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An experimental study has been made of the Hall effect in single crystals of zinc. For each crystal, one
component of the Hall field was measured for a fixed crystallographic orientation of the current density, but
for various orientations of the magnetic field in the plane perpendicular to the current density. At 77°K, the
Hall field is a linear function of magnetic field which can be characterized by two coefficients. The first
coefficient, for the interaction between the magnetic field component parallel to the hexagonal axis and
current density component in the hexagonal plane, has a value of about 2)X 1072 chm cm/gauss. The second
coefficient measures the interaction between the magnetic field component in the hexagonal plane and the
current density component perpendicular to this field component. Its value is about 0.2)X 10712 ohm cm/gauss
At 20.4°K, the Hall field is nonlinear with magnetic field. For some orientations, the measured component of
the Hall field increased with increasing magnetic field. In other cases, the opposite behavior was observed.
Between 5 and 10 kilogauss, the Hall effect is of the same order of magnitude at 20.4°K as at 77°K. No
correlation was apparent between Hall effect and either susceptibility or magnetoresistance.

I. INTRODUCTION

TUDIES of the magnetic susceptibility and mag-
netoresistance have indicated that at low tempera-
tures the electronic structure of zinc may be noticeably
affected by an applied magnetic field of a few thousand
gauss.!™® If the de Haas-van Alphen effect and the
irregularity in magnetoresistance can be attributed to
the variation with magnetic field of the density of states
near the Fermi energy, then it might be expected that
the dependence of Hall effect upon magnetic field would
be related to the susceptibility or magnetoresistance.
There is experimental evidence that this may be true

D
Liquid
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for bismuth.%7 To examine this possibility further an
experimental study has been made of the Hall effect in
zinc single crystals.

In discussing galvano-magnetic effects in anisotropic
media, it is necessary to adopt clear definitions to dis-
tinguish between the Hall effect and the magnetic
change of resistance. For most isotropic substances at
room temperature, the relation between electric field
E and current density J can be written

E=pJ+RBX]J, 1)

where p is the resistivity, and R the Hall coefficient
characteristic of the material. If the magnetic field B
is zero, the electric field is parallel to the current density.
The effect of the magnetic field is to add to the ohmic
field pJ, a Hall field RBXJ, perpendicular to both
magnetic field and current density.

In defining the Hall field for cases to which Eq. (1)
does not apply, some, but not all, of the properties of
RBXJ can be retained. A choice must be made of the
most “characteristic”’ properties. Thus, the Hall field
might be defined as E(B)—E(B=0). With this conven-
tion, the Hall field is not necessarily perpendicular to
either B or J, nor does it necessarily change sign if B is
changed to —B. Most conventions agree that the Hall
field vanishes if B=0.

We have chosen to define the ohmic field as 1[ E(B)
+E(—B)] and the Hall field as 3[E(B)—E(—B)].
Thus, the Hall field reverses its direction on reversing
the magnetic field, while the ohmic field does not.
Neither field changes its magnitude in this process. If
B=0, the Hall field is zero. These properties are mathe-
matical consequences of our definition. They are also
properties of the Hall field of Eq. (1).

Another definition which is sometimes used is based on
the special experimental situation in which two poten-
tial probes are attached to a conductor so as to be on an
equipotential surface in the absence of a magnetic field.

8 A. N. Gerritsen and W. J. de Haas, Physica 7, 802 (1940).
7 Gerritsen, de Haas; and van der Star, Physica 9, 241 (1942).
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If a magnetic field is turned on along the direction per-
pendicular to the current direction and the line between
the potential contacts, any potential difference between
the probes is called a Hall voltage. For an anisotropic
substance in which the ohmic field is a noticeable func-
tion of magnetic field strength, this convention may lead
to a discussion of the “quadratic’” Hall effect which
does not reverse sign on reversing the magnetic field.
On the basis of our definitions, such a quadratic effect
would be considered as magnetoresistance rather than
Hall effect.

The justification of our choice is based on a calcula-
tion by Casimir,® in which it is shown that, for the
general case of an anisotropic material, if the vectors
are resolved into components in any convenient rec-
tangular coordinate system,

Ei=%ipiiJ i+ (xX]J), (2)

where the p;; are functions of B such that p.;(B)
=p;j(—B), while r(B)=—r(—B). The vector r is
called the Hall vector. It is seen from Eq. (2) that the
Hall field is perpendicular to J.

In the derivation of Eq. (2), Casimir omits the inter-
action of thermal current and temperature gradient
with electric current and potential gradient. Because of
this interaction, the Hall effect and magnetoresistive
effect depend upon the thermal boundary conditions.
A number of experimental investigations have shown
that, for metals, when the magnetic field is perpendic-
ular to the elctric current, the electric field component
parallel to the current density is not changed by rever-
sing the magnetic field.® This fact has been confirmed on
our sample B (20.4°K, 8000 gauss) to within an experi-
mental accuracy of about 0.2 percent. In making these
measurements, the magnet was rotated through 360°,
taking data every 15°. As a result, we consider that
under experimental conditions the Hall field, defined in
this way, is perpendicular to the current density, and
can be described by a Hall vector in the manner of Eq.
(2), without specifying in detail the thermal current or
temperature gradient. It is this physical property,
which is indicated by both calculation and experiment,
that makes our definition seem the most appropriate.

II. EXPERIMENTAL TECHNIQUES

The crystals used in these experiments were grown
under vacuum by the Bridgman technique from New
Jersey Zinc Company S. P. Zinc.!® They were 0.030 inch
by 0.21 inch in cross section, and from 1 to 2 inches in
length. The glass forms used were prepared by shrinking
Pyrex glass tubing onto a stainless steel mandrel. Prior
to making each form, the mandrel was coated with soot
in a candle flame and dipped in a solvent such as CCl, to
compact the coating. Since the purpose of the soot is to

8 H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945).

9 See, for example, H. B. G. Casimir and A. N. Gerritsen,
Physica 8, 1107 (1941); D. Shoenberg, Proc. Cambridge Phil. Soc.

31, 271 (1935).
10 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925).
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F1c. 2. Electric circuit. Voltage bd was measured by a Rubicon
Type D microvolt potentiometer.

prevent the glass from sticking to the steel, this process
was repeated, if necessary, to thoroughly coat the man-
drel. The mandrel was then sealed into a length of glass
tubing at a reduced pressure and the glass shrunk into
the steel by heating in a gas-compressed air flame.
When cool, the mandrel usually could be removed easily
from the rectangular section.

Prior to use, each crystal was lightly etched and the
orientation of the crystal axes determined relative to its
geometric shape. Each crystal was mounted in a plastic
holder so as to minimize bending of the sample but allow
for thermal expansion. To one edge, two potential leads
of 0.003-inch copper wire were spot welded. These leads
were about 5 mm apart. A third potential lead was
welded to the opposite edge, approximately halfway
between the other two. Current leads were soldered to
the ends of the sample.

The relation of the crystal, Dewar, and magnet is
given schematically in Fig. 1. The magnet could be
rotated about an axis in the plane of the figure so as to
change the direction of the magnetic field. The axis of
the Dewar and the current through the crystal were
parallel to this axis of rotation. Four-inch pole pieces
and a gap of one inch were used. The magnet was cali-
brated with a search coil and ballistic galvanometer
which had been standardized in fields determined by a
proton resonance fluxmeter. The magnet calibration
was accurate to about 100 gauss. Magnet current was
supplied by storage batteries. Both the magnet and
control resistors were water-cooled.

The electric circuit is given in Fig. 2. The current
through the sample was provided by a storage battery
and monitored by an ammeter. For most measurements,
this was 3 amp.

Voltages were measured with a Rubicon Type D
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microvolt potentiometer, using a Leeds and Northrup
galvanometer (sensitivity 0.05 uv/mm at one meter).
For convenience an auxiliary lens was used to project
the image of the illuminator hairline on a screen. This
system provided a magnification of four or five so that
galvanometer deflections corresponding to 0.01 uv
could be easily observed.

For crystals A and B, measurements were made to
0.01 pv. The final measurements on these crystals were
reproducible to about this voltage. For crystal C the
potentiometer was read to 0.002 uv because of the small-
ness of the emf’s. After fitting a sinusoidal curve to the
data at 77°K for this crystal, the rms deviation of ob-
servations from the curve was 6.5X10~% yv compared
with a peak-to-peak amplitude of 0.121 uv. To obtain
this accuracy, it was necessary to insulate the potentio-
meter circuit carefully, particularly the potentiometer
battery and the observer.
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F16. 4. Crystal A. 7, as a function of magnet azimuth at 20.4°K.
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The noise level in the system varied greatly from ex-
periment to experiment, ranging from about 0.005 uv to
0.05 wv. During the last experiments it was discovered
that an erratic resistor contact in the magnet control
circuit was responsible for the worst of the noise.

The potential difference between any pair of points
a, b, ¢, d could be measured by use of a Leeds and
Northrup thermocouple switch enclosed in a sheet
metal box. Whatever extraneous voltage this switch
introduced caused no trouble, although the switch
position was not changed during a series of measure-
ments. For Hall effect measurements, the voltage bd
was measured. The other voltages were measured prin-
cipally when changing samples. In the magnetoresist-
ance measurements referred to earlier, the voltage ac
was observed.

The input selector switch of the potentiometer was
connected as a reversing switch, so that voltages of
either polarity could be measured. Thermal emf’s in
this switch were less than 0.005 uv usually.

In principle, only two potential leads on opposite
sides of the crystal are necessary in determining the
Hall field. By measurements in fields of B and —B, the
observed voltages can be separated into an ohmic

TasLE I. Hall coefficients at 77°K.

Ry X102 Rz X1012
ohm-cm /gauss ohm-cm /gauss
Crystal A 2.5 o
Crystal B 1.8 0.21
Crystal C 0.1 0.19
Noskov 1.86 0.16
2.01 0.19

potential difference and a Hall voltage. For greatest
accuracy, the zero field voltage should be comparable
with or less than the Hall voltage. In practice, it is
difficult to make such an adjustment of the potential
leads. Consequently the circuit of Fig. 2 was used. A
copper slide wire S of 60 ohms was connected between
potential leads A and C, and the contact adjusted to
make the voltage bd small in the absence of a magnetic
field.

To correct for thermal emf’s in the potential leads,
voltage bd was measured for the same value of current
flowing in both senses through the crystal. The voltage
due to the current was assumed to be one-half the alge-
braic difference of the measured values. Results ob-
tained by this analysis were consistent for large varia-
tions in the thermal voltages.

Before taking data, the magnet current was usually
set at a predetermined value and allowed to stabilize.
Only minor adjustments in the control resistors were
then necessary. For the most part, measurements were
made for magnet orientations spaced at 15° intervals,
the magnet being rotated continuously in one direction
throughout 360°. Data for magnet settings 180° apart
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were then combined so as to eliminate thermal emf’s and
ohmic potential difference.

The ohmic voltage was not analyzed, nor were
magnetoresistance data consistently taken.

III. ANALYSIS OF MEASUREMENTS

Kohler has investigated the limitations imposed by
crystal symmetry upon the Hall coefficients R,., for
the case in which the Hall vector can be written
m=2_ nRmsB»1 If, for zinc, we take the 3 direction
along the hexagonal axis and the 1 and 2 directions along
mutually perpendicular lines in the hexagonal plane, the
Hall vector components are

7’1=.RQBI, 7’2=R232, 73=R1B3. (3)

For analysis of our experimental data, it is convenient
to introduce the coordinate system of Fig. 3. The z axis
is chosen parallel to the current density. The yz plane
is taken parallel to the broad surface of the crystal. It is
assumed that the potential contacts on the crystal edges
lie in this plane so that the y component of the Hall field
is determined by measurement. If the spherical coordi-
nates of the hexagonal axis are « and S, the y component

TasLe II. Coordinates of [0001] and [2110] axes.

@ B8 o B8
Crystal A 90° 0° . e
Crystal B 32° —16° 118° 14.5°
Crystal C 8.5° —40° 95° 0.5°

of the Hall field is

Fy=—J{[Roa?+ (Reb2+R1b:»)a]B.
+ [(Rl_ Rz) 022171172]By+ [(Rl_ Rz) aldzszB z} , (4)

where ¢;=cose, a;=sina, b1=cosf3, by=sinp. If B,=0,
F, is a sinusoidal function of ¢, the azimuth of the
magnetic field. Knowing values of F, for ¢=0° and
¢=90° it is possible to determine both R, and R,.

If the Hall field is not linear with magnetic field, the
effect can be characterized more directly by giving the
Hall vector as a function of ¢ and of the magnetic field
strength rather than in terms of field dependent Hall
“coefficients.” In these experiments, only 7. was
determined.

IV. RESULTS

To analyze the data at 77°K, a sinusoidal curve was
fitted to the data by the method of least squares'? and
F, calculated for ¢=0° and ¢=90°. These values of
Hall field were then used to evaluate R; and R; on the
basis of Eq. (4). The results are given in Table 1. The
extreme values observed by Noskov?® are also indicated.

1t M. Kohler, Ann. Physik 20, 878 (1934).

2 This procedure was adopted for convenience. We do not
otherwise justify its use.

13 M. M. Noskov, J. Exptl. Theoret. Phys. (U.S.S.R.) 8, 717
(1938).
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F1G. 5. Crystal A. 7, as a function of magnet
azimuth at 8200 gauss.

Measured values of o and B are listed in Table II.
Similar spherical coordinates, o’ and g, for the [2110]
axis are also tabulated.

For crystal C, the calculation of R; was strongly
dependent upon F,(¢=90°). If the value used were in
error by a factor of — 20, the value of R; would be about
2X 1072 ohm-cm/gauss. Such a change in F,(¢=90°)
would decrease R, to 0.17X 102 ohm-cm/gauss. It is
not unreasonable that F,(¢=90°) might be in error by
so large a factor. Assuming values of 2XX107%2 and 0.2
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Fi16. 6. Crystal C. 7, as a function of magnet azimuth at 20.4°K.
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Fic. 7. Crystal C. 7, as a function of magnetic field strength
¢=—22° 20.4°K. The points at 8200 gauss and 10,200 gauss are
from the rotation diagrams of Fig. 6.
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F16. 8. Crystal A. Voltage bd as a function of magnetic field
strength. ¢=0°.

X 102 ohm-cm/gauss for the Hall coefficients, the Hall
potential difference across the thickness of this crystal
for $=90° can be estimated as about thirty times the
potential difference across the width of the crystal.
Accordingly, the discrepancy in this value of R; can be
explained by assuming that the potential contacts did
not lie in the yz plane.

Values of 7, at liquid hydrogen temperatures are
given in Figs. 4 through 7. For crystal A, the data at
20.4°K are symmetric about ¢=0°. The curve at 14°K
has been drawn accordingly.

For crystal B, plots of 7, vs ¢ at 20.4°K, 8200 and
10,200 gauss, are nonsinusoidal and somewhat skewed.
They do not exhibit as pronounced a variation with
field as those for either crystal A or C. Data taken at
14°K indicate a pronounced temperature dependence.
Because of poor temperature control, these data were
not sufficiently reproducible to be quantitatively signi-
ficant.

Of the rotation data on crystal C little can be said
other than that the Hall vector is nonlinear with
magnetic field. The reproducibility of the data is in-
dicated by the sets of points at 83°. In Fig. 7, the points
at 8200 and 10,200 gauss were taken from the rotation
data of Fig. 6.

A set of measurements were made on crystal A for
¢=0° T=20.4°K, to look for a relationship between
the Hall effect and de Haas-van Alphen effect, i.e., the
field dependence of magnetic susceptibility.»? The ob-
served voltages, corrected for thermal emf’s, are plotted
in Fig. 8. Since corresponding measurements were not
made at ¢=180°, it is not possible to separate the ob-
served voltage into ohmic potential and Hall emf. From
Fig. 4 the ohmic potential can be estimated as about 5
percent of the observed voltage. The results of Lazarev,
Nakhimovich, and Parfenova® for a crystal of similar
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orientation indicate that AR/Rg._, increases nearly
linearly with magnetic field by about 14 percent per
kilogauss. As a consequence, it is unlikely that there
are any oscillations in 7, for this orientation of crystal
A in excess of 2 percent of 7.

For comparison, corresponding measurements are
given for 77°K. For a fixed field strength, the difference
in voltage between these two sets of data is almost
exactly equal to the ohmic potential difference in the
measurements at 77°K.

Lazarev, Nakhimovich, and Parfenova** have re-
ported magnetoresistance measurements on a single
crystal of zinc for which, in terms of our coordinate
system, a=_88° B=0°. The magnetic field was in the
xy plane. At 4.2°K, they observed an anomaly in the
resistance for fields between 8000 and 10,000 gauss at
¢=0°. For $=>5°, the anomaly was no longer observed,
nor was it evident at 20.4°K, ¢=0°. Since crystals of
several orientations were examined in their experiments
and no further anomaly reported, the inference is that
no other anomaly was evident in the data.

Gerritsen and de Haas,® and Gerritsen, de Haas, and
van der Star” have studied the Hall effect in bismuth
crystals and observed a qualitative correlation with the
de Haas-van Alphen effect. No such correlation is
apparent for the case of zinc. On the contrary, with the
magnetic field parallel to the hexagonal axis, the Hall
vector seems to be linear with magnetic field, whereas
the susceptibility oscillates. When the magnetic field
is perpendicular to the hexagonal axis, the susceptibility
is not strongly dependent on magnetic field, while the
Hall vector is nonlinear.

During this research Borovik!* reported measure-
ments on Hall effect on one zinc crystal for ¢=0° and
various field strengths. Since his sample was of different
crystallographic orientation than any of ours, no direct
comparison is possible. There does not seem to be any
discrepancy between his results and ours.

In summary, these experiments show that at 20°K,
the Hall effect is of the same order of magnitude as at
77°K. While the Hall vector for the latter case is a
linear vector function of magnetic field, for the former
it is not. The nature of this nonlinearity depends upon
the crystallographic orientation of the magnetic field.
Finally, no relationship was observed between Hall
effect and either magnetoresistance or de Haas-van
Alphen effect. Further experiments are planned in
which a more systematic investigation will be made of
both Hall effect and magnetoresistance.

4 E, S. Borovik, Doklady Akad. Nauk S.S.S.R. 70, 601 (1950).



