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Electronic Structure of the Diamond Crystal
FRANK HERMAN

Department of Physics, Columbia University, Negro York, Net York, and
David Sarnog Research Center, RCA Laboratories,

Princeton, New Jersey
(Received October 6, 1952)

'HE author has investigated the energy band structure of
diamond by means of Herring's orthogonalized plane wave

method. ' Some features of the present solution, shown in Fig. 1,
differ significantly from previous results. ~ 5

The three lowest conduction bands are degenerate (state I'&5)

at the central point of the Brillouin zone (k=000). Calculations
based on the cellular method~ 3 and on the tight-binding approxi-
mation4 I' indicate a nondegenerate lowest conduction band
(eigenstate F2') at k=000. Of the four valence bands, three are
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FrG. 1. Schematic of energy bands of diamond crystal in 100 and 111
directions. The notation follows references 11 and 12; for example, the
symbol 3I'is indicates a threefold degenerate state of symmetry type I'Is.
The curves have horizontal slopes at points marked Q. Solutions at
2'(100)/a and at ~(111)/a are known with less precision than those at
(000)

Clausius-Mosotti Equation for Anisotroyic
Crystals*

HANS J. NEUGEBAUER
Baton Electronics Research Laboratory, McGill University, Montreal, Canada

(Received August 21, 1952)

~HE well-known Clausius-Mosotti equation, 3(e—1)/(~+2)
=4xaN, exhibits a relation between the dielectric constant

e of an isotropic substance, the polarizability n of its particles, and
the number N of particles per unit volume. The equation can be
generalized in such a way as to be applicable to anisotropic
crystals.

Such directions are chosen for the coordinates x, y, s that the
tensor of dielectric constant reduces to the diagonal ~, ~v, e,. The
tensor of polarizability of a particle is ~„, a. „, . o(„.Then the
Clausius-Mosotti equation can be written in two ways:

3(.,—1)/(..+2) =4~P.N, (1)

(2)
~~—1 eiI—1 ~z—1 47'NA

In (1) x can be replaced by y or s. The meaning of the symbols is

IIP.=~.+(~yy~ ~y*')I I~;yI,
3/zI (zyzzzyyy+zyzzzyzz+zzyyzzzz zyzy zyzz zyyz )/ I zyIIz I ~

t1 =Z&(rq '—3xq'rl, ~) can be computed if the structure of the
crystal is known. rt, is the distance of the 4th particle from one
selected particle, x =rt, cos(x, rI,).

The necessary and sufficient condition for a dielectric to be
isotropic is A, =O.

+ This research forms part of a project on microwave optics that is
supported at McGill University by the United States Air Force through its
Cambridge Research Center.

degenerate (state F2&') and have negative curvature at k=000.
This agrees with Morita's result;4 other investigators" found two
of these bands to have zero curvature. One of the three lowest
conduction bands has negative curvature at k=000 in certain
crystallographic directions (e.g. , 100) due to the perturbing effect
of the F~ conduction band. The uppermost valence bands have
greater negative curvature in these directions. Thus, it appears
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FIG. 2. Convergence of energy eigenvalues for reduced wave vector
k=000. Symmetry types I'2s' and I'ps are orthogonal to the core states;
the types I'& and I'g' must be orthogonalized to the core states. The symbol
m, n indicates that an mth order secular determinant yields the eigensolu-
tion, which contains n pla~e wave terms.

likely that the minimum separation between valence and conduc-
tion bands occurs at k=000.

That the lowest conduction bands of diamond are degenerate
and have nonspherical energy surfaces is particularly interesting
in view of ingenious attempts' ~ to account for the large anisotropic
magneto resistance and the anomalous mobility effects observed in
germanium. The first effect is interpreted in terms of nonspherical
energy surfaces at the bottom of the lowest conduction band, and
the second, by postulating that they are re-entrant. Degeneracy
is sufficient to account for the former and is necessary for the
latter. An investigation of the germanium crystal, just completed,
indicates an energy band structure similar to that of diamond. The
results will be submitted for publication shortly, as will a more
detailed account of the diamond analysis.

The method of orthogonalized plane waves, successfully applied
to metallic beryllium and lithium, '' appears to be suitable for
diamond-type crystals as well. The precision of the method is
dependent upon (1) the accuracy of the assumed potential, (2) the
accuracy of the assumed core eigenstates, and (3) the number of
terms admitted to the Fourier representations of the crystal
wave functions. The Rayleigh-Ritz variational method is used to
determine the crystal eigensolutions. Group theory is employed
to simplify the computations. '«~

The present solution appears to be more reliable than previous
investigations: cellular studies, ~'" though useful qualitatively,
are unsatisfactory quantitatively the approximation of tight
binding4' is inappropriate for valence and conduction states.

The Coulomb potential and the core eigenstates were obtained
from a crystal model consisting of isolated carbon atoms in the
(1s)~(2s)'(2p) 3 5S~ state'~ arranged in the form of a diamond lattice.
Slater's free-electron approximation" was used to represent the
exchange potential. The orthogonalization procedure hastened
convergence, as is shown in Fig. 2, The eigensolutions automati-
cally orthogonal to the core states approached stable forms slowly
as terms were added to the Fourier expansions; the others con-
verged more rapidly, but not so rapidly as corresponding metallic
solutions. ' "The high order secular equations were solved with
the aid of IBM calculating machines at the Watson Scientific
Computing Laboratory at Columbia University.

The energy gap remains close to 6 ev over a wide range of
solutions. Fluctuations about this value are no longer than uncer-
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Bound States and the Interaction Representation
S. T. MA

Division of Physics, National Research Council of Canada, Ottawa, Canada
(Received October 6, 1952)

N a recent article' the temporal development of the state
vectors of the free and bound states has been derived from

the time-independent formulation of quantum theory. According
to this mathematical treatment the transformation operator
W+(t) is non-unitary. On the other hand, it has been observed in
Sec. IV of reference 1 that application of an iteration process leads
to the conclusion that W+(t) is unitary. In the present note we
shall clarify this apparent inconsistency.

From Eqs. (53) and (36) of reference 1 we see that the integral
equations,

(1)X(t) = 1 if [H&(t')—, X(t')]dt',

F(t) = if [H—z(t'), Y(t')]dt', (2)
are satisfied by

X(t)=Wg(t)W+t(t) =f+p)(t)@pyt(t)dp, (3)

~(t) =&.+.(t)+ '(t) (4)

However, Eqs. (1) and (2) have also the solutions

X(t) =1, (5)
I'(t) =0. (6)

The iteration process described in Sec. IV of reference 1 leads to
Eqs. (5) and (6), but not to Eqs. (3) and (4). One cannot, there-
fore, draw any conclusion about the product W+(t)W+t(t) by
means of the iteration process we have considered.

The fact that iteration of Eqs. (1) and (2) does not lead to the
solutions given by Eqs. (3) and (4) indicates that these solutions
cannot be expanded into power series that satisfy the convergence
requirements for the validity of the iteration process. Consider, for
example, the wave functions+, (p) of the bound states of the hydro-
gen atom in the momentum representation. These wave functions
contain the factors [(nap/fz)'+1] ', where n1, 2, , a =,f=zz/me',

and p =
l p l. Expansion of@,(p) in powers of e involves the power-

tainties in the assumed potential. MeasurementsI~ Is of the ultra-
violet absorption of diamond indicate an energy gap of at least
5.5 ev. The calculated width of the valence band 22 ev is con-
sistent with interpretations" ~ of soft x-ray emission spectra from
diamond.

The author wishes to express his appreciation to Professor H. M.
Foley of Columbia University, Dr. C. Herring of Bell Telephone
Laboratories, and Dr. D. O. North and Dr. A. R. Moore of the
RCA Laboratories for stimulating discussions and valuable
guidance. The author is grateful to Dr. I. Wolff and Mr. E. W.
Herold of the RCA Laboratories for their continued interest and
encouragement.
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series expansion

[1+(tt/nap)'] '= 1—(tt/nap)'y ~ ~ ~

which diverges when P&k/na. Similarly, the power-series ex-
pansion of the sum Z, C,(p)%,*(p') diverges for small P and P'.

1 S. T. Ma, Phys. Rev. 87, 652 (1952).

Charge Independence and Multiple Pion
Production*

L. VAN HOVEit AND R. MARSHAK,
University of Rochester, Rochester, New Fork

AND

A. PAIs, Institute for Advanced Study, Princeton, New Jersey
(Received October 9, 1952)

EVERAL authors have recently discussed the role of charge
independence in processes involving pions and nucleons. I We

have explored the consequences of charge independence for mul-
tiple pion products in nucleon-nucleon and in pion-nucleon col-
lisions. Before presenting our results, we wish to call attention to
a point which has been overlooked in previous treatments of single
pion production in nucleon-nucleon collisions and leads to an
additional relation among the difFerential cross sections.

Let us denote by o.(vIv2~vI'v2'~') the differential cross section
for the production of a pion ~'(i=+, —,0) in a collision of two
nucleons vI and v2 (v=p or e), which are transformed into two
nucleons vI' and v2'(v'=P or I), respectively. As the differential
cross section refers the direction of motion of the outgoing pion
to the direction of motion of the incident nucleons, and as all
nucleon charges are specified, it follows that in general
o (vIv2~vI'vq'2r') is distinct from o'(v2vI~vI'v2'vr') for from
o(vIv2~v2'vI'm')) if the initial (or final) nucleons have different
charges. If charge symmetry is taken into account, the number of
distinct differential cross sections for single pion production
reduces to seven which can be written in the form:

o (n~znzr+) =
l oFv/'6 —Fz'/2

l
z,

o (np~npm') =
l Fo/2K3+F, /2 l

s

o(n~pnzr') =
l Fz/2@3 Fz/2

la',

—
o(pn~nnzr+) =

l Fz/Q6+F, '/2 l',
o(pp~px+) =

l
Fz/v2+Fz'/2 l',

o(pp pnzr+) =
l F,/K2+F, '/2l', —

o(pp ppo') = IFz'/vol',

where Fp is the isotopic singlet amplitude and FI, FI are the two
isotopic triplet amplitudes. Thus, the seven cross sections depend
on the three absolute values and the two relative phases of these
amplitudes. Hence, there exist two relations among the o's as a
consequence of charge independence. One of these is linear:

++ +—2( ++~ ) ~ (1)
the other is essentially a phase relationship:

cos-'(oz /2[(oz+ —o4)o4]&)+cos '(o, /2[(o, +—o4)o4]&}
=cos '(oz /[(oz' —o4)(oz' —o4)1'} (2)

Here we have set

oP=o.(nP nest. +)ao (Pe en~+),
(rtp ~p o)~ (rt~pg o)

o3+=(J(PP Pn7f+) Wo(PP ep~+),
~4= ~(PP PP~').

Relation (2) can only be obtained by distinguishing between
o(np mnzr+) .and o—(pn~nzr+), etc. Messiah' [see his Eq. (10)]
and Luttinger [see his Eq. (2)] do not make this distinction, so
that their relation is only valid in so far as total cross sections are
concerned.

The above considerations can be generalized to multiple pion
production in nucleon-nucleon collisions; as the number k of pions
increases, both the number St, of distinct cross sections (in the


