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Wave Functions and Energy Levels for Cu+ as Found by the
Slater Approximation to the Hartree-Fock Etluations*
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Results of a self-consistent held calculation using the Slater method are given for Cu+. Wave functions,
energies, total radial charge density, 2(2l+1) .(1—Z„&) functions for the 3P and 3d electrons, and the 2Z„(r)
functions are listed. The corresponding results for the Hartree-Fock method, and in some cases the Hartree
method, are given for comparison of the various calculations. The method of integrating the radial wave
equation and a method for shortening the self-consistent calculation are included.

INTRODUCTION

HE quantum-mechanical many-body problem as
treated by the Hartree method' is, for many

purposes, somewhat oversimplihed. The more accurate
Hartree-Fock method, ' which correctly includes the
Pauli principle within the framework of the one-elec-
tron approximation, is so complicated to carry out that
it has found only a rather restricted use. Slater' has
shown that a considerable simplification of the Pock
equations can be achieved if one uses an average ex-
change charge density and from this computes an
average exchange potential energy. The purpose of this
work was to examine the accuracy of Slater's method

by applying it to Cu+ which has been investigated by
both the Hartree4 and the Hartree-Fock method. '

The average exchange charge density as given by
Slater for an atomic system containing an equal number
of electrons of each spin is

N N—e P g u, *(x~)ut*(xs)ut(xt)u, (x2)

PAv =

Q ut*(xs)u, (xg)
j=1
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where I, are orthonormal one-electron functions and
the x; refer to spatial and spin coordinates. In terms of
this function the Pock equations are

l ug, *(xe)ue(xt)
IIgu, (xg)+ Q e2 ~

— Cxs u;(xg)
~12

l u;*(xq)uI, *(x2)ut(x~)u;(x&)/rq2Pe'I dxt u, (x~)
J

P u,*(x,)u, (x,)
i=1

=E,u, (x,), (2)

where H& is the kinetic energy and the electrostatic
energy coming from the electron-nucleus interaction of
an electron at X&. The result of the averaging has been
to reduce the Fock equations to the eigenvalue type and
to make the exchange term the same for all electrons.
It is to be remembered that the Slater method only
applies when the total many electron wave function is
written as a single determinant.

The Pock equations are still rather complicated to
apply, even using the averaged exchange term. In order
to further simplify the application of these equations,
Slater has used a free electron gas model to calculate
the average exchange energy. When this is done, we are
enabled to write the Fock equations in the case in which
there are an equal number of electrons of each spin, as

t ut,.*(x,)ue(x, )
II~u;(x~)+ P e') dX2

k~1

3 N—3e' —P ut, .*(x~)ue(xt) u, (xt) =Esu;(xg) (3).
8~ a-1
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TABLE I. Trial eigenvalues for P»(r) for Cu+ and its
corresponding behavior for large r.

E (at. units) Behavior'

—69.489—69.494—69.495
-69.496—69.4955—69.4957

Wave function
Wave function
Wave function
Wave function
Wave function
Wave function

went negative
went negative
went negative
had minimum
went negative
had minimum

at r =0.890, slope 0.418
at r =0.960, slope 0.246
at r =1.020, slope 0,174
at r =1.120, min 0.008956
at r =1.080, slope 0.108
at r =1.240, min 0.003677

a The correct wave function should approach zero through positive
values and become zero at about r =1,30.

where E+/1V represents the fraction of electrons of a
given spin at a radius r from the nucleus.

The local electron density P&up*(x)ul, (x) can be re-
lated through Poisson's equation to the potential set
up by the nucleus and all of the electrons. Denoting this
potential by 2Z~/r, we can express the averaged ex-
change energy as

6 3 &I dsZ„t&

r 32~s I drs

in atomic units. It is often very useful to write the
2Z„(r) function and the exchange energy in terms of the
radial wave functions P„~(r) where u„~(x) = LP„~(r)/r]
.F~,~(8, pp). Assuming a spherically symmetric charge
distribution, one finds for 2Z„(r) the expression

2Z„(r) =2Z—2 P 2(2l+1)

I
"P

z

&( P„tsdr'+r dr', (6)~p, r'

where Z is the atomic number. For the exchange poten-
tial energy times r we have

p 3 q'p d'Z, y
1

s(r) =+6(—
&32~s) & d.s)

For the case of unbalanced spins only slight modifica-
tions of the averaging procedure are required if we use
a single determinant as the total wave function. In this
case the Fock equations can be expressed as

t us*(xs)up(xs)
Htu;(xt)+ Q es)l F2

1 r12

t
3 (Eg)

I &»(xt)up(xr)
l4 (X) =

=E,u, (x,), (4)

This equation leads to the definition of a new function

W(r), which is W(r) =2Z~(r)+s(r). In the actual calcu-
lations it was decided to use W(r) to determine the
degree of self-consistency.

METHOD OF SOLUTION

Having obtained the radial equation to be solved, let
us investigate the method of its solution. This equation
must be integrated numerically with trial values of the
energy E„&. Because of the fact that it often requires
ten or more guesses of E„I,before a satisfactory value is

found, a rapid and accurate integration method is

highly desirable. In customary methods of numerical
integration, one makes an estimate of a forward point,
or a number of forward points, and then proceeds to
improve these points by some sort of iterative scheme.
These approaches are cumbersome to use on automatic
equipment, especially I.B.M. machines, because of the
complex machine programs required and the consequent
reduction of the speed of solution. The Noumerov
method' appears to be the answer to many of these
difhculties. The essence of this method is to make a
change of dependent variable so that one may find
advance points with no iteration required but still have
a very small truncation error.

Let the radial one-electron Schrodinger equation be
written as

d'P/«'= g(r) P(r)
where g(r) is

g(r) = LE+W(r)/r l(l+—1)/r' j. —(10)

We now expand P about the point r=r„ in a Taylor's
series:

h' h' h'
P.+,=P.+hP. '+ P."+ P."'+ P—;"+"—, (»)—

2f 3f 4f

where h is r„+I—r„.Differentiating twice, one finds the
expansion for d'P/dr' to be

h' h'
P t"=P "+hP "'+ P'"+ P "+ . —(12)—

2f 3f

Let us define a new dependent variable y(r) as

y-(r) =P.(r) —(h'/12)P-"(r) (13)

We can write the Taylor's series expansion of y(r)
about r„as

Shs h'
3

=+6 — 2 2(2l+1)rP '() (&) 12 12
"

32~2 nl

d'P„~ 2Z„s(r) l(l+ 1)
+ E.i+ +

dr' r r
P„)——0.

The radial wave equation may be written as
h5 h6

P„" P„"'+ . (14—)
180 480

(g) P B. Noumerov, Publ. Observ. Astrophys. Cent. Russie 11
(Moscu, 1923);Monthly Not. Roy. Astron. Soc. 84, 592 (j.924).
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To obtain y„& one merely changes the sign of h in the
above expression. Thus the second difterence in y at
tn 1S

TABLE III. Comparison of initial and calculated W(r)
functions for the first and second cycles.

W«& ~(&)

ey„=he.". (16)

Py„=y„+, 2y—„+y„,=h'P~" —(h'/240)P„"'. (15)

There'fore, if one neglects the sixth and higher order
terms, we find the very simple relationship

0.000
0.090
0.300
0.700
1.400
2.600

58.000 58.000
42.727 42.246
25.240 24.206
11.547 10.649
4.940 4.727
3.051 3.008

First cycle

58.000 58.000
42.353 42.862
24.459 25.849
10.877 12.612
4.779 5.818
3.002 3.611

Second cycle

Combining the definition of y(r) with the original dif-
ferential equation, we see that y„(r) can be written

y„=P (h'/12)P—„"=P (1 —
g h'/12).

We can also express the second difference in y as

~2y„=he „"=eg„I„,
which leads to the final expression

h'g„

1—
g h'/12

If we define I as

g„h'/12

(17)

(19)

(20)

our final form is
Py„= 12m„y„. (21)

r (at. units)

0.600
0.700
0.800
0.900
1.000
1.240

f r P2„2dr
0

0.996929
0.999496
0.999856
0.999989
0.999998
1.000000

The simplicity of solution of this equation is immedi-
ately apparent. The truncation error is controlled by
the term (h'/240)P", so that by keeping h small this
source of error can be readily controlled without using
so small an h that the length of calculation becomes
troublesome. In this work on Cu+, h was taken as 0.005
from the origin to r=0.800. The interval was 0.010
between r=0.800 and 0.900'; 0.020 between r=0.900
and 1.400; 0.040 between r=1.400 and 2.440; 0.080
between r=2.44 and 2.60; 0.160 between r=2.60 and
4.20; 0.320 for all larger values of r.

By choosing the intervals in the above manner the
range of h=0.005 covered the values of r in which all
wave functions passed through their maxima and
minima. The 3d wave function had the outermost
maximum of all wave functions, and this occurred at
approximately r =0.480. Therefore, larger intervals
were used in the range of r in which all functions were
approaching zero with relatively small slopes.

TABLE II. Radial charge due to the 2P wave function
corresponding to an eigenvalue of —69.4957.

The radial equation was integrated outward by the
Noumerov method on the I.B.M. 602-A calculating
punch computer' with trial values of the energy until
a "best" eigenvalue was found. The exact eigenvalue
will be the one for which the wave function goes to
zero with zero slope for suKciently large r. As the exact
eigenvalue is never realized in practice, one must select
some standard for an acceptable energy. The criterion
used in this work was that the wave function should

go through zero at large r with a slope of not more than
~0.05. As an example of the kind of results obtained,
Table I gives some trial eigenvalues for the 2p wave
function of Cu+ and the behavior of the wave function
at large r. The value 69.4957 was selected as the final
value of the energy. The charge within a sphere of
radius r corresponding to this wave function are shown
in Table II. The purpose of determining an energy
value to so many figures is only to insure that the corre-
sponding charge density will behave smoothly in the
region where the wave function is going to zero.

Having determined all wave functions and energies,
one proceeds to recompute the common potential
W(r)/r and the 2Z„ function. If the initial and final

W(r) functions do not agree to within some standard set
for the calculation, another cycle must be undertaken.
One cannot use the W(r) resulting from previous cycle
as the initial function for the next cycle, because the
self-consistent procedure is not necessarily convergent.
Let us denote the initial W(r) for the first cycle as
lV&". This function was obtained from the results of
Hartree and Hartree's work on Cu+ as calculated with
exchange. ~ The final W(r) as found from the wave func-
tions resulting from the first cycle is denoted by lV"'.
The initial data for the second cycle will be labeled
lV"&, and this function was selected intermediate be-
tween lV&" and lV&'& as follows:

W(2) —W(0)+a(W(i) W(0))

The method of selection of lV"& used here was merely
a rough guess made with the hope of attaining a rapid
convergence. It turned out that the factor 43. was rather
poor and should have been about 0.40. The function
resulting from the second cycle W'& is shown in
Table III. It is clear that the self-consistent process is
diverging at the end of the second cycle. One would

~N. A. Lindburger, Proc. Endicott Forum on Sci. Comp.
(1948) (unpublished).



1220 GEO RGE W. P RATT, J R.

CALCULATED + ( y )

FIG. 1. The graphical estimation of a new W(r) function.

r W&2& Wf» d23

0.02 53.841 53.969 —0.13
0.10 41.108 41.639 —0.53
0.20 31.252 32.265 —1.02
0.26 26.917 28.171 —1.25
0.32 23.351 24.794 —1.44
0.40 19.557 21.180 —1.62
0.50 15.906 17.660 —1.75
0.65 11.903 13.667 —1.77
0.75 9.989 11.675 —1.68
0.90 7.938 9.459 —1.52
1.14 5.963 7.213 —1.25
1.38 4.849 5.901 —1.05
1.68 ~ ~ ~ ~ ~ ~ ~ ~ ~

1.72 3.994 4.820 —0.83
2.44 3.116 3.754 —0.63
3.24 2.666 3.178 —0.51

Second cycle

w(4)

53.989
41.282
31.599
27.332
23.805
20.003
16.396
12.364
10.406
8.246
6.187
4.987
4.135

~ ~ ~

3.159
2.708

w&»

53.890 0.008
41.242 0.04
31.470 0.13
27.181 0.15
23.652 0.15
19.889 0.11
16.246 0.15
12.217 0.14
10.275 0.12
8.193 0.06
6.187 0.00
5.062 —0.07
4.248 —0.11

~ ~ ~ ~ ~ ~

3.271 —0.11
2.768 —0.06

Third cycle

expect that W&" would lie between W&') and W"' if
the method were converging.

The following approach was used to correct this
divergent character. One can make a plot having the
initial value of W(r) for some given r along the ordinate.
The derived value of W(r) for that cycle at the same r
is plotted along the abscissa. Using the results of the
first and second cycles, two points at each value of r
can be obtained:

(xo, yo) = (W"', W"'),
(x„y,) = (W&3&, W"').

A line is drawn connecting these points. The intersec-
tion of this line with the 45' line determines the new
estimate of W(r) at the given value of r. The function so
obtained will be denoted by W&4), and it was used as
the initial data for the third cycle. This method is
illustrated in Fig. 1. The intersection can be obtained
analytically as

W"'
I
W"' —W "&

}
—W&'& {W "&—W"'}

(22)
W&3' W'&' } {W'2' W'0

TABLE IV. A comparison of the initial and final W(r)
functions for the second and third cycles.

TABLE V. The is radial wave function I», as determined by
the Hartree-Fock method and by the Slater approximation.

Hartree-
r Fock Slate r

Hartree-
r Fock Slater

0.000 0.000
0.005 1.328
0.010 2.299
0.015 2.985
0.020 3.445
0.025 3.729
0.030 3.876
0.035 3.918
0.040 3.881

0.050 3.645
0.060 3.290
0.070 2.890
0.080 2.488
0.090 2.110
0.100 1.769

0.000
1.327
2.294
2.980
3.438
3.721
3.867
3.909
3.871

3.636
3.28i
2.880
2.479
2.103
1.762

0.120 1.211
0.140 0.809
0..160 0.530
0.180 0.344
0.200 0.221
0.220 0.141
0.240 0.089
0.260 0.056
0.280 0.036
0.300 0.023

0.350 0.007
0.400 0.002
0.450 0.001
0.500 0.000
0.550 0.000
0.600 0.000

1.206
0.804
0.526
0.340
0.217
0.137
0.086
0.054
0.033
0.020

0.004
0.000
0.000
0.000
0.000
0.000

methods. In order to see the diR'erences between the
Slater and Hartree-Fock solutions to Cu+ in more
detail, a table is included showing the charge outside
a sphere of radius r due to the 3p and 3d electrons, as
found by both methods. The inner electrons of Cu+
behave so much like Hartree-Fock electrons that similar
tables are not given for them. A table is included show-

ing the electronic energies as determined by the Har-
tree, Hartree-Fock, and Slater methods. This is accom-
panied by a table of uncertainties in the energies found
in this work. Finally a table is given, showing the
2Z„(r) function resulting from the third cycle and as
derived from the Hartree-Fock work on Cu+.

DISCUSSION

Let us inquire about the degree of self-consistency
achieved in the work on Cu+. The criterion for self-

consistency that Hartree and many others have em-

ployed is to demand that the initial and calculated

The function 8'&4) was calculated by applying this
relation at each point r2„——ro+2mh, and Lagrangian
interpolation was used to find the values at r2~»=ro
+(2n+»)h.

The result of this method was most satisfactory in
that the function W&') as derived from the third cycle
was in very close agreement with W&4', The degree of
self-consistency achieved in the third cycle was within
the standards set by Hartree. The success of the
graphical interpolation is evident from the results
shown in Table IV.

RESULTS

The final results of the third cycle of calculations are
shown in Tables V through XV. Included in these data
are the normalized radial wave functions P &(r) as
found by the Hartree-Fock method' and the Slater
approximation for Cu+. The total radial charge density
is given for the Hartree, 4 Hartree-Fock, and Slater
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2Z&(r)iinni= 2Z&(r)ini&iai d Pni2. (23)

TABLE VI. The 2s radial wave function P2. as determined by the
Hartree-Fock method and by the Slater approximation.

radial charge functions Z„i(r), which are given as
Jo"P«(r)'dr, must agree to within a certain tolerance.
This is usually of the order of 0.02/2(2l+1). Because
of the methods used to find a new estimate of W(r)
for each cycle, initial Z i(r) functions were not avail-
able to compare with those functions obtained at the
end of the cycle in the present calculation. It is possible
however, to deduce approximately the deviations in the
Z„i(r) functions from the differences between the initial
and final W(r) functions. If the relation

2(2l+1)Z„i(r)i;,i
——2(2l+1)Z„i(r);;„,i+2

is assumed for all r and el, where d is the deviation
averaged over all el and over all r for a cycle, then one
can readily show that

Hartree-
r Fock, Slater

0.000 0.000
0.005 0.016
0.010 0.062
0.015 0.128
0.020 0.213
0.025 0.310
0.030 0.416
0.035 0.528
0.040 0.644

0.050 0.877
0.060 1.103
0.070 1.312
0.080 2.500
0.090 1.663
0.100 1.801

0.000
0.016
0.060
0.126
0.208
0.303
0.409
0.523
0.640

0.877
1.106
1.318
1.508
1.673
1.812

0.120 2.002 2.013
0.140 2.111 2.121
0.160 2.142 2.150
0.180 2.113 2.119
0.200 2.040 2.042

Hartree-
Fock Slater

0.220 1.934 1.933
0.240 1.808 1.804
0.260 1.670 1.665
0.280 1.528 1.520
0.300 1.386 1.377

0.350 1.055
0.400 0.778
0.450 0.561
0.500 0.398
0.550 0.279
0.600 0.195

0.700 0.093
0.800 0.045
0.900 0.022
1.000 0.011
1.100 0.005
1.200 0.002
1.300 0.001
1.400 0.000

1.045
0.769
0.553
0.392
0.274
0.289

0.089
0.041
0.019
0.008
0.004
0.003
0.000
0.000

TABLE VII. The 2p radial wave function, P», as determined by
Hartree-Fock method and by the Slater approximation.

Hartree-
r Fock Slater

Hartree-
r Fock Slater

0.000 0.000
0.005 0.407
0.010 0.700
0.015 0.896
0.020 1.011
0.025 1.061
0.030 1.057
0.035 1.009
0.040 0.926

0.000
0.409
0.702
0.898
1.013
1.062
1.058
1.009
0.926

0.050 0.686 0.683
0.060 0.384 0.379
0.070 0.054 0.048
0.080 —0.280 —0.287
0.090 —0.602 —0.609
0.100 —0.900 —0.908

0.120 —1.403 —1.411
0.140 —1.770 —1.777
0.160 —2.007 —2.013
0.280 —2.132 —2.136

0.200 —2.268 —2.170
0.220 —2.134 —2.134
0.240 —2.050 —2.049
0.260 —1.932 —1.930
0.280 —1.795 —2.791
0.300 —1.646 —1.642

0.350 —1.270 —1.267
0.400 —0.940 —0.936
0.450 —0.674 —0.672
0.500 —0.474 —0.472
0.550 —0.328 —0.326
0.600 —0.225 —0.222

0.700 —0.104 —0.100
0.800 —0.048 —0.044
0.900 —0.022 —0.028
1.000 —0.011 —0.006
1.100 —0.004 —0.001
1.200 —0.002 0.000
1.300 —0.002 0.000

For Cu+ this becomes

2Z„(r)i»ni =2Z„(r);»&;, —
i 12d.

W(r) is given as

W(r) =. 2Z„+z(r),

(24)

(25)

and we shall neglect the deviation in z(r) in a cycle.
Then the deviation in 2Z„will be regarded as the same
as that in W(r), although it is probably less. If we set
12d equal to the maximum difference in the third cycle,
which from Table IV is seen to be —0.15, then the
maximum value of the averaged d is —0.0125. This
value of d is of the same order of magnitude as that
used by Hartree which is usually d=0.02.

One can get a better physical picture of the signifi-
cance of this degree of consistency by computing the
initial W(r)/r function for the fourth cycle and taking
the diff'erence between this function, denoted as
W(r)&'i/r, and the final potential of the third cycle

TABLE VIII. The 3s radial wave function, P„.„as determined by
Hartree-Fock method and by the Slater approximation.

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.050
0.060
0.070
0.080
0.090
0.200

0.120
0.140
0.260
0.180
0.200
0.220
0.240
0.260
0.280
0.300

FIartree-
Fock

0.000
0.152
0.261
0.334
0.376
0.393
0.389
0.368
0.334

0.238
0.219—0.010—0.139—0.260—0.370

—0.544—0.651—0.692—0.677—0.614—0.515—0.390—0.247—0.094
0.062

Slater

0.000
0.156
0.267
0.341
0.384
0.401
0.400
0.383
0.353

0.263
0.147—0.020—0.109—0.234—0.345

.
—0.527—0.644—0.695—0.688—0.632—0.539—0.419—0.279—0.129

0.026

H�artre-
eF�o Slater

0.350 0.438 0.401
0.400 0.757 0.724
0.450 1.001 0.974
0.500 1.170 1.148
0.550 1.268 1.254
0.600 1.321 1.302

0.700 1.275 1.276
0.800 1.147 1.154
0.900 0.983 0.994
1.000 0.817 0.828
1.100 0.663 0.675
1.200 0.531 0.542
1.300 0.420 0.429
1.400 0.329 0.337

2.600 0.198 0.204
1.800 0.117 0.121
2.000 0.069 0.070
2.200 0.040 0.040
2.400 0.023 0.022
2.600 0.014 0.009
2.800 0.008 0.002
3.000 0.004 0.000
3.200 0.002 0.000
3.400 0.001 0.000
3.600 0.000 0.000

W(r) &s&/r as a perturbing potential. This has been done
and the average value has been computed with respect
to the 3d wave function. The 3d function was selected
because it is the most sensitive of all the wave functions
of Cu+ and because the 3d eigenvalue incurred the
largest changes from one cycle to another. The average
value of the difference over the 3d wave function was
found to be about 0.05. Therefore, it may be estimated
that the 3d eigenvalue reported should not differ from



GEO R'GE Vf. P RATT, J R.

Hartree-
Fock Slater

Hartree-
Fock

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.050
0.060
0.070
0.080
0.090
0.100

0.120
0.140
0.160
0.180
0.200
0.220
0.240
0;260

.0.280
0.300

0.000
0.006
0.022
0.047
0.078
0,113
0.152

0.000
0.006
0.023
0.047
0.078
0.114
0.153

0.193 0.196
0.234 0.239

0.317
0.395
0.465
0.524
0.572
0.601

0.642
0.632
0.583
0.503

0.152
0.018—0.116—0.249

0.325
0.406
0.478
0.540

'0.589
0.625

0.659
0.646
0.592
0.508
0.399
0.274
0.139
0.001.—0.140—0.276

0.400
0.450
0.500
0.550
0.600

0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400

1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600
3.800
4.000

—0.804—0,993—1.123
—1.200—1.235

-1 212-1.115—0.986—0.848—0.717—0.598—0.494—0.405

—0.269—0.176
0.114—0.073—0.047—0.030—0.019—0.012—0.007—0.004—0.002—0.001

—0.837—1.024—1.149—1.221—1.250

—1.216—1.109—0 992—0.831—0.697—0.577—0.474—0.386

—0.252—0.162—0.103—0.065—0.041—0.026—0.018—0.008—0.005—0.003
-0.001

0.350 —0.554

TAaLE X. The 3d radial vrave function Pa„as determined by the
Hartree-Fock method and by the Slater approximation.

TAME IX.The 3p radial wave fUnctlon I sy as determmed by the
Hartree-Pock method and by the Slater approximation.

the actual value corresponding to the Slater method by
n1ore than 0.05.

By considering the differences between the initial
fllIlctloll W(r) o~ fOr the secolld cycle alld the 1111tiai

function W(r) &'& for the third cycle, and the differences
in the energies found for these cycles, one can make
rough estimates of the uncertainties in the energies
reported for the third cycle. The t/t/'"&, 8'&4& difFerence is
of the same nature as the W&'), 8'&') difference, but is
approximately ten times as large. Therefore, one might
expect a change in the energies corresponding to a
fourth cycle to be about one-tmth of the change in the
eigenvalues from the second to third cycle. For ex-

ample, the 3d energy for the second cycle was —0.855
and for the third cycle it was —1.353, a change of about
0.50. According to the above, one might expect the
change in the 3d energy for a fourth cycle to be about
one-tenth of this difference or about 0.05 which is just
what the perturbation arguments have indicated. In
Table XIV are given the electronic energies and their
corresponding uncertainties so determined. These un-
certainties are to be interpreted as follows: The actual
energy of a given level as determined by the Slater
method will be more positive than the reported value

by approximately the stated uncertainty,
I.et us now examine the behavior of the common

potential W(r)/r which results from the free electron
gas model of the exchange charge density. This quantity
ls given as

W(r)/r = [2Z„+s(r)j/r

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

0.050
0.060
0.070
0.080
0.090
0.100

0,120
0.140
0.160
0.180
0.200
0.220
0.240
0.260
0.280
0.300

Hartree-
I ock

0.000
0.000
0.000
0.001
0.002
0.003
0.005
0.008
0.011

0.019
0.030
0.044
0.061
0.080
0.101

0.149
0.203
0.261
0.321
0.382
0.442
0.501
0.557
0.610
0.660

0.000
0.000
0.000
0.001
0.002
0.003
0.006
0.008
0.012

0.022
0.035
0.050
0.069
0.090
0.114

0.168
0.228
0.292
0359
0.425
0.491
0.554
0.614
0.6/0
0.723

0.400
0.450
0.500
0.550

0.855 0.918
0.917
0.958
0.981

0.9/7
1.013
1.030

0.350 0.770

0.600

0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400

1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600
3.800
4.000

4.500
5.000
5.500
6.000

7.000
8.000

Hartree-
Fock

0.9/8
0.937
0.882
0.821
0.759
0.698
0.639
0.585

0.488
0.406
0.337
0.279
0.231
0.191
0.158
0.130
0.107
0.088
0.072
0.059
0.049

0.029
0.018
0.010
0.006

0.002
0.001

Slater

1.004
0.949
0.882
0.811
0.740
0.673
0.610
0.552

0.450
0.367
0.298
0.242
0.197
0.160
0.130
0.105
0.085
0.068
0.055
0.044
0.035

0.019
0.008
0.002
0.000

0.000
0.000

2Z 2 00

=——Q 2(2l+1) P„Pdr+r I dr'
P nl J,

6 3
+ +-2(2l+1)rP P, (26)

32m'

where Z is the atomic number. For large r, W(r)/r
approaches 2C/r, where C is the net charge on the atom
or ion being considered. This implies that an electron
located outside the charge cloud of a singly ionized
atom would move in a potential field of 2/r in atomic
units. This is quite wrong, for such an electron experi-
ences the 6eld set up by the nuclear charge and e —1

electrons. Therefore, such an electron moves in a 6eld
which varies as 4/r This incor. rect behavior arises
because the exchange term as found by the free electron
approximation goes to zero at large s. tA'e recall that the
exchange term not only represents the interaction of an
electron with its exchange charge density but also cor-
rects for the fact that an electron does not act on itself.

In the case of Cu+ one would expect the incorrect
behavior of the potential to have the greatest efFect on
the 3d states as they are the most extended. If one ex-
amines the table of total radial charge density, Table
XI, it is apparent that very little charge lies outside a
sphere of radius I.68. Also the 3d electrons spend 92
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percent of the time inside a sphere of this radius. One
can conclude that almost the entire character of the 3d
wave function will be determined by the physical prop-
erties of the ion which depend on values of r less than
1.68. The quantity W(r)/r at r = 1.68 is 4.25 and, there-
fore, only about 8 percent of the time do the outermost
electrons move in a potential field which is less than
4/y. One may surmise, therefore, that the incorrect
asymptotic behavior of the total potential function will

have only a small eRect on the eigenfunctions and corre-
sponding eigenvalues. This appears to be borne out by
the results of the calculation.

TABLE XI. The total radial charge density in atomic units,
U(r) =Z i2(21+1)P i(r)', for the Hartree, Hartree-Pock, and the
Slater methods.

Hartree-
r Hartree Fock Slater

Hartree-
r Hartree Fock Slater

0.000 0.00
0.005 3.9
0.010 11.7
0.015 19.7
0.020 26.3
0.025 31.0
0.030 33.7
0.035 34.9
0.040 34.8

0.00
3.9

11.7
19.7
26.3
31.0
33.7
34,9
34.8

0.00
3.9

11.7
19.7
26.42
31.05
33.74
34.93
34.90

0.050 32.7
0.060 30.0
0.070 28.1
0.080 27.4
0.090 27.9
0.100 29.4

32.8 32.91
30.2 30.30
28.3 28.51
27.7 27.99
28.3 28.69
29.9 30.30

0.120 33.61 34.20 34.655
0.140 33.61 34.20 34.655
0.140 37.35 37.96 38.445
0.160 39.32 39.83 40,328
0.180 39.23 39.59 40.073
0.200 37.36 37.62 38.085
0.220 34.35 34.53 35.009
0.240 30.81 30.97 31.480
0.260 27.24 27.43.. 29.004
0.280 23.98 24.26 24.930
0.300 21.26 21.67 22.451

0.350 17.19 18.04 19.106
0.400 16.48 17.72 18.992
0.450 17.61 19.13 20.470

0.500 19.22 20.89 22.184
0.550 20.53 22.17 23.365
0.600 21.16 22.74 23.737

0.700 20.45 21.70
0.800 18.02 18,89
0.900 15.02 15.54
1.000 12.17 12.39
1.100 9.72 9.72
1.200 7.75 7.57
1.300 6.21 5.91
1.400 5.01 4.62

22.266
19.053
15.422
12.086
9.307
7.114
5.434
4.166

1.600 3.37
1.800 2.35
2.000 1.69
2.200 1.24
2.400 0.91
2.600 0.67
2.800 0.50
3.000 0.37
3.200 0.28
3.400 0.20
3.600 0.15
3.800 0.11
4.000 0.08

4.500 0.03
5.000 0.01
5.500 0.00
6,000 0.00
6.500 0.00

2.89 2.490
1.86 1.531
1.21 0.963
0.81 0.617
0.55 0.399
0.37 0.261
0.25 0.171
0.17 0.111
0.11 0.072
0.08 0.046
0.05 0.030
0.03 0.019
0.02 0.012

0.00 0.004
0.00 0.001
0.00 0.000
0.00 0.000
0.00 0.000

CONCLUSIONS

It is evident from the results presented that the Slater
method is a rather accurate approximation of the
Hartree-Pock solution to Cu+. The energies found by
the Slater method lie closer to the Hartree than Hartree-
Fock values. Only the 1s and 3d levels show much real
diRerence from the Hartree eigenvalues. The 1s energy
as found by the Slater method is —649.53, more posi-
tive than the Hartree value of —658. This diRerence is
most likely due to the failure of the exchange term to
correct for the interaction of the 1s electrons with
themselves, because the 1s electrons are concentrated
in a region where the charge density due to the other
electrons is quite small. The Slater 3d energy of —1.353

TABLE XII. The charge outside a sphere of radius r due to
the 3P electrons of Cu+. This is given as 6(1—Z»), and Z»(r)
iz jr~ Pa (y)2dy

Hartree-
r Fock Slater

Hartree-
r Fock Slater

0.000 6.000
0.005 6.000
0.010 6.000
0.015 6.000
0.020 6.000
0.025 6.000
0.030 5.999
0.035 5.998
0.040 5.997

0.050 5.992
0.060 5.984
0.070 5.975
0.080 5.959
0.090 5.941
0.100 5.920

6.000
6.000
6.000
6.000
6.000
6.000
5.999
5.998
5.997

5.992
5.984
5.972
5.956
5.937
5.915

0.300

0.350
0.400
0.450
0.500
0.550
0.600

0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400

5.693

5.641
5.500
5.254
4.945
4.507
4.061

3.150
2.331
1.666
1.161
0.794
0.535
0.356
0.235

5.679

5.620
5.464
5.201
4.843
4.419
3.958

3.033
2.216
1.564
0.999
0.725
0.482
0.317
0.208

0.120 5.873 5.865
0.140 5.823 5.813
0.160 5.779 5.767
0.180 5.743 5.730
0.200 5.718 5.705
0.220 -5.704 5.692
0.240 5.698 5.686
0.260 5.697 5.685
0.280 5.697 5.685

1.600
1.800
2.000
2.200
2,400
2.600
2.800
3.000

0.100
0.042
0.017
0.007
0.003
0.001
0.000
0.000

0.085
0.035
0.014
0.005
0.002
0.001
0.000
0.000

is somewhat of an improvement over the Hartree value
of —1.195. This result indicates that Slater's exchange
correction has not been a source of large error due to
its incorrect behavior at large r.

Hartree-
r Fock Slater

Hartree-
r Fock Slater

0.000 10.000 10.000
0.005 10.000 10.000
0.010 10.000 10.000
0.015 10.000 10.000
0.020 10.000 10.000
0.025 10.000 10.000
0.030 10.000 10.000
0.035 10.000 10.000
0.040 10.000 10.000

0.050
0.060
0.070
0.080
0.090
0.100

10.000
10.000
10.000
10.000
10.000
10.000

10.000
10.000
10.000
10.000
10.000
10.000

0.350
0.400
0.450
0.500
0.550
0.600

0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400

9.39
9.06
8.67
8.23
7.76
7.27

6.29
5.37
4.54
3.82
3.19
2.66
2.21
1.84

1.27
0.87
0.59
0.41
0.28
0.19
0.13
0.09
0.06
0.04
0.02
0.01
0.01

9.27
8.88
8.43
7.94
7.41
6.88

5.84
4.88
4.04
3.20
2.73
2.27
1.82
1.50

0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.260
0.280
0.300

9.99
9.99
9.98
9.96
9.93
9.90
9.86
9.80
9.73
9.65

9.99
9.99
9.97
9.95
9.92
9.88
9.82
9.76
9.67
9.56

1.600
1.800
2.000
2.200
2.400
2.600
2.800
3.000
3.200
3.400
3.600
3.800
4.000

0.98
0.65
0.42
0.28
0.18
0.12
0.10
0.06
0.03
0.02
0.01
0.01
0.00

TABLE XIII. The charge outside a sphere of radius r due to
the 3d electrons of Cu. This is given as 10(1—Z3d), and Z3d(r) is
Jo"P3z(r)'d'r.
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TABLE XIV. The electronic energy levels as determined by
the Hartree, Slater, and Hartree-Pock methods for Cu+ together
edith the uncertainties in the values found for the Slater method.
The unit of energy is the ionization energy of the hydrogen atom,
8~/28p.

TABLE XV. The 2Z„(r) function as determined by the Hartree-
Fock method and as found by the Slater method. The product of
r times 2Z~(r) is the total electrostatic potential of the atom at a
distance r from the nucleus.

Hartree Hartree-Fock Slater Uncertainty
Hartree-

Fock Slater
Hartree-

Fock Slater

1$
2$
2p
3$
3P
3d

—658—78.45—69.86—8.986—6.078—1.195

—658.4—82.30—71.83—10.651—7.279-1.613

—649.5—78.92—69.50—8.822—6.279—1.353

0.1
0.16
0.13
0.03
0.06
0.05

From the table of total radial charge density one
notes two points. First, the total radial charge density
as found by the Slater method is more concentrated
about the nucleus than the corresponding Hartree-
Fock density, while the Hartree function is more spread
out than the Hartree-Fock. Second, the values of this
quantity found by the Slater method are more accurate
than the Hartree method for large r.

A comparison of the Slater and Hartree-Fock radial
wave functions for Cu+ shows that the ls, 2s, 2p, and
'3s functions are nearly the same. The 3p and 3d wave
functions are more pulled in by the Slater method, but
are generally within 5 percent of the Hartree-Fock
values,

In the case of Cu+ the total wave function can be
written as a single determinant. The Slater approxima-
tion of the Fock equations only applies when the total
wave function can be expressed in this manner. The
simplification of the more general Fock equations and
the consequences of incorrectly expressing a total wave
function as a single determinant are questions which

remain to be investigated. .
As a general appraisal of the Slater method as applied

to Cu+ it can be said that it yields wave functions
which are an improvement over the Hartr'ee functions.
The electronic energy levels are about equal to the
Hartree results with poorer values for the innermost
electrons and better values for the outermost electrons.
The purpose of the Slater method is, of course, to make

0.000 58.00 58.000
0.010 55.35 55.322
0.020 52.92 52.863
0.030 50.75 50.662
0.040 48.80 48.686
0.050 47.02 46.885
0,060 45.38 . 45.217
0.070 43.84 43.651
0.080 42.38 42.167
0.090 40.99 40.753
0.100 39.66 39.403

0.120 37.18 36,886
0.140 34.94 34.597
0.160 32.91 32.528
0.180 31.07 30.660
0.200 29,42 28.970
0.220 27.91 27.433
0.240 26.54 26.023
0.260 25.26 24.719
0.280 24.07 23.501
0.300 22.95 22.354

0.350 20.38 19.733
0.400 18.08 17.391

0.450 16.00 15.288
0.500 14.13 13.412
0.550 12.47 11.759
0.600 11.01 10.317

0.700 8.65 8.007
0.800 6.91 6.334
0.900 5.64 5.139
1.000 4.72 4.270
1.100 4.05 3.684
1.200 3.56 3.245
1.300 3.19 2.935
1.400 2.91 2.740

1.600 2.55
1.800 2.34
2.000 2.21
2.200 2.13
2.400 2.08
2.600 2.05
2.800 2.03
3.000 2.02
3.200 2.01
3.400 2.00

2.409
2.247
2.144
2.088
2.053
2.032
2.021
2.012
2.006
2.004

the task of finding fairly reliable eigenfunctions and
eigenvalues easier than that of the Hartree-Fock method
in those cases where such a simpli6cation is applicabl.
In view of the fact that the Slater method requires less
work than the Hartree method and is a slight improve-
ment over that method, it appears that the Slater
method merits thorough consideration when one is in-
vestigating atomic structure. One can also conclude
from these results that the Slater method should be of
considerable use in the investigation of crystal problems.
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