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Radial Focusing in the Linear Accelerator*
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The focusing mechanism described in the previous paper is applied to the linear accelerator. The de-
focusing forces in the linear accelerator are derived, and the particular example of a 4-million-volt accelerator
10meters long is discussed. It is shown that the defocusing forces can be compensated by magnetic or electric
lenses of the alternating gradient type using easily attainable field gradients. For example, a defocusing field
gradient of 1000 volts per centimeter on a 100-kv proton beam can be compensated by a lens 20 cm long with
field gradients of the order of 1000 gauss per centimeter.

I. INTRODUCTION

HK method of focusing proposed by Courant,
Livingston, and Snyder' for use in high energy

synchronous accelerators seems to be applicable also to
the linear accelerator. The usefulness of the linear
accelerator to date has been limited by the defocusing
which is associated with the mechanism of acceleration.
In this paper a brief discussion of the focusing forces
in the linear accelerator is followed by a presentation
of the method of application of magnetic or electric
focusing to compensate for these forces.

Although the linear accelerator is of considerable
interest in its own right, it is particularly interesting to
our laboratory as a possible injector for high energy
positive ion accelerators. If the radial defocusing can
be controlled, a linear accelerator injector mould present
important advantages associated with its geometry and
the accessibility of its components. %e shall, accord-
ingly, confine this discussion to accelerators in the
energy range low enough that relativistic effects can be
neglected. Since, in general, the defocusing fields be-
come weaker as the velocity approaches the velocity
of light, and since the magnetic focusing procedures to
be discussed are still valid at relativistic velocities, the
limitation of the discussion to the nonrelativistic range
is legitimate.

II. THEORY OF THE LINEAR ACCELERATOR

The s axis of a cylindrical coordinate system will be
taken to be coincident mith the axis of the accelerator.
MES units will be used.

librium phase of the accelerating signal, the rate of
change of energy 8" of the equilibrium particle with
distance will be

d W/ds = tdttt/2rv.

This relation can be integrated if we assume a specific
form for rv(s).

For our present purpose, we shall retain sufhcient
generality if we set

where wf is the energy gain at the final gap and sf is
the length of the accelerator. It should be noted here
that distances and times are to be measured on scales
representing an accelerator whose injection is at zero
volts.

We now substitute —21233v2 for W in Eq. (2) and in-
tegrate to obtain

(z/z ) (I+n, 1/3

(s/sf) I' "'"=(2 23)vi)/3zf-,

W —W (s/s ) (2+2')/3

The accelerating fieM will be a complicated function
of position along the tube. It can, however, be analyzed
into component traveling waves, and it is evident that
the only traveling wave component whose effects will
average to a value diferent from zero is the component
which travels with the particles at their average ve-
locity. This component will have the form

Axial Electric Field Pattern (7)E,=Epf(z)sintd t (ds/v) . —

The separation betmeen accelerating gaps, I., will be
the distance traveled by a particle during one-half
cycle of the accelerating signal

If the equilibrium particle maintains a constant phase
on this wave, f(s) will depend on s in the same fashion
as does dW/ds, which we can derive from (6). To retain
Eo as a quantity having the dimensions of an electric
field, we mrite

I= 2I V/td»

where v is particie velocity and oI/22r is the frequency of
thc Rccclel RtlIlg SIgIIRl. Now If 'lv Is 'tllc energy (lllcRS-
ured in volts) gained per gap by a particle at the equi- f(z)

dW IrdWi

ds k ds i,* Research carried out under contract with the AEC.
I Courant, Livingston, and Snyder, preceding article LPhys.
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(7) in the form

3(z/z )" "'"zr
E,=Ep(z/zr)&'" '&t' sin&p t — . (8)

(2 n—)vr

The form of Ep is discussed below and appears in Eq.
(13)

Particle Phase Oscillations

In order to evaluate Ep and to determine the possible
limits of n, it is necessary to investigate the phase
oscillations of the accelerated particles. Thus far, we
have discussed only particles which travel at the equi-
librium phase Pp and at the velocity v of the electric
field wave. For a general particle, we now define a
quantity 8 in terms of which we shall discuss the par-
ticle velocity i. b will be defined by

E,= ', rBE—,/-Bz,

Bp
= ,'(r—/c-') BE,/Bt

(16)

(17)

The form of these components can be derived from (8)
and (13). (We neglect the small term which includes
the derivative of f(z) and those time varying fields
which follow from other field components than (7).)

r(1+n)&dWr
(z/zr)'" "" o (4+ ),

3 sinppvfsf
(18)

Radial Electric Field and Azimuthal
Magnetic Field

The radial motion of the particles in a linear ac-
celerator will be influenced by two field components,
E„and Bg. To a first approximation, these components
are given by

J
dz/v = t &tip/pp B/&p,— — (9)

r(1+n) Wf&p
(z/z ) &» '~tP cos(gp+B). (19)

3c' singpzf

whence we derive the relations Radial Forces on the Accelerated Particles

z =v(1—B/&p),

z = —vs/&p+ v(dv/dz) (1—B/&p)'.

r(1+n)ppWr
(z/zr)'" '&&'(1 v'/c')cos—(&tip+A) (20).We now substitute from (7), (9), and (11) in the rela-

tion mB =eE, to obtain 3 slngpzrvr

(10) The radial force equation rnr=eE„evBp beco—mes,
upon substitution from (18), (19), and (4),

(11)

ntvB/&p—+npv(dv/dz) (1 B/&p)p =—eEpf(z) sin(pp+ 8). (12)

If B is assumed to be small, (12) becomes approximately

B/&p —(dv/d z) (1—2&/&p)

+ (eEp/rnv) f(z) (sinpp+ B cosPp) =0. (12a)

Since we are neglecting relativistic sects, the second
term in the bracket, which arose from the eGect of Bg,
is negligible. Also, the average radial force on a par-
ticle will not dier materially from the radial force on
the equilibrium particle. Thus, the radial deflections
are those which result from the radial electric field

For B and its derivatives equal to zero, (12a) defines

Ep. Making the appropriate substitutions from (4),
(5), (6), and (8) we find

r&p(1+n) Wr
E„= — (z/z, )&"-'&&' coty, .

38f5y
(21)

B (1+n) 2 B (1+n)&p cotPp B

+ —=0
&p (2 n) t &p (2 n)t &p

The asymptotic solution of (14) for t large is

(14)

(4(1+n)&pt cogp) ~

gt-&'+'~&t &~~'-sin~ (15)
0)

where A is a constant. This represents a damped oscilla-

tion provided n lies between —0.4 and 2 and cotPp is

positive. Physically, n cannot be greater than 2; for n

greater than 2, it is evident from (1) and (4) that L
must increase at a rate faster than s, a situation which

is not realizable in practice.

Ep simp= 2(1+n)Wf/3zf, (13)

and, from (4), (5), (12a), and (13) the equation de-

scribing the phase oscillation is

Evidently, the closer n approaches its limiting value
of 2, the more nearly constant becomes the defocusing
field as a function of distance along the accelerator.

Numerical Example

As a numerical example, we consider a 4-million-volt
linear accelerator 10 meters long. Protons will be in-
jected into this accelerator at 100 kv and will be
accelerated by a 30-megacycle signal. We assume,
further, that the equilibrium phase is 45'. Evaluation
of other parameters depends on the choice of n. We shall
consider three cases: n=0 (voltage equal on all gaps),
n= ', (constan-t amplitude axial electric field), and n=1
(gap voltage increasing linearly with distance along
the accelerator).

From Fq. (21) we can now derive the radial field
gradient,

G= E,/r = 9.1&(10'(1+n) (0.1z) &" "t'(volts/m)/m. (22)
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The value of s corresponding to injection follows from

(6). The values of G for the three n's are as follows:

G at injection (volts/cm)/cm
G final (volts/cm)/cm

=0
3640 870

91 136

@=1
455
182

The st=|case is obviously preferable from the stand-
point of radial defocusing during the early stages of
acceleration. The practical application of this case
presents some difhculty, but the same desirable results
can be achieved by accelerating in several stages, the
accelerating voltage increasing stage by stage as the
particle is accelerated.

IV. APPLICATION OF FOCUSING TO THE
LINEAR ACCELERATOR

If the defocusing forces in the linear accelerator are
to be compensated by magnetic lenses of the type dis-
cussed in the preceding section, we must take into
account the fact that the effective electric gradient 6
given by Eq. (22) is acting throughout, in addition to
the forces due to B'. The lens will now be one in which
one section has an effective restoring field of B'—G/v
and the other has an effective field of B' G/v. The- —
range of stability is given by Courant, Livingston, and
Snyder's Eq. (5) and their Fig. 2 if only we substitute
Pe(B'&G/n)/47r'mv for their iii/S' and n~/1V'—

We now make an arbitrary choice of design param-
eters satisfying the stability conditions. We shall de-
termine values for B' and / which correspond to the

III. THE FOCUSING MECHANISM

The technique of magnetic focusing proposed by
Courant, Livingston, and Snyder' involves the passage
of a beam of particles through successive magnetic
fields of alternating transverse gradients. As in the
preceding section, we choose the axis of the beam as the
s axis. We suppose that the beam travels with velocity
v, and that from a=0 to s=/ we apply a magnetic field

having B,=B'y and B„=B'xwhere B' is a constant.
From s=/ to a= 2/, we apply a reversed field B,= —B'y
and B„=—B'x.Courant, I.ivingston, and Snyder demon-
strate that this system acts like a converging lens whose
focal length is given by their Eq. (19).

It is worthy of note that exactly the same technique
will work with electric 6elds of the form E =E'x,
E„=E'y, etc. In this case the properties of the lens will

be given by substituting E'/v for B' in the magnetic
lens formulas.

TABLE I.

Lens length (2l) B' (gauss
cm per cm)

E' (volts per cm
per cm)

n=o
s=k
n=1

9.4
19
26

5050
1200
620

21,800
5200
2700

where W is the particle energy.
From (22) and (23) we can determine the lens pa-

rameters for our 4-Mev accelerator. The result of these
operations for the injection end of the accelerator is sum-
marized in Table I

As we progress along the accelerator, the permissible
lens length increases and the magnetic or electric field
gradients decrease. From (4), (22), and (23) we see that
the lens length can increase as 2.""+"~'.In this case B'
will decrease with distance like 1/s or, if electric lenses
are used, E' will decrease like 2(' "'".The final lens
length will be of the order of meters, and it will prob-
ably be desirable to make a new choice of stable pa-
rameters which results in shorter lenses near the exit
end of the accelerator.

The applications of these principles to practical ac-
celerators will place some limitations on the radio-
frequency technique. If magnetic lenses are used, the
accelerator tube diameter should be small, and it will
be necessary to use lumped constant circuits rather
than wave guides. Electric lenses could be combined
with the drift tubes so that the same unit is both a lens
component and a drift tube.

Lenses of this sort appear to be equally practicable
for higher energy accelerators. We have computed
possible lens parameters for an accelerator in which (as
in the Berkeley linear accelerator) injection is at 4
million volts, energy gain is of the order of a million
volts per foot, e is —,', and the accelerating frequency is
2QQ megacycles. In this case, as usual, the worst de-
focusing is at the injection end of the accelerator where
effective radial gradients exist of about 5000 volts per
cm per cm. These could be compensated by lenses of
our type 50 cm long having magnetic field gradients of
1100 gauss per cm or electric field gradients of 30,000
volts per cm per cm.

stable combination Ni/iV'= 0 07, ii2/iV'= 0 05. This
choice yields the following relations:

B'=6G/v (or E'=6G) and P=0.79W/G, (23)


