
ANGULAR DISTRIBUTION FUNCTIONS

sions between a nucleon and a nucleus. Results are
presented in Figs. 1 and 2.

We consider Grst the results for the cross section (3),
and P = 144. It can be shown rigorously that as U
approaches Uo, the mean square angle approaches the
value 2/t/. This is different from the very small value
obtained by the evaluation of (13) and (14) by the
method of steepest descents, which, as we have pointed
out previously" does not give good results when U ls
comparable with Uo. The light portion of the lines in
Figs. 1 and 2 represent extrapolations to meet the
known values for U= Uo —0.

As expected, using the cross section defined by (6),
one obtains results diGering radically from those already
considered only when U=Uo. With (6), the value of

~H. Messel and H. S. Green, Proc. Phys. Soc. (London)
A65, 245 (1952); Phys. Rev. 83, 1279 (1951).

(8') approaches zero, instead of the large value 2/P
resulting from the use of (3). Evidently suitable experi-
ments should be able to decide between the two
alternative cross sections.

The results for the mesons are very similar to those
for the nucleons, but somewhat smaller, as one might
expect on the model adopted. On any other model, the
difkrence between the spread of the mesons and that
of the nucleons would be less. This dÃerencc couM,
in principle, enable one to determine which of the
various models" of meson production, so far considered
in cascade theory, is most nearly correct.

On account of its hereditary property, the normalized
angular distribution for scattered particles in nuclear
collisions represented by (6) is preserved under all
conditions throughout the atmosphere and is the
same for the mesons as for the nucleons.
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The stopping power of E-shell electrons for large incident particle energies is calculated in this paper,
adding to and correcting previous work on the subject. A de6nition is given for the average ionization
potential of an atom independent of the energy of the incident particle. An integral representation is derived
for Bethe's term Cz which corrects the simple E-shell stopping number expression. Finally, asymptotic
formulas, applicable at large incident particle energies, are given for use with any element.

the inner electrons of heavier elements, (1) must be
modi6ed by calculating 8 for these electrons separately
(and without the approximations that impose on (I) a
lower limit for m)'. Bethe' has done this for the stopping
number, 8~, of the E-electrons and has given curves
of B~ vs q~. q~ is a convenient variable given as the
quotient of stan'/2 by the "ideal" ionization potential,
Zx, tP Ry of the X-shell. For large qtr Bethe gives an
asymptotic formula of the form

I. INTRODUCTION

HE energy loss of charged particles passing
through matter has been calculated by Bethe,"

using the Born approximation. Provided the velocity,
v, of the incident particle is much larger than the
"velocity" of the atomic electrons, the energy loss per
cm path length ls

dE 4me's'
gB

d's me~
(&)

+K(8x r/K) ~x(8It) lure+ 2 x(8x) ~tr(8x, sitr—), (2)

where B=Z in(2rttv'/I). Here es is the charge of the
incident particle, ns the electronic mass, X the number
of stopping atoms per cm', Z the nuclear charge, and I
the average excitation potential of the stopping atom.
The quantity 8 is called the stopping number.

If ~ is not large compared to the "velocity" of some
of the atomic electrons, and this will often be true for

where 8~ ls thc obscrvcd lonlzatlon potcntlal ln units
Z~,~f' Ry. It is then possible to expand.

~x(8x, rttr) = Utr(hc) r/tr '+ &tr(8z)re '+, (3)

and Browns has done this, obtaining the constant
Urt(8tr) for various 8x. As pointed out by Walske and
Bethe, ' Brown's values need a correction. The details

~ Part of this work is included in the author's doctoral thesis
at Cornell University, 1951.' H. Bethe, Ann. Physik 5, 325 {1930).

'M. S. Livingston and H. A. Bethe, Revs. Modern Phys. 9,
263 (1937).A detailed discussion of Bethe's stopping power theory
is given in this reference.

'These approximations are the ones mentioned at the end of
Sec. II.

4 More accurately, the energy difFerence between ground state
and lowest unoccupied state should be used.

~ L. M. Brown, Phys. Rev. 79, 297 (1950}.' M. C. %alske and H. A. Bethe, Phys. Rev. 83, 457 (1951).
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of this correction will be presented here, and V»(8»)
wiH be given. Furthermore, Brown determined the
constants S»(8») and T»(8») in (2). There is a slight
numerical error' in his values of T»(8»), which will be
corrected in this paper. This error also necessitates
new curves for C»(8», rl»). The B»(8», ff») curves as
given in Brown's paper remain unchanged.

II. INTEGRAL REPRESENTATION OF C;{6;,n;)

Bethe, Brown, and Walske have considered the
expression'

f4~dQ
*(8,.) = dW ~ (e)

"4 &f/4 Q

f, W'/4s dQ
dW yw(0)

"f/4n Q

We shall define for any atomic shell, i, C,(8;, r/, ) by a
formula similar to (2):

B;(8;, r/;) =S,(8;) lnrl;+ T,(8f) C,(8;,—rf~)

(i =E, I., M ~ ~ ), (4)

—11111j01~o 0

Wmfa -
f gidQ

dW
J

fffiw(0)
4/4~ Q

I" dQ
+ ~-(e), (6)

where 0; is the observed ionization potential of the ith
shell divided by the "ideal" ionization potential,
Z' ff' Ry/nP (fs; is the principal quantum number of
the ith shell), and f);=ffsff'/2Z;, fP Ry. It follows then
that B=g; B;(8;, r/, ) is the total stopping number of
the atom. It can be shown' that P;S;(8;)=Z, and so
one may also write

B=Z ln(2frfff'/IA„) —p, C;(8;, f/~),

where we define IA„by

Z lnIA„——p, S,(8;) ln(Z; ff' Ry/);(8, )fsp),

with X;(8;) given by

T,(8,) =S;(8,) lnt 4~, ),(8,)].
As shown in reference 8, S,(8,) is equal to the number
of i-electrons times —,

' of 1 plus the oscillator strength
per i-shell electron. This formulation enables one to
define a velocity-independent average ionization po-
tential, and also displays clearly the form of the cor-
rection needed in (1) at low velocities of the incident
particle.

Analogously to Bethe's formula for the E-shell, ' we

can write the exact expression for the stopping number
for the ith shell in an integral form which is not limited

by the velocity condition on (1):

B,(8,, „,)= Wdw ~Fw, ,(e)~s, (5)
dQ

~~Wmfn =)4/ni2 w /4„. Q'

where 8' is the energy transferred to the atomic electron
in units Z;,fP Ry, Q= q'= (change in incident particle s
momentum)'/2fffZ, ,fp Ry, and ~FW„(e) ~' is the sum

of the squares of the matrix elements of e'&' between

the various i-shell electron states and the states greater
in energy by 5'.

' This error was also published in reference 6 where some of
Brown's results were quoted. Also in reference 8 the quantity X

is slightly changed by the corrected Tz(ez).

where itw(Q) =W~FW(Q) ~'/Q, and where the integral

up to 8';„denotes all transitions forbidden by the
Pauli principle. They have shown that this expression
behaves, for all g and for fixed 0, exactly as the sum of
a logarithmic term in q and a term independent of g.
We shall consider the difference between (5) and (6),
and eventually we shall show that this difference goes
to zero for large r/, and so it is just the —C(8, r/) of (4).
For the purpose of taking the difference of (5) and. (6)
it is convenient to rewrite (6), using in the first term
the sum rule of Bethe (reference 1),"

mi

~
00

dw& (e)= '= dwy (0).
0 0

Then we write the third term of (6) as

~ j./4y ~ Qi

The second of these expressions will be used as it
stands; the first is combined with the first term in (6)
as transformed by (7), and this result is in turn com-

bined with the second term of (6). One may then take
the limit on Qi and get

Im4g dQ
x(8, r/)= ~ dW

I

~fr(0
~W i. ~WA/4sQ

pwmin p4g dQ
L~ (e)-e (0)j

Q

4w(Q).
Js j4„Q

' Bethe, Brown, and %'alske, Phys. Rev. 79, 413 {1950).
' We now drop the i-shell subscripts.
"Jp'dW&w(Q) is to be interpreted as Z, ~i p {Q), where

gati„(Q)=(E„E;)It„(Q)IA/Q. The ffs oc—curs in (7) from our
taking the effect of the e distinct electrons in a given shell into
IE-(Q) I'-d IE~(Q) I'.



STOPPI NG POWER OF X —ELECTRONS

The difference of (S) and (6), —C(8, i)), is then

—C(8, g) =
J dWJ

W'min 4'
e (Q)

~ao . )4o dQ
+ dW [4 w(Q) —4 w(0)7

JO JWa/4OQ

pWa ia /aWa/4o dQ
+ ~W ~ [S (Q)-q (0)7

Jo Jo Q

pWm
t

ao
dQ

dW yw(Q).
J4„Q

Vfe may, to order q 4, neglect the last integral above
because for large Q and fixed W, atw(Q) Q

' [see Eq.
(9) for the E-shell case7; therefore, the last integral
goes as g

' for large g. We shall now rewrite the second
term above. We denote it by G so that we may write

(Note our reversal of the limits in the inner integral of
the second term of G.) Reversing the order of inte-
gration, the first term of G is just

t
4o dQ (4oQ)4

dW[4 w(Q) —4 w(0) 7J, Jo

/a4o /a 4o dQ
G= ' dW t [4w(Q) —ew(0)7

JO a/Wa/4O Q

/awa/4o ifQ
dW ~ [g)r(Q) —Pg (0)7.

4y 4'

2 t 2k
(Q+-', k'+-,') exp ——tan-'I

&Q—k'+I)

[(Q—k'+ 1)'+4k'7'
(9)

with W=k'+1. If we consider fixed W, then in the
first integral of (8) the integrand goes as Q ', and so
the integral converges well. In the second integral a
logarithmic divergence is avoided at small Q by the fact
that pw(Q) —pw(0) goes to zero for small Q. For large
W and Q we have convergence through a cancellation
of the first integral with the first term of the second
integral.

Anticipating our results in expanding (8) in a power
series in g

' with no constant term, we may conclude
that (8) is indeed the —C(8, ot) of (4). In addition,
since x(8, i)) was obtained in reference S by rewriting
B(8, i)) with a Q,„of 4i) instead of the true Q, of
infinity and with the assumption Q;„((1 for all W,
it follows that the error introduced by these two
approximations is of order g '. Bethe has used this
fact frequently in his stopping power theory where

Thus, to order p
4 we may write

(a
aa aa

dQ—C(8, i)) = dW @w(Q)J Wm&a 4o

ta Wa/4O dQ
[~ (Q)-~ (0)7. (g)

JW'. o Q

We now write out pw, Ir(Q) for the E-shelli' explicitly
(from reference 1) and study the properties of (8):

2'8'
pw, x(Q) =

~
—2n./k

large g were being considered.

J~ jt (fW[af'w(Q) (t'w(0)7a ID. SEPARATION OF C(&a n} INTO CONTRIBUTIONS
o Q o FROM HIGH AND LOW MOMENTUM TRANSFERS

since the inner integral of the second term vanishes by
the sum rule (7). Combining,

If in (8) we break off the W integration at 4gu, with
n a constant such that ~~ &n&1, then to order q 4:

ao

~W[o) (Q) —4 (O)7,
"O Q (4oQ)i

and reversing the order of integrations once again,

where

4yu

C, =
J dWJ

dQ
4W(Q)

—C(8, &) =C,(8, ~)+ C,(~), (10)

4o (a Wa/4o dQ
[4 (Q) —4 (o)7

0 0

4Oa t, Wa/4O i'
[~ (Q)-4 (o)7, (10a)

JWmia O Q

Inserting this result in G above, we have

ta Wo/4o dQ
(Q)- (o)7.

Jo Jo Q

'~ W for the E-shell has been called e elsewhere in the literature.
The tan ' in (9) is to be taken in the first and second quadrants.

"dQ—t dWJ~ [(t (Q) —y (0)7.
4o O Q J4, &4, Q

pao Wa/4o dQ
[4 (Q)-4 (o)7 (1ob)

4ga ~0
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the Q integration we see that the maximum Q is W'/4g,
which is at most at the maximum W just (4ga./4g)W
=O.TV&5' since we have chosen -,'&0.(1.Thus, the
expansion is quite valid here, and using it C~ is cor-
rectly obtained. to order q from thc second tcI'Dl of
(10a).

Brown Lreference 5, Eqs. (25) to (31)]has done this
fol W re jr' =0 ln the casC Of thC E shell Obtalnlng thC
term in g '. However, in Brown's case the upper limit
of the TV integration is infinity rather than 4qn. Still
ills llletllod gives CI (wltll WIIII„——0) to order g

' slIlce
one may easily show using (9) that the different W,„
makes a de'erence only in order q '~'. If one extends
Brown's work to the g

' term, the net result for the

TABLE II. Stopping number contribution of
E-electrons, BE(8~, q~}.

1.857
2.142
2.385
2.841
3.508
4.221
5.496

1.5
1.75
2.0
2.5
3.5
5.0

10.0

2.249
2.573
2.851
3.366
4.122
4.931
6,406

2.031
2.337
2.595
3.077
3.782
4.537
5.900

C~(g~, q~) from (19)
8~ =0.7 OE8 0.9

Computed values of C~(8~, g~)
8~ =0.7 0.8 0.9

0.2799 0.2852 0.2864
0.1216 0.1243 0.1249

0.2407 0.2460 0.2472
0.1153 0.1180 0.1186

g~= 10
q~= 20

~ The same general conclusions to be drawn for the E-shell can
be shown to hold for the J-shell, and undoubtedly hold for all
shelly.

'3 This is just the case of a hydrogen q,tom except that it is for
2 g-electrons,

First we consider CI. Since the maximum of Qw(Q)
occurs at about W=Q (see (9)), and since with our
choice of n, Q

—W is at least of order g, the first term
of C~ contributes on1y to order q . %C may neglect it
since we are ultimately interested in an expansion of
C(8, g) in the form (3) only to the term in q '. In the
second term the main contribution arises from small Q,
and for this reason we call Cg the low momentum
transfer contribution to C(0, q). The integrand in the
second term may be expanded in a power series in Q
which converges inside the circle of convergence in the
complex Q plane. The radius of this circle is the distance
from the origin to the nearest singularity of the inte-
grand which for the K-shellI2 Lsee (9)) occurs at
(Q—k'+1)'+4k'=0. Hence, the radius of the circle of
convergence is k'+1=W. Thus, the power series is
convergent for real Q& W, but from the upper limit on

TABLE I. Comparison of computed and asymptotic C~(8~, q~).



E-shell is

CL x(WCIin=0i gir)
=—gx '—(19/6)gx ' (to order rfx ') (.11)

IV. EVALUATroN OF t.",
, (8, ~ ), HrGH MOMENTUM

TRANSFER CONTRIBUTION TO C~(8~, nit))
TO ORDER n~ '

which is large, we call Cg, ~ the high momentum contri-
bution to Cx(8, q). In order to rewrite the two inside
integrals with the same limits of integration we let
Q=y in the first, and Q= W'/y in the second. We make
the further transformation z=y —k'+1, and remember-
ing that W= k'+1, we obtain

For the E-shell C2 is explicitly Lsee (10b) and (9)]
WdW

1 e
—2II/ii

2
f

2k
(Q+-,'k'+-,') exp ——tan 'l

X'
I

"dQ k &Q—k'+1i.
~4 Q L(Q—k'+1)'+4k']'

2 ( 2k
(Q+-,'k'+-,') e p ——tan 'l

I
~'«c dQ k kQ —k2+1i

Q l (Q—k+1)+4k ]
(

expl ——tan 'k 'l

2 2k~
(3z+4k' —2) exp

l

——tan-' —
l

~ i
X

(z'+4k')'

~2 2k'
(z+4k'+2) (z+ k' —1)' exp l

—tan '—
l

Ek zi

4 q t 4
expl tan 'k

I expl tan 'k
k i & k i

(k'+ 1)i (k'+ 1)'

2" t." 2k(k'+1) t" dz
C2, ~=— dk

3 "Io 1 e—""~.I pI iz+k' —1

(12)

3 k' 1'
where ko

——(na' —1)&, a'=4q, and the tan ' are in the
Since the main contribution to Cm, x arises from Q~4g first and second quadrants.
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So far we have chosen n so that —,
' &n& 1. It is now

convenient to further restrict n so that the lower limit
on the s integration, ug —k'+1, is never greater than
k'."That is, we want a' —k'+1& k' or k) [(u'+1)/2]'*.
This will be true if k;„=kp ——[(u'+1)/2]&. In terms
of n this means aug —1=(ag+1)/2, or n= 1/2+ (3/2) a
=1/2+(3/8) g ', which for reasonably large g is con-
sistent with —,

' &n& 1.
%'e shall now show that the contribution, say H, to

C&, z from k'&s& ~ may be neglected without error to
order g '. H is written exactly as (12) except that the
2,-limits are k to infinity. Expanding the square bracket
of (12) in powers of kg/s, one sees that the last term in
the bracket serves its purpose of canceling the loga-
rithmic divergence arising in the second term at large s'.

The result is that the square bracket is 0(k 's '),
making the inside integral 0(k "), and so to highest
order

t'CO 00 t'N
H=O k'dk dsk 's '=0 dkk '

J„,
=0(kp ') =0(q '").

Thus, since we are calculating to order g ', we may
neglect H. Also, since the third term in the square
bracket of (12) is only important as noted above in H,
we may neglect it henceforth in C2, ~ to order
Thus, to order g

OQ

Cg, x =—' dkk(k'+1) cschgr/k

X. ds
—gm I s+kg 1 (sg+4kg)$

(2 s)
X (4kg+3s —2) exp~ —tan '—

(
Ek 2k)

(—(4k'+s+2)(k'+s —1)' exp~ ——tan '—
~

k 2k)

Xexp( —tan —'—
)

(k'+1)',
k)

where tan ' is now to be taken in the 6rst and fourth
quadrants.

One is now in a position to expand the integrand to
the degree necessary for obtaining the terms which
give C~, ~ to order g 2. This is an extremely long and
tedious job so we shall only present here the results
arid a few remarks. One can show that the factor
(s+k' —1) ' need be expanded in powers of (s—1)/k'
to four terms for the desired accuracy. The factor
(s'+4k') ' is not expanded. Using the fact that k»1,
(k'+1) P is expanded as are the exponentials and

'4 Note that z I =e»—k»+1 is automatically greater than —k».

C(W; =0, qx)=2qx '+(22/3)gjx '

V. ASYMPTOTIC FORMULAS FOR B~(8~, n~)
TO ORDER n~ »

(14)

In order to calculate Cx(ex, qx) for elements other
than hydrogen we must subtract from (14) the contri-
butions arising from transitions to hydrogen-like states
which are forbidden in the heavier elements by the
Pauli principle, i.e., occupied states. Brown (reference 5)
has worked out in detail the method of doing this, and
has applied it to obtain Cx(8x, qx) to order gx '.
Except for his omission of the high momentum transfer
contribution, C2, ~, and a numerical error in his determi-
nation of Tx(ex) [see (2)], his results are correct to
order q~ '. We have extended this work in a straight-
forward way to obtain the term in q~ '. The procedure
is to And the contribution of transitions from the
E-shell to all discrete states for hydrogen, subtract
this from Bx(W;„=0, gx) corresponding to the
Cx(W;„=0, px) given by (14) to obtain the continuum
contribution in a hydrogen-like atom with no outer
screening, and then add to the latter the contribution
from transitions to continuum states with W&1 (and
unoccupied discrete states) in the actual atom. It is in
this last contribution, called Dx(8) by Brown, that a
numeri. cal error was made in the g-independent term.
In calculating the g-independent term of his Eq. (22)
from his (20), he mistakenly used 1+gg ' instead of
1—n ' in (20). With this term corrected, and with the
gx ' term added, Dx(8) is

Dx(0.7) =0.3783' lngx+0. 3503g

+0.0528pqx '+0 0133pgx

Dx(0.75) =0.28729 inqx+0. 2945g

+0.01910gx '+0.01850gx '
Dx(0.8) =0.21072 Ingx+0. 2362p

—0.00063gx +0.01887grr (15)

Dx(0.85) =0.14569 lngx+0 1769p
—0.01008gx '+0.01616qx '

Dx(0.9) =0.08996 lngx+0. 1173p
—0.01190&x '+0.01161gx '.

tan '1/k, but tan 's/2k is not expanded. The result is
that all the s integrals are elementary. The k integration
can then not be done explicitly, but to order q

' the
p-dependence can be determined by breaking the
integration into appropriate ranges and separating
leading terms. It is particularly noteworthy that the
parameter ko does not a6ect the result directly. The
terms involving ko cancel out, independent of the fact
that kp

——[(up+1)/2]&. This is as it should be since the
precise choice of kp (or a) is only felt in order g "'.
Our result to order q

' is

Cg x= —nx '—(25/6)nx '. (13)

Adding this to C,, x(W;„=0,qx) [see (11)g we get,
to order
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Brown's result for the contribution of the discrete
states to J3~ for hydrogen, extended to the qE

—' term, is
0.56500 1ngx+0.46869

+0.11896gx '+0.00462 gx ', (16)

and his result for Bx(W;„=0,gx)i5 as corrected by
(14) is

Bx(R'; =0, gx) =2 ingx+2. 57861
—2gx ' —(22/3)gx '. (17)

Subtracting (16) from (17) we obtain the continuum
contribution, E~.'

EIr = 1.43500 1ngx+2. 10992
—2.11896gx '—7.33795gx '. (18)

Finally, adding (18) to (15) we get Bx(ex, gx), the
asymptotic formulas for the stopping number of the
E-shell:

Bx(0.7, gx) =1.8133 1ngx+2.4603
—2.0662'~ '—7.3246'~ ',

Bx(0.75, gx) = 1.7223 ingx+2. 4044
—2.0999'~ '—7.3194'~ ',

Bx(0.8, ply) = 1.6457 lngx+2. 3462
—2.1196gx ' —7.3191qx ', (19)

Bx(0.85, gx) = 1.5807 1ngx+2. 2868
—2.1290'~ '—7.3218g~ ',

Blr(0.9, gx) = 1.5250 1nqx+2. 2273
-2 1309~&--7 3263~&-'

Of course, Crr(81r, gx) to order gx ' is just the negative
of the last two terms of (19).

As a check on the last two terms of (19), Cx(ex, gx)
"This is just tv&ice the stopping number of a hydrogen atom

since it is vrritten for tow E-'-electrons.

has been evaluated numerically for q~ ——10 and 20 using
the expression (8). A comparison with Clr(ex, gx) as
obtained from the last two terms of (19) is given in
Table I.From this table one can see that the asymptotic
terms for C~. are high by about 16 percent at jr=10
and by about 5.5 percent at q~=20 for all tII~. If one
adds to the asymptotic formula for Blr {or subtracts
from Cx) a term 45gx ' these errors are reduced to
about —2.4 percent and 0.6 percent, respectively, for
all 8~. This should therefore be done. That the 0~-
variation of Cx is given to greater accuracy by (19)
than the full value of C~ can be seen by diGerencing
the C~'s of diGerent 8~ for the two sets of values in
Table I.

For convenience we reprint in Fig. 1 curves of
Bx(OJr, qx) for Hx ——0.7, 0.8, 0.9, and for 0&gx&1.5
which were calculated by the author from expression
(5) and previously published by L. M. Brown in
reference 5. In Table II we give a continuation of these
calculations up to q~=10. These values are accurate
to at least one percent. At q~=10 we have two com-
pletely independent calculations of Bz, one is to take
the first two terms of (19) and to subtract the exact
numerically calculated value of C~ from Table I, the
other is the direct calculation of 8~ reported in Table II.
The values for the successive 9~ calculated via C~ are
6.401, 5.895, and 5.497, in excellent agreement with
Table II. In Fig. 2 we have combined the values from
Table II and the first two terms of (19) in order to plot
Cx(8x, qx) its 1/gx. Near the origin on this graph we
have relied upon the asymptotic formula and the exact
calculations of C~ at g~ ——10 and 20. This curve is
changed from the one in reference 5 by the correction
to the constant term in (19).
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