Ipr+3l,)S
- (SartiS I eI (Tw—iT, S,

+<sz,—z'sy'>z,,m}. (1.3)

Clearly, the first term, with factors e*?i¢, in this ex-
pression connects states of AA==+2. These terms are
discussed in connection with the A doubling of II states
in Sec. 6.
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Terms in the hyperfine coupling which are off di-
agonal in T only are of interest in cases intermediate
between Hund’s case ¢ and case b. Such matrix ele-
ments arise from the spin components perpendicular to
the symmetry axis (in I-S) in Eq. (4.7). In a Hund’s
case a representation, the operator may be written
conveniently in the form

F(p, X)%{ (Iz’_i[y')(sz'+'isy’)

+ ([:c"*“”y')(sx’_isy’)}

=F(px)3{I- (x'—1y") (Sa+iSy)

+I- (' +3y') (S —iSy)}.  (74)

The S,=1S, - operator acts only on the internal elec-
tron spin wave function, and the matrix elements of
(x'£1y’)/2 are, with respect to the rotational wave
function, the same as those of a unit vector i’, and are
given in Appendix I. Thus, the matrix elements of
expression (7.4) connecting =—2+1 and Q—Q+1 have
the form

AINS+H2)(S—-2+1) L

For a good case a state, the effect of these matrix
elements between members of a multiplet may be taken
into account as a second-order perturbation. For a real
intermediate case these matrix elements would be sub-
jected to the appropriate transformation from case a.

There is another interaction with matrix elements off
diagonal in A which should be mentioned here. Thisis the
interaction of the electric quadrupole moment of the
nucleus with the electrons. This interaction has been
discussed extensively by Casimir,! and its matrix ele-
ments diagonal in A have been given by many authors.**
In our notation, this interaction may be written

(7.5)

eQ 3 cos?x—1 313'2—12l 3 sinx cosx
b
I(21—-1) 2r,3 2 4 7
XA o Lo —ily )+ (Lo — L)L Jet®
AL Lo il )+ (LT ) Je o)

3 sin%x

-
8

[e¥e(I—il,) 2+ e2ie(L+il,)2]Y,  (7.6)

713

where Q is the electric quadrupole moment of the
nucleus as defined by Bardeen and Townes.* The terms
in ex%¥ may affect the A doubling in case b.

Except for the case of A doubling described in Sec. 6,
the matrix elements of (7.2) or (7.3) would by them-
selves yield negligible effects in a second-order calcula-
tion. There are, however, certain “molecular”’ matrix
elements which are off diagonal in A and which, when
taken in cross terms with (7.2) or (7.3) yield observable
hyperfine structures, even in !Z states.

We shall give here the effects in '2 states which arise
in second order from the interactions with the electron
orbital currents, expression (7.2). The spin effects of
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Eq. (7.3) are of the same general form. Semiclassical
treatments (large values of J) have been given previ-
ously.? We write (7.2) in the form

%a[(Lz”‘l"iLy’/) (I —ily)+ (Lo~ 1Ly YT o441 ,) ]
7.7

This term in second order yields§

a® _ (S|L'L|1m)?

(Ad-K)—IT+1)], (7.8)

Z o AEsn

in which the summation is extended over all II states
to which there is a nonvanishing (Z|L1|M) matrix
element. The dependence on F of the expression in
square brackets is given by C(C+1) with C=F(F+1)
—I(I+1)—J(J+1). This is of exactly the same form
as the hyperfine level perturbation developed by an elec-
tric quadrupole moment. The quantity >_n (2| L 1| II)?/
AEsq cannot, in general, be evaluated. For a very simple
model with the total orbital angular momentum a good
quantum number (Van Vleck’s hypothesis of pure pre-
cession),® the value L(L+1)/AEszn, is obtained for
this quantity. The order of magnitude of this effect is
Euwi?/AEsn, which will be quite negligible in almost
all cases.

The perturbation terms in the molecular Hamiltonian
which arise from the nonseparability of electronic and
rotational motion, and which lead to the “A doubling”
observed in molecular spectra give nonvanishing ma-
trix elements between Z and II states and these may
form cross terms with the magnetic hyperfine operator
(7.2). The A doubling operator is?

BE|LL| I+

==ZB(Z

Another molecular operator with similar properties
is the interaction of the electrons with an external mag-
netic field. For 12 molecules there is no first-order inter-
action, but there exists the operator

mo(Lax'+Lyy') - H, (7.10)

which has matrix elements of the form uo(Z| L L |IT)1' - H.
The cross term of the first term of (7.9) with (7.2) is

L,,r'+3%’—"n)tf(f+1>]%. (1.9)

G[L 1|1 .
3 4eB— [T +D]A-)
o AV} ¢
(Z|L'L|Mm)?
=y ——— " 2aB{-J). (7.11)
18 AEEH

This term accounts for most of the observed I-J inter-
action in 2 states. There is a small contribution from
the ‘direct’ I-J interaction of the nuclear motion dis-

§ In Eqgs. (7.8), (7.11), and (7.17) the matrix elements have been

written as if the radial integrals could be factored from the angular
momentum operators.
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cussed in Sec. 8. For the case of a positive nuclear
moment the term above is positive.

The cross term of the second term of (7.9) with (7.1)
gives a negligible hyperfine level shift. We will now
examine the second-order cross term involving the
matrix elements of the second term of (7.9) with those
of L,/ We have

€
T Tyt
Clp- | M| Ly /73] Z)
s + | L,/ /frd| (I pz'lz).
o AE}:H

(7.12)

The summation is extended to all excited II states. Now,
since

Pkn '1:
~—==—[Ek—E,,]rkn, (7.13)
m h
this expression becomes
e imyg |L,x’'—x'L,/|
—Tp,,l—-(z —2 ) , (7.14)
me  h 73

and since [ L,/’, ' ]= —iz, we have for the cross term

e 2B 21, B
———-WEJ<J+1>J%(~) =28, T)r, (1.15)
c h 8w he

(8}

noting that the matrix elements of w-y’ are just
un(@-J)/2[T(J+1)7t &, is the magnitude of the elec-
tronic field produced by the electrons at the nucleus.
The first term of Eq. (7.2) gives a contribution equal to
(7.15), giving finally

2(B/#c)Eo(u-I)T. (7.16)

This term is just canceled by an equal contribution
from the rotational motion of the nuclei (see Sec. 8).
The cross term of (7.2) with (7.10) is

(| L.|m?
Z auo——E—-—(Iz/—in:)(Hz»—{—iHy')
(Z|aLi|M)?
=3 aur—— [LH-IK)H-K)]. (7.17)
o AEsn

This expression represents the effect of the diamag-
netic shielding of the nucleus by the electrons in the
presence of an external magnetic field. This effect has
been discussed extensively by Ramsey'® and will not
be considered further here.

For completeness we consider the cross term of (7.9)

B N. F. Ramsey, Phys. Rev. 78, 699 (1950).
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and (7.10):
E|Li|m)?
2. 2B— m[J(J+1)(x"—dy')-H
I 1AEsn
(|Li|m)?
=2uBY, ————(J-H), (7.18)
o I

which yields the electronic contribution to the molecular
rotational magnetic moment:

ElL] 11)2J
I AEzn '

2u0 (7.19)

8. NUCLEAR SPIN-ROTATION INTERACTION
IN !X STATES

In addition to the second-order electronic I-J inter-
action of Sec. 7, there is also the interaction of the
nuclear magnetic moment with the magnetic field pro-
duced by the rotation of the heavy particles themselves.
This interaction term is

e _[9><p]

2 w1
MoC p3 ’

(8.1)

where M, is the reduced mass, p the distance between
the nuclei, and p=ps=—p;. Account must be taken
here of the relative motion of the two nuclei. Following
the procedure of Sec. 7, we write (8.1) in the form

. ’ .
7 evl [7k’Xp] Ly " Lo2Xp]

2 142
cp*M, Mocp?
7'!:‘1'-”5 o2l
=8y En wi-J, (8.2)
Mop%c cMp?

where 8y is the electric field produced at the position of
nucleus 1 by nucleus 2. p; is the distance from the cen-
ter of mass nucleus 2. The first term of (8.2) added to
(7.16) gives just

Th

X [total electric field at 1]. (8.3)

Mopzc

The electric field at the equilibrium position of a nucleus
is zero. The second term of (8.2) is to be added to (7.11)
and contributes to the I-J interaction.

9. INTERACTION WITH AN EXTERNAL FIELD:
SELECTION RULES AND INTENSITIES

The contribution of each electron to the electronic
dipole moment is the vector er’ with components ex’,
ey’, and ez’ in the molecular coordinate system.

The magnetic dipole moment operator in case ag is
the sum of two parts:

IN DIATOMIC MOLECULES
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(1) The electronic contribution, a vector in the mo-
lecular frame of reference with components:

(oL z+2u0S2)X’';
(moLy~4-210S,)Y';
and (uoL,:—}—ZuoSz’)z.

(2) The nuclear moment vector gruxI in the labora-
tory system.

In case bg, the magnetic moment is the sum of:

(1) poLox"; woLyy'; ueAz’ in the molecular coordi-
nate system.
(2) The vector 2ueS+ grunIin the laboratory system.

Diagonal values of the magnetic moment operator yield
the first order Zeeman effect. Nondiagonal values of the
electric and magnetic dipole operators give the selection
rules and the intensities in electric and magnetic dipole
transitions, as well as higher order Zeeman and Stark
effects. The diagonal matrix elements of the magnetic
interaction in case ¢ are

Q
(A+22)u0—————mJH+gmNm[H (91)
J(J+1
in strong fields, and
Q@  FFE+O)+HIT+1)—I(I+1)
(A+22)ﬂ0 v
J(J+1) 2F(F+1)
FF4+1)—J(+1D)+I(1+1)
+gruN 9:2)
2F(F+1)

in very weak fields. The presence of A doubling does not
affect these diagonal values. In case & the diagonal
magnetic interaction is

A JIH1D)=SES+HD)+K(K+1)

Mo J
K(K+1) 2J(J+1)
) J(J+1)—K(K+1)+S(S+1)W
K 27(J+1) o
+gruvmr  (9.3)

in strong fields, and in weak fields for the J representa-
tion (Sec. 5) it is

A JUT+1)—=SES+1)+K(K+1)
{”°K(K+1) 20(U+1)
JUI+1)—KE+1)+S(S+1)
+21~l0 l
27(J+1)
F(F+1)—I(I+D)+J(JT+1)
. -
2F(F4+1)
F(F+1)—J(J+1)+1(141)
+grun mp. (9.4)

2F(F+1)
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The off diagonal matrix elements of the electric or
magnetic dipole moment components may be worked
out from the matrix elements of the direction cosines
of the molecular coordinate system given in the Ap-
pendix, together with the formulas taking into account
the vector coupling.’® In the interest of brevity the
results will not be given here.®

Some examples of the use of the off diagonal matrix
elements have been given in Sec. 7. The selection rules
for the diatomic molecule are well known® and need only
be extended to include the usual rule, AF=0, 4-1.

10. APPLICATIONS

The oxygen and nitrogen oxide molecules appear to
be the only examples so far observed of a first-order
magnetic hyperfine spectrum.

016017

The coupling of the electron spin to the molecular
rotation in a 32 state has been shown!! to arise in part
from the second-order effect of the spin orbit interaction
orbital angular momentum components perpendicular
to the axis, and the A doubling interaction [expression
(7.9)]. Matrix elements of these operators between 32
and °®II states yield in second-order energy perturba-
tions in the 3% level of the form discussed in Sec. 6
Eq. (5.8). Kramers" has shown that, in addition to
these second-order terms, there is the spin-spin inter-
action of the electrons, which contributes terms of the
same form as the above. The final energy positions of
the levels J=K+1, K, K—1 are then

K+1
WK+1=W0—2)\ +;L(K+1),
2K+3
Wr=W,, (10.1)
K
WK_1= Wo— 2)\2 - ,U.K,

for AXB. A more exact formula has been given by
Schlapp?®® for the case B2\,

The first-order magnetic hyperfine structure for a 32
state is given by the case bg expression (5.5):

o-S+-c(I-K)(S-K'). (10.2)

This quantity must be expressed in the Fy, J, or F3
representation. For O, we have A=1.984 cm~! and
p=—0.0084 cm~!5 Thus, it appears likely that the
coupling of S to K will be greater than the hyperfine
interaction, and the J representation is appropriate.
The diagonal expressions for the hyperfine levels in this

¥ H. A. Kramers, Z. Physik 53, 422 (1929).
15 R. Schlapp, Phys. Rev. 51, 342 (1937).
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representation are
F(F+1)—J(U+1)—-I(I+1)
2J(J+1)
(K4+2)[0+¢/(2K+3)] for J=K+1
X< btc for J=K
(K—=D[—b+¢/2K—-1)] for J=K—1.

FJK=

(10.3)

Higher order corrections, proportional to 4% and ¢?, etc.,
may be obtained from the matrix elements of (10.2)
according to the methods given in Sec. 5. A comparison
of (10.3) with the spectrum of O%OY will be published
separately by Dr. S. L. Miller.

N14016

Beringer and Castle!® have observed the microwave
spectrum of NO gas in rather strong magnetic fields.
Margenau and Henry, and Henry!” have given theo-
retical analyses of the spectrum. Their results are de-
rived from an incomplete Hamiltonian.

In the experiments of Beringer and Castle, the A
doubling was not resolved. Its effects are not included
in our analysis. (The writers have been informed by
Professor Beringer!® that in a considerably more accu-
rate experiment, the A doubling and the related hyper-
fine structure effects in NO have been resolved. For this
reason only, a summary of the analysis of the previous
results will be given here.)

The ground state of NO is represented quite well by
Hund’s case a. In this representation the hyperfine
Hamiltonian including all effects diagonal in A is

LeA+(@+)Z]A-K)+o(LoSe+1,Sy). (10.4)

The second term gives matrix elements only between
213 and 114 states (see Sec. 7). This effect is expected
to be small, and in fact it was possible to account for
the observed spectrum without including it.

The energy levels in a strong magnetic field (~8500
gauss) were obtained in the following way: The Zeeman
matrix, including elements of the Zeeman Hamiltonian
connecting J=3/2 and J=5/2 was solved exactly. (The
effect of the J=7/2 level on J=3/2 states was found
to be negligible.) The resulting states were then cor-
rected by a second-order calculation of the effects of
the states of 2II;. This calculation employed the matrix
elements of the magnetic field between %II; and °II,
states, and the rotational distortion of the spin multi-
plets® (incipient case b). The final linear combination
of eigenfunctions was employed to obtain the magnetic
hyperfine structure from (10.4). An agreement with
the observed spectrum to 0.05 percent was obtained
employing (¢A+(b+4¢)Z)=0.002607 cm™.

18 R, Beringer and J. G. Castle, Jr., Phys. Rev. 78, 581 (1950).

17 H. Margenau and A. F. Henry, Phys. Rev. 78, 587 (1950);

A. F. Henry, Phys. Rev. 80, 549 (1950).
18 R. Beringer (private communication to the authors).
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APPENDIX
We require matrix elements of operators of the form,
etike]. (x'-1y"), (A1)

where k=0, 1, 2. Since the wave functions are of the

form,
Oran(f)eiree™?,

the integrals giving matrix elements are of the form,

[ @ yateitoe—iddgFike]
(X 1Y) O prg et BER 0t Vg (A3)

If we perform the ¢ integral, we are left with the
quantity,

[0 rare M- (X' 2iy') O yrgrape™'¥ sinddody, (A4)

to evaluate. In this connection it is convenient to define
a Cartesian coordinate system with unit vectors 1'j'k’,
related to the fixed space frame through the usual
Eulerian angles (see Fig. 4). In this Eulerian system,
the x’ axis is along the line of nodes, and the y’ axis is
related to it in the usual right-handed way. The electron
is located on the i’ axis. We may write

(A2)

1'=x' cosp+y sing

= (x'+iy")(e7*¢/2)+(x'—iy') (e'%/2), (AS)
and hence, we see that
QY |Q+1)=1[Oson*
XM (x'14y") O yrop1are™'Y sinfdbdy.  (A6)

The unit vectors 1'j’k’ are T vectors in the notation
of Condon and Shortley,? that is, they commute with
the components of J in the laboratory system according
to [Ja, Ty 1=1hT,, etc. Then, their matrix elements are
of the form,

(aJm|T| o' T+ 1mt1)=F(aJiTia'J+1)
X3 (TE£m41)(TE£m+2) (i),
(aJm|T| T+ 1m)=(aJiTia/ T+1)
X[(J+1)2—m*]k,
(aJm|T| o' Tmt1)=(aJiTia'J)
X3LFm)(J£m+1) J (i),
(aJm|T| o' Tm)=(aJiTia/ J)mk,
(aJm|T|o'T—1mx1)=+x(aJ:Tia’T—1)
' X[ (JFm) (JFm—1) P(i1),
(aJm|T| o' T—1m)=(aJiTia/J—1)(J2—m?)k,
in which i, j, k are the XVZ unit vectors in the labora-

tory system. From King, Hainer, and Cross' we obtain,
with a change of phase to conform to the choice of

19 Cross, Hainer, and King, J. Chem. Phys. 12, 210 (1944).

(A7)
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Fic. 4. The Eulerian coordinate system 1'j’k’ with 0 and 1 as
chosen by King, Hainer, and Cross. The plus and minus x’ and
minus y’ axes are marked. For proper phase and angles as chosen
by Condon and Shortley and Van Vleck one should let j—i,
i——j, and Y—{+=. 1 then is the angle between the i axis and
the projection of k’ on the ij plane.

angles of Van Vleck?® and the phases of Condon and
Shortley,*

[(+e+1)—a+1)]

k" J+10)= ,
+DLEI+1)(2T+3)
(JQK'JIQ)= )
J(J+1)
(-0t
eKiT-10)=——,
J4—1)*
(A8)
[(E£o+1)(TE£0+2) ]
Joy/FaiT+10E£1)=F )
20+ D[@T+1)(27+3)
o e [UFQ(xo+1) ]
(JQYy/Fi'iJax1)=
27(J+1)
L [UFQUFQ-1)]
Qi /Fi'iJ—10£1)=+ .
27 (4J2—1)}
It should also be noted that, in the rotating frame,
(2|8, =£iSw |21 =[SS+1)~Z(Z£1)T], (A9)
and, in the laboratory frame,
(ms!Sx:FiSy[ms:l: 1)
=[S(S+1)—ms(ms£1)T}, (A10)

etc.



