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N a recent article' the temporal development of the state
vectors of the free and bound states has been derived from

the time-independent formulation of quantum theory. According
to this mathematical treatment the transformation operator
W+(t) is non-unitary. On the other hand, it has been observed in
Sec. IV of reference 1 that application of an iteration process leads
to the conclusion that W+(t) is unitary. In the present note we
shall clarify this apparent inconsistency.

From Eqs. (53) and (36) of reference 1 we see that the integral
equations,

(1)X(t) = 1 if [H&(t')—, X(t')]dt',

F(t) = if [H—z(t'), Y(t')]dt', (2)
are satisfied by

X(t)=Wg(t)W+t(t) =f+p)(t)@pyt(t)dp, (3)

~(t) =&.+.(t)+ '(t) (4)

However, Eqs. (1) and (2) have also the solutions

X(t) =1, (5)
I'(t) =0. (6)

The iteration process described in Sec. IV of reference 1 leads to
Eqs. (5) and (6), but not to Eqs. (3) and (4). One cannot, there-
fore, draw any conclusion about the product W+(t)W+t(t) by
means of the iteration process we have considered.

The fact that iteration of Eqs. (1) and (2) does not lead to the
solutions given by Eqs. (3) and (4) indicates that these solutions
cannot be expanded into power series that satisfy the convergence
requirements for the validity of the iteration process. Consider, for
example, the wave functions+, (p) of the bound states of the hydro-
gen atom in the momentum representation. These wave functions
contain the factors [(nap/fz)'+1] ', where n1, 2, , a =,f=zz/me',

and p =
l p l. Expansion of@,(p) in powers of e involves the power-

tainties in the assumed potential. MeasurementsI~ Is of the ultra-
violet absorption of diamond indicate an energy gap of at least
5.5 ev. The calculated width of the valence band 22 ev is con-
sistent with interpretations" ~ of soft x-ray emission spectra from
diamond.
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series expansion

[1+(tt/nap)'] '= 1—(tt/nap)'y ~ ~ ~

which diverges when P&k/na. Similarly, the power-series ex-
pansion of the sum Z, C,(p)%,*(p') diverges for small P and P'.

1 S. T. Ma, Phys. Rev. 87, 652 (1952).
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EVERAL authors have recently discussed the role of charge
independence in processes involving pions and nucleons. I We

have explored the consequences of charge independence for mul-
tiple pion products in nucleon-nucleon and in pion-nucleon col-
lisions. Before presenting our results, we wish to call attention to
a point which has been overlooked in previous treatments of single
pion production in nucleon-nucleon collisions and leads to an
additional relation among the difFerential cross sections.

Let us denote by o.(vIv2~vI'v2'~') the differential cross section
for the production of a pion ~'(i=+, —,0) in a collision of two
nucleons vI and v2 (v=p or e), which are transformed into two
nucleons vI' and v2'(v'=P or I), respectively. As the differential
cross section refers the direction of motion of the outgoing pion
to the direction of motion of the incident nucleons, and as all
nucleon charges are specified, it follows that in general
o (vIv2~vI'vq'2r') is distinct from o'(v2vI~vI'v2'vr') for from
o(vIv2~v2'vI'm')) if the initial (or final) nucleons have different
charges. If charge symmetry is taken into account, the number of
distinct differential cross sections for single pion production
reduces to seven which can be written in the form:

o (n~znzr+) =
l oFv/'6 —Fz'/2

l
z,

o (np~npm') =
l Fo/2K3+F, /2 l

s

o(n~pnzr') =
l Fz/2@3 Fz/2

la',

—
o(pn~nnzr+) =

l Fz/Q6+F, '/2 l',
o(pp~px+) =

l
Fz/v2+Fz'/2 l',

o(pp pnzr+) =
l F,/K2+F, '/2l', —

o(pp ppo') = IFz'/vol',

where Fp is the isotopic singlet amplitude and FI, FI are the two
isotopic triplet amplitudes. Thus, the seven cross sections depend
on the three absolute values and the two relative phases of these
amplitudes. Hence, there exist two relations among the o's as a
consequence of charge independence. One of these is linear:

++ +—2( ++~ ) ~ (1)
the other is essentially a phase relationship:

cos-'(oz /2[(oz+ —o4)o4]&)+cos '(o, /2[(o, +—o4)o4]&}
=cos '(oz /[(oz' —o4)(oz' —o4)1'} (2)

Here we have set

oP=o.(nP nest. +)ao (Pe en~+),
(rtp ~p o)~ (rt~pg o)

o3+=(J(PP Pn7f+) Wo(PP ep~+),
~4= ~(PP PP~').

Relation (2) can only be obtained by distinguishing between
o(np mnzr+) .and o—(pn~nzr+), etc. Messiah' [see his Eq. (10)]
and Luttinger [see his Eq. (2)] do not make this distinction, so
that their relation is only valid in so far as total cross sections are
concerned.

The above considerations can be generalized to multiple pion
production in nucleon-nucleon collisions; as the number k of pions
increases, both the number St, of distinct cross sections (in the
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N++N =2Np, (4)

which is a special case of Watson's' general relation. One can
start with Watson's relation which holds for an arbitrary number
of pions and reverse the argument to obtain the generalization of
Eq. (3) for an arbitrary pion multiplicity.

The consequences of charge independence for multiple pion
production in pion-nucleon collisions have also been examined'
unfortunately, some of the relations cannot be tested experi-
mentally because they involve cross sections referring to an
incident m . An illustration of the latter type of relationship which
is independent of the pion multiplicity is

( +P)+ ( P)=2 ( 'P),

where o(~'P) denotes the sum of all cross sections corresponding
to a specified multiplicity produced by a pion ~' incident on a
proton. Secondly, considering m —P collisions of given multiplicity,
relation (4) again holds true provided one defines N+= (N+)„+
+(N )„.+(N,)„... etc.

When there is only one final pion (i.e., pion scattering by a
proton), (4) and (5) are the only relations which follow from
charge independence and actually reduce to one, namely Heitler's'
relation, because of charge symmetry and detailed balancing.

For k final pions) RIg Ijj;+3 'PIg+p —(5/2) II,+&+1) RI,' (re-
ferring to an incoming ~ only)=II, +3—2'+& —3II,+&

—-,'-I&+i.
Thus, R2=6, R2' =1, whereas asymptotically Rf,~Rf,' ~k &3~.

Of course, if the further assumption is made that the pion-
nucleon interaction is restricted to the state of total isotopic spin
-„4 the number of relations involving only incident charged pions
is greatly increased; for example, Eq. (5) is replaced in this
approximation by

&o(~+P) = —,'o.(~PP) =cr(~ P), (6)
while additional relations hold for specific multiplicity, such as:

2'(P7r ~Pm m')+a. (P7r ~pm-'m. )$
=cr(P~ ~ + )+ (P~ ~ +)+4 (P~ ~ ' ').
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above sense) and the minimum number Rf, of relations resulting
from charge independence increase rapidly. It can be shown that

SI = VI;+If+i+ Vf+2,
RI = If+3—kIf+2 —4If+i —(~/2)IJ;+1)

II,——w
—' (1+2 coscp)~dy.

p

For large k, SI,~Rk~k &3~. Thus, for k=2, R2——7; one relation
is particularly interesting:

4)o (PP~PP~ m. )+cJ(np~npm m-p)+cJ(n~pnm 7r )j
+5 (PP P -')+ (PP- P-' ')+ (PP-P ' ')

" +cJ(PP~Pnm'm+)+a(np Ppx m')+o(np Ppm'~ )
+a(np~nvr+no)+o(np nnvrovr+)] 2[—o(pp ppvr+vv )
+ (PP PP +)+o(PP nnm+ +)+o(np~p +m )
+o(n~np7r=g+)+cJ(np Pn7r+m )+o(np Pnm m+) j=0, (3)

where the notation is an obvious generalization of the single pion
notation. If one now introduces the following numbers for the
2~ production reactions:

,= (N, ,),„+(Nr, ,)„„,
where, e.g. , (N+)» is the average number of positive pions pro-
duced in a PP collision in which two pions are emitted with given
direction (the other quantities are likewise defined). One easily
finds from (3)
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N a semi-classical treatment of the scattering of light by charged
-. particles a switching-on function was used to avoid the ap-
pearance of "run-away" radiation reaction terms. ' A consistent
formulation appeared to be possible only if the duration of the
interaction, the "interaction time, " exceeded a lower limit.
Recently, several authors~ suggested that it might be necessary
to use switching-on functions also in quantum theory. A tentative
way of doing this, which leads to a confirmation of the semi-
classical conclusions concerning interaction times, is to multiply
the matrix elements Ppi for transitions from the initial state in
the equations of the time dependent perturbation theory by a
switching-on function f. In solving these equations, we retain the
terms of lowest order containing time derivatives of f. Apart from
this we follow the usual procedure and obtain for second-order
processes'

~a= (v/4vv) JdB(f6+ v'fI'+v'fiv, v fFv) bv—,

where

1~ IIorIIro ~ IIor%o

(2)

+ &or%I' + IIzrrIIrro + &or~~rz + IIzrrIIrror, =~sypg Z
Er —Ez (Err —Eo)2 (Er —Eo)2 Eir —Eo

Z denotes summation over the intermediate states I, II; and Sg
summation and averaging over the directions of spin and polari-
zation in the final state. 6 represents a frequency shift, and r
a damping coefBcient; Ai, ri are dimensionless.

The well-known formulas for scattering cross sections and se]f-
energy effects follow from Eq. (1) if

(rv, vf)Av«(f)Av=i, (3)
where

r, =~,/r, (4a)
r,= r,/a. (4b)

Using f= 1 —exp( —cd), we evaluate these averages for the
time interval between t=0 and the interaction time t. It appears
that condition (3) will be fulfilled if 1/a« t, and ri, 2« t. The times
7i, r2 are thus seen to represent lower limits for the interaction
time of processes for which the formulas of the quantum theory
of radiation are known to be approximately valid.

For scattering of photons by electrons initially at rest, we
evaluate Eqs. (2) in the usual way and obtain from Eqs. (4)

Ac & rp kp' p(ko+k)
e' c k2 (kp+k) +kpk(1+x )

rp 1+x k (kp —k) +kpk(1+x)
c 2 ko2 p(ko+k)

where rp=e/mc', and x is the cosine of the scattering angle.
Except for k/p=y&137 and small scattering angles, r2«ri. We
shall thus, at present, consider r& only.

In the extreme relativistic case (p))1) in which we are primarily
interested, r& is largest for x=—1: rr =4+rp rp=k/me'c.
The extreme relativistic average of ri is 2yrp/ln(2y). These results
confirm the conclusion arrived at in the semi-classical theory that
a lower limit for interaction time of the order of magnitude yrp
should be taken into consideration.

The same method can be used to investigate the validity of
quantum theoretical formulas for higher order processes. For
extreme relativistic photon-photon scattering a rough estimate
leads to the order of magnitude harp with rp= (Ac/e')4(rp/c)=3. 3
X IO '~ sec for the lower limit of the interaction time. The coin-


