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A Combinatorial Solution of the Two-Dimensional Ising Model
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Institute for Advanced Stmdy, Princeton, Em Jersey
(Received June 2, 1952)

An elementary method which yields the partition function of a two-dimensional Ising model is described.
The method is purely combinatorial and does not involve any of the algebraic apparatus used in this con-
nection by Onsager and Kaufman.

I. INTRODUCTION

HE partition function of the two-dimensional
square net Ising model can be easily put in the

form'

(1 1)(coshH) "(coshH') "gg(l, k)x'y'
where

H=J/kT, H'=J'/kT, x=tanhH, g=tanhH',

h the total number of horizontal links, v the total
number of vertical links, and g(l, k) the number of
"closed polygons" with t horizontal and k vertical links.
The problem is thus purely combinatorial and consists
in counting closed polygons. Since the exact evaluation
of the partition function was provided by Onsager' and
Kaufman, ' it seemed desirable to understand how the
algebraic method of these authors performs the actual
counting. This was the starting point of the present
investigation. The authors felt that the exact formulas
(for finite lattices) of Onsager and Kaufman should
provide a clue to the proper method of counting and

thus lead to an elementary combinatorial approach to
the problem.

In the main body of the paper we shall explain in
detail the method of counting which yields the partition
function up to negligible terms due to boundary effects.
Several combinatorial points will be dealt with a heu-
ristic manner only. We do not go into the details of
rigor because our main aim is not so much an alternative
derivation of the Onsager-Kaufman formula but a
demonstration that a combinatorial approach is indeed
possible. Furthermore, the combinatorial approach
provides a new insight into the problem and its di%-
culties. Although this new insight makes the three-
dimensional Ising model look even more formidable
than before, the authors hope that the method may
find other useful application.

II. PRELIMINAMES

The exact formula for the partition function of an
10 Xm lattice (wound on a torus) was found by Kaufman
(see reference 3) to be of the form

1(sinh2H)'* " ( m y l' m y ( m y ( m
II I

2 oh—v ~ I+II( 2 h—v ~ I+II I
2 h—y.— (+II I

2 h—v.— I, (21)
r=1 E 2 ) r-1 ( 2 ) r-1 4 2 ) r=1 & 2 )

where

cosh', =cosh2H* cosh2H' —sinh2H* sinh2H' cos(0rj/n),

or, equivalently,

can be written as
n 1 1( (2S—+1)0r)

Z (sinh2H)™IIII ~
cosh' „—cos

r 1S=0$ 21

cosh', = (1+*')(1+y') (1—*')

2x(1—y') 2x 1—
y

Here we set m/2= l and assume that m is even. Making
cos—. (2.2) use of (2.2) one gets, after a few simple transformations,

2 S
n l—1

It is apparent that the complexity of formula (2.1) is
due to taking boundary effects too seriously. For large
lattices one expects the asymptotic formula

(sinh2Hy &"" t' m
II/2 oh—

~ f,
2 ) .-1 E 2

which with the aid of the obvious relation,

1—1 (2S+1)0r )
!cosh/0=2' 'II

i
coshg —cos

S=O & 2l )
' B.L. van der Waerden, Z. Physik 118, 473 (1941).' L. Onsager, Phys. Rev. 65, 117 (1944).' B. Kaufman, Phys. Rev. 76, 1232 (1949).

Z (coshH) (coshH')" II II (1+x')(1+y')
r=1 S=O

27rr (2S+1)n.
—2y(1 —x') cos —2x(1—y') cos

S 2l

For large lattices one can replace (2S+1) by 2S and
obtain finally

rn rm

Z (coshH)"(coshH')" II II (1+x')(1+y')
r=l S=l

2xr 2mS—2y(1 —x') cos —2x(1—y') . (2.3)
S m
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(It may be pointed out that for a riXm lattice wound
on a torus one has h=i)=me. ) If one compares (2.3)
with (1.1) one sees that, apart from boundary effects,
one must have

27rr—2y(1 —x') cos —2x(1—y') cos
2xS

(2.4) Fzo. 2.
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can be expanded as follows:

Q&(Ai i A(i 2(a' 2' 'Ai()(()i()(A&'(z'2' ' 'Az', (()p'i)

(A/ii) ' 'A/ (r)(i).8(3.1)

The permutations of indices involved in these terms
are products of cycles, and herein lies our hope of
dentifying the terms of the expansion with closed
polygons. In brief, we expect to identify closed polygons

III. THE PRINCIPLE OF THE METHOD

The way we propose to attack the problem is to
construct a suitable determinant' with ones (1's) on the
main diagonal and x's, y's, and 0's off the main diagonal.
The construction would have to be such that to each
nonvanishing term in the expansion of the determinant
there would correspond a unique closed polygon and
vice versa. If the signs of the terms in the expansion
of the determinant could all be made positive, the value
of the determinant would yield the generating function
gg(l, k)x(y'. This approach meets immediately with
several di%culties which we find instructive to discuss
before writing down the actual determinant. A determi-
nant with ones on the main diagonal,

with cycles or, in case of closed polygons of several
components, with products of cycles. We can now state
the first difhculty which our approach encounters. If
there is to be a one-to-one correspondence between
terms in the expansion (3.1) and closed polygons, then
terms like A l2A23A34A4l and A2lA l4A43A32 should
correspond to different closed polygons. On the other
hand, the cycles involved in both of these terms,
namely, (1234) and (2143), are inverses of each other
and should be associated with the same polygon. It
would thus seem that the determinant will, at best,
count oriented polygons, whereas we are interested in
the unoriented ones. This difficulty can be resolved by
the following trick. Consider an n X2m lattice (Fig. 1)
and classify all closed polygons (unoriented) on this
lattice into those which do and those which do not cut
the middle line (dividing the ac X2m lattice into 2e Xm
lattices). Disregarding the closed polygons which cut
the middle line, we can associate with every other
polygon an oriented polygon on the upper lattice by
the following rule: The parts of the polygon in the
upper lattice (if any) remain there and are oriented
clockwise whereas the parts of the polygon in the lower
lattice (if any) are replaced by their reflections through
the middle line and are oriented counter-clockwise
(Fig. 2). On the basis of this rule we can see that the
generating function of unoriented closed polygons on
the NX2m lattice is equal (up to boundary effects due
to neglecting figures which cut the middle line) to the
generating function of oriented polygons on the e)&m
lattice.

Since the partition function for an eg2m lattice is
(in the limit as m and m become simultaneously infinite)
the square of the partition function for an e pm lattice,
we should expect the product,

I t s ~--------------»-- rotcfate. ~leS II II (1+x')(1+&2)—2x(1 —*') cos
l S l

2rr

2mS—2x(1—y') cos, (3.2)

Fro. 1.
4We understand that Mr. Madox of Manchester University,

England, has considered a similar idea. However, we are not
a@rare of any publications on this subject.

to be the generating function of oriented closed polygons
on the elm lattice. There is, however, one more
difFiculty. The oriented polygon [Fig. 3(a)j does not
correspond to any unoriented polygon, whereas the
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columns are labeled as follows:

~ ~ 0

1234 1234 13141516,13141516 15913

0

1 5 9 13 4 8 12 16 4 8 12 16

FIG. 3.

oriented polygon LFig. 3(b)j does. This difficulty seems
to spoil the one-to-one correspondence established
above, but it can be resolved in the actual construction
of the determinant. It will turn out that there will be
no terms in the expansion of the determinant corre-
sponding to Ggures like (b), whereas figures like (a)
will be counted in a regular fashion. The fact that it is
the "impossible" ones that one counted rather than
the "possible" ones is of no consequence since, for
counting purposes, the distinction is immaterial.

It should be noted finally that I and m enter sym-
metrically in (3.2), whereas in the Kaufman-Onsager
formula they do not. This fact makes it apparent that
the oriented closed polygons are the natural ones with
which to deal. This in turn lends support to the natural-
ness of the determinant method because it is in this
way that one is forced into considering oriented
polygons.

IV. CONSTRUCTION OF THE DETERMINANT.
FURTHER DIFFICULTIES AND

THEIR RESOLUTION

We shall illustrate the construction of the determi-
nant by considering a 4X4 lattice. The generalization
to arbitrary size is easy and will be left to the reader.
The oriented polygon shown in I'ig. 4 is described as
follows: (1.2)RD(2, 6)DD(6, 10)DL(10,9)LU(9,5)UU
(5,1)UR(7, 11)DR(11,12)RU(12,8)UL(8, 7)LD. The
numbers indicate which neighboring points are con-
nected; the first of the letters R, L, D, U (Right, Left,
Down, Up) indicates the direction in which the line
joining the points is traversed, and the second letter the
subsequent direction of motion. Symbols like (1,3) RD
will not enter in describing closed polygons because j.
and 3 are not nearest neighbors. Neither will symbols
like (1,2) RL and many others. Symbols like these will
be called improper.

Let us now define a matrix A&;, »xr (i, j=1,2, 3, 4;
XI"=R, L, U, D) as follows:

g &; »» ——0 if (i,j)XY is improper;
g&; »xr= g if X=R or L (and the symbol is proper);
g&;, »x&——y if X=U or D (and the symbol is proper).

(4 1)

On the main diagonal we put ones (1's). The rows and

( 1)0&2+( 1)g/yk

where 0 is the total angle through which one turns in

l 2
0

5 6
i) (1

7 8

9 l0r jt
ll l2

l5 l4
0 0 0 0

Fro. 4,

With x's and y's placed according to (4.1) we see that
to each oriented closed polygon there corresponds a
term

(4.2)

in the expansion of the determinant, where 3 and k
denote, respectively, -the number of horizontal and
vertical lines in the polygon. We must first modify the
matrix elements in such a way as to get only positive
signs in (4.2). We note that the sign of a cycle of length
&. is (—1)o ', and since we are dealing with cycles of
even length the sign is always negative. If a polygon
consists of r components, so that the corresponding
permutation is a product of r cycles, the sign will be
(—1)'. The modification of matrix elements must be
accomplished in such a way as to provide a minus sign
for each one-component polygon. This is done by
multiplying each x and y by

0,= e&' o|—'= e-&' or 0,'= 1) )

according as the turning which is described by letter
indices is through ~iir (counter-clockwise), ——,'n. (clock-
wise), or 0. Thus, terms with indices RR, LL, UU, DD
will remain unaltered, those with indices RU, UL, LD,
DR will be multiplied by o., and those with indices
RD, DL, LU, UR by 0. '. If we now take a closed
one-component polygon, the term in the expansion of
the modified determinant will be
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FIG. 5. The determinant for a 4X4 lattice.
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describing the polygon. Since 0=+2m, we get +xly»
as desired.

The determinant is finally as given in Fig. 5.
Let us Arst see how the difficulty stated toward the

. end of Sec. 3 is resolved. Figure 6 is described symboli-
cally as (1,2)RD(2, 6)DL(6,5)LU(5, 1)UR(2,3)LD(2,6)
DR(6,7)RU(7,3)UL. This clearly does not correspond
to any term in the expansion of our determinant because
elements corresponding to (2,6)DL and (2,6)DR appear
in the same row and only one element from each row
is allowed.

There is Anally one more difficulty, which fortunately
resolves, itself automatically. This difficulty is the
following: There are terms in the expansion of our

determinant which do not correspond to closed poly-
gons. Some of these terms are trivial, like those which
do not involve elements of the main diagonal or those
like (1,2)RR(2,3)RR(3,4)RR(4, 1)RR. The presence of
these terms depends clearly on our decision to put the
lattice on a torus, and hence they 'correspond to
negligible boundary effects.

There are, however, also nontrivial terms. Such a
nontrivial term can arise as shown in Fig. 6. Consider
the closed polygon in Fig. 7, and note that it is a
two-component figure and that hence it gives rise to 4
terms x4y4 corresponding to 4 distinct ways in which
the two components can be traced out separately. But
in the expansion of the determinant there will be 4
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6

FI.G. 6.

other terms which correspond to tracing out the polygon
Neicursally. We shall have terms corresponding to
symbols:

(1,2)RD (2,6)DD (6,10)DR(10,11)RU(11,7)UL(7,6)LL

(6,5)LU(5, 1)UR,

(1,2)RD (2,6)DR(6,7)RD (7,11)DL(11,10)LU(10,6)UL

(6,5)LU(5, 1)UR,

and two more in which the directions of motion are
reversed. The terms in the expansion of the determinant
corresponding to these "unicursal" symbols cancel. To
see this, note that in tracing out our polygon in the
manner indicated by the first symbol we turn through
the total angle 0, whereas in the second case the total
angle is 2~. Since (—1)'I'~=1 and (—1)'~~'~= —1, the
terms will be of opposite signs and will thus cancel each
other. There is a general "topological" theorem which
underlies this situation and which we state without
proof:

Let there be e()1) plane closed curves such that
each curve has a point in common with at least one
other curve (Fig. 8). Then pe'oi' =0, where the sum-

mation is extended over all unicursal ways of tracing
out the resulting figure and 0 denotes the total angle
through which one turns in a particular tracing.

The reader is invited to check other situations, like
that in Fig. 9, and see how the cancellation follows
from the above theorem. We thus arrive at the conclu-
sion that our determinant is equal, except for boundary
effects, to the generating function of the number of
closed polygons, It should be clear that the considera-
tions of this section apply to lattices of arbitrary size.
We have chosen the 4X4 case just as a convenient
illustration. For an 1zXm lattice the determinant is
4m' X4mn.

quently it is not too dificult to guess the eigenvectors
of the corresponding matrix. ' Let e and 8 be two 4th
roots of unity and consider the vector whose components
are as follows: The first 32 components are obtained
by multiplying the numbers 1, e, e', e' by u, b, ab, bb,
a8', bl', ab3, bb', and repeating them in consecutive
groups of four. The remaining 32 components are
similarly obtained by multiplying the numbers 1, 5, 6', 8'

by c, d, ce, de, t,
.e', de', c~', de'. The components are thus

C~C6) C6) C6)b8, b86, b8t b86) ''' dk)A8)dP8 de8.
In order that this vector be an eigenvector of our

Fzo. 8.

(1+x&)a+Ob+n 'xec+dxed=Xa,
Ou+(1+x' ')b+nxc 'c+n 'xe 'd=Ãb,

dyba+n 'ybb+ (1+yb)c+Od = 'Ac,

n 'yb 'a+nyb 'b+Oc+(1+yb ') =Ad.

(5.1)

Fro. 9.

From these equations we get four eigenvalues X&(e, b),
)„(q, b), X3(e, 8), X4(e, 8), and it is seen immediately that

1+x'

matrix it is easily seen that the following four linear
equations must be satisfied:

V. THE EVALUATION OF THE DETERMINANT

An examination of the determinant reveals that it II &i (~~ ~)='
has a certain amount of cyclic structure, and conse-

1+xc—& nxg-& n—~xg—&

nyb n 'yb 1+yb 0

n'6 —' ayb' 0 1+yb '

= (1+x')(1+y')—y(1 —x')(e+c ')

—x(1—y') (6+8
—')

The original determinant is the product of all eigen-

Fxe. 'l.

After the determinant has been constructed and computed,
several of our friends pointed out that a suitable reshuNing of
rows and columns will reduce it to a form in which cyclicity is
much more evident.
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values and is thus equal to

II II X,(e, 6)=II{(1+x')(l+y')—y(i —x')(a+a ')

case e and 8 are eth roots of unity but the system of
Eqs. (5.1) remains otherwise unchanged.

In conclusion, it is a pleasure to acknowledge the

e, 8 j I kind hospitality of The Institute for Advanced Study

x(] —y&) (p+ $ 1)) and to thank many of our friends for the healthy
pessimism they showed during the early stages of this

which is precisely (2.4). Needless to say, in the eXn work.
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Magnetic Hyyerfine Structure in Diatomic Molecules* f
R. A. FROSCH AND H. M. FOLEY

Columbia University, %em York, Kern York

(Received July 29, 1952)

A general theory of the magnetic hyperfine structure in diatomic molecules, including states other than
Z states, is given. The magnetic hyperfine interaction is derived from the Dirac equation for the electron

in the molecular potential field. First-order hyperfine structure formulas are given for the various vector
coupling schemes characteristic of molecular states. The 'Z magnetic hyperfine structures are obtained from
second order hyperfine interactions. Applications to the N"0" and 0"0' microwave spectra are discussed.

1. INTRODUCTION

HE general theory of the nuclear hyperfine struc-
ture observed in atomic spectra has been worked

out and discussed extensively, ' and even the detailed
features of the observed spectra are quite well under-
stood. Xo such general treatment has apparently been
given for diatomic molecules. In the case of diatomic
molecules with no resultant electronic spin or orbital
angular momentum ('Z), satisfactory phenomenological
treatments of the magnetic interaction of the nuclear
moment with the electronic currents, in the form of an
I.J coupling with the molecular angular momentum
vector, have been given. ' Investigation has shown' that
this effect arises for the most part from the effect in
second order of the nondiagonal matrix elements of the
nuclear magnetic interaction with the electronic cur-
rents. The interaction of the nuclear electric quadrupole
moment with the electronic currents in these molecules
has also been treated satisfactorily. 4 The development
of microwave spectroscopy and molecular beam tech-
niques have made it possible to examine the hyperhne
spectra of paramagnetic gas molecules, i.e., molecules

* Publication assisted by the Ernest Kempton Adams Fund for
Physical Research of Columbia University.

f Assisted in part by the ONR.
' E. Fermi, Z. Physik 60, 320 (1930); G. Breit and F. W. Doer-

mann, Phys. Rev. 36, 1732 (1930);H. B. G. Casimir, On the Inter-
action Between Atomic Nuclei and Electrons (Teyler's Tweede
Genootschap, Haarlem, 1936); E. Fermi and E. Segre, Z. Physik
82, 729 (1933).

'Kellogg, Rabi, Ramsey, and Zacharias, Phys. Rev. 57, 677
(1940); H. Zeiger and D. I. Bolef, Phys. Rev. 85, 788 (1952);
D. I. Bolef and H. J. Zeiger, Phys. Rev. 85, 799 (1952).

'H. M. Foley, Phys. Rev. 72, 504 (1947); G. C. Wick, Phys.
Rev. 73, 51 (1948).

4 J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948).

in states other than 'Z. The present paper is devoted
to the general treatment of the hyperhne spectra of
diatomic molecules. For molecules with nonzero elec-
tronic angular momentum, it may be anticipated that
the nuclear moment interaction with the electrons will
be of the order of magnitude of atomic magnetic hyper-
fine couplings, and thus will be very much larger than
typical nuclear electric quadrupole couplings. The
strength and mode of the vector coupling of the nuclear
spin to the various angular momentum vectors in the
molecule will therefore be primarily determined by the
magnetic interactions, and it will be sufhcient in almost
all cases to evaluate only the diagonal values of the
electric quadrupole interaction, in a vector coupling
representation determined by the magnetic interaction.
The greater part of the present work will thus deal with
the theory of the magnetic interaction of a single nu-
clear spin with the electronic currents in the various
kinds of molecular states.

Typical features of the molecular magnetic hyperhne
interactions may be compared with those of atoms. The
interaction with electronic spins in the atomic case is
treated quite differently in s states (L=O) and non-s
states. ' For non-s states, the spin coupling may be
written as the interaction of two point magnetic dipoles
in the form 3(I R)(S R)/R' —(I S)/R', where R is the
space vector from nucleus to electron. For s-states, this
interaction vanishes (as does the orbital interaction),
and the actual hyperhne coupling must be accounted
for by a more rehned treatment of the magnetic inter-
action. The most satisfactory method of treating the
interaction of the nuclear magnetic moment with the
electronic currents is via the Dirac equation for the


