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where EE, is now a counting rate per constant energy
(or range) difference.

One can also calculate the total number of electrons
of energy E' which escape as a check of the above re-
sult. If this is again done for a volume with a square
centimeter base at the surface, the total number of
electrons of energy E' which escape from a volume ele-
ment dv. at x is

9m icos 4/8' g Eg x
sinpdgd8dx= 1——dx.

J, 2

Integration over x from 0 to R' gives sP& /4R'.
If we integrate Eg ~ over E" from 0 to E' we get

p~' Eg Eg
dR"= E.',

4 4

as we should, . since the total count due to degraded
pulses should equal the total number of electrons

escaping.
The above result states that electrons of energy E'

which escape from the crystal are degraded with equal
probability into all energies below E', since the above
results are independent of E' or E". The fraction of
electrons of energy E' which escape from the crystal is
equal to 4 the fraction of the volume of the crystal
which lies in a surface layer of depth R'. These two facts
can be used in a graphical method to correct distorted
beta-spectra for the efkct due to the escape of electrons.

A similar analysis can be made for the escape of
photons from a crystal, substituting an exponential
absorption for the range. The solution in this case in-
volves the F-function, which is somewhat awkward,
but one can consult tables of this function to obtain
numerical answers.

APPENDIX II
Outline of the Calculation of the Transition Energy

in K Orbital Electron Capture from a
Knowledge of the Branching Ratio"

Marshak's lifetime formulas for erst-forbidden P=
decay and orbital electron capture are, respectively,

R'Bg(s, Wo).. ., L&.~j2

R'B.'(s, WD),
ro )1.3/'

where 7.0 is a decay constant, E is the nuclear radius,
M is a nuclear matrix element, and the 8's are quan-
tities which depend on the order of the transition, on
the nuclear charge, and on the energy diGerence be-
tween the parent and pmduct nuclei.

Dividing one equation by the other one gets

7. B~(s, W0) %%uq P emission

B.&"(s, Wo) % E capture

Except for a numerical factor, BI is the same function
as Davidson's~ f& (in the low Z limit) and can be calcu-
lated with the help of Feenberg and Trigg's" curves of fo.

8,&" is given by Marshak, and for K orbital electron
capture alone it has the form

B.&"= ,'n. (WO+ W~-)'nag~',

where n~ is the number of electrons in the E shell and

g~ is the "large" radial Dirac wave function, for which
an expression is given by Marshak. Using these rela-
tionships one can solve for 8'0.

'~ This method for calculating the transition energies was very
kindly shown to us by M. I uchs of this laboratory.

PHYSICAL REVIEW VOLUME 88, NUM BER 5 DECEM 8 ER 1, 1952

The Strong-Focusing Synchroton —A New High Energy Accelerator*
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Strong focusing forces result from the alternation of large positive and negative n-values in successive
sectors of the magnetic guide field in a synchrotron. This sequence of alternately converging and diverging
magnetic lenses of equal strength is itself converging, and leads to significant reductions in oscillation ampli-
tude, both for radial and axial displacements. The mechanism of phase-stable synchronous acceleration still
applies, with a large reduction in the amplitude of the associated radial synchronous oscillations. To illus-

trate, a design is proposed for a 30-Hev proton accelerator with an orbit radius of 300 ft„and with a small
magnet having an aperture of 1)&2 inches. Tolerances on nearly all design parameters are less critical than
for the equivalent uniform-n machine. A generalization of this focusing principle leads to small, efficient
focusing magnets for ion and electron beams. Relations for the focal length of a double-focusing magnet
are presented, from which the design parameters for such linear systems can be determined.

BETATRON OSCII,LATIONS

ESTORING forces due to radially-decreasing mag-
netic 6elds lead to stable "betatron" and "syn-

~ Work done under the auspices of the ABC.
f Massachusetts Institute of Technology, Cambridge, Massa-

chusetts.

chrotron" oscillations in synchrotrons. The amplitudes
of these oscillations are due to deviations from the equi-
librium orbit caused by angular and energy spread in
the injected beam, scattering by the residual gas, mag-
netic inhomogeneities, and frequency ermrs. The
strength of the restoring forces is limited by the
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stability condition 0&ran&1, where ps= —(r/B)(dB/dr).
Frequencies of vertical and radial oscillations are given
in terms of the frequency of revolution fp by

f,=rs'fp f,= (1—rp)lfp.

The corresponding amplitudes are inversely propor-
tional to these oscillation frequencies, for a given
angular deviation. Therefore, the aperture required to
accommodate either mode can only be reduced at the
expense of the other mode, and the minimum aperture
for both occurs with n=0.5.

The focusing forces can be greatly strengthened by
letting n vary in azimuth. Suppose the circular orbit to
consist of Ã sectors of equal length with n& and n2 in
alternate sectors. The equations of vertical and radial
oscillations are then

dss/d8'+nrs=0 d'r/d8'+(1 per)r=0-
(odd sectors). (2a)
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where the coeKcient p, is given by

2mng& 2~n2&
coscos2%'p = cos

psr+ Ip 2rrrrr 2prsp'
sin sin . (4)
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FIG. 1. Region of stability for both radial and vertical oscilla-
tions for N=10 sectors with m values alternating between e1
and ~.

' D. W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941).

d's/d8'+ups=0 d'r/d8'+(1 —esp)r= 0.
(even sectors). (2b)

Solutions can be obtained by the use of recursion for-
mulas, and are of the form

FxG, 2. Region of stability for radial and vertical oscillations
for a large number of sectors E, in terms of the parameters e1/N~
and nm/N'.

The coefficient p„ is given by the same expression, with
rp& and happ replaced by (1—

rp&) and (1—ep), respectively.
If the motion is to be stable for both radial and vertical
oscillations, the limits are established by the conditions

—1&cos2rrp, & 1, —1&cos2prp„& 1. (5)

These limits have been plotted in Fig. 1 for the specific
value A'=10, and the region of stability is indicated. It
is observed that the region of stability is widest for
n2~ —n~. Figure 2 shows the stable region for very
large E, and the coordinates are given in terms of
er/N' and np/N'. The range of stable values of rs is
widest when S is large and when n2 ———n~, and the
center of the region of stability (cos2prp=0) occurs for

(e~ =N'/16. (6)

The effective frequency of the "betatron" oscilla-
tions is given by:

f,=f„=(pN/2)fp (for large N), (7)

which can be compared with the frequencies given in
Kq. (1) for constant ps. Therefore, the amplitudes of
oscillation and the aperture requirements can be made
much smaller by the use of a large number of sectors
N and correspondingly large positive and negative
values of n in successive sectors. As a numerical
example, consider a synchrotron of 240 alternating sec-
tors, with n~=3600 and n2= —3600. The radial aper-
ture requirement is about 1/24 that for the correspond-
ing synchrotron with. a constant rp of 0.6, and 1/20 for
the vertical aperture. Ion trajectories are not sinusoidal
as in the standard synchrotron, but are composed of
sections of alternately harmonic and hyperbolic func-
tions. Figure 3 is a schematic illustration of two typical
oscillating orbits computed for the case discussed in the
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FIG. 3. Typical oscillating orbits in successive sectors at the
center of the stability region (~l)=1P/16), showing periodicity
in 8 sectors.

foregoing showing a periodicity in 8 sectors, so there are
30complete "betatron" oscillations around the orbit. The
maximum amplitude of this nonharmonic function is

found to be about twice that for a sine wave of the
same frequency and starting with an equal angle at the
axis. This factor has been included in estimating the
aperture requirements above.

Deviations from a constant value of field gradient in

the aperture have been considered. These would lead
to nonlinear terms in Eq. (2). It is found that, provided
the magnet sectors are symmetrical about their center-
lines, such nonlinear terms do not give rise to any
secular variations in the amplitudes of the oscillations.
This same analysis shows fhat the fringing fields at the
ends of the sectors, associated with the sharp change
from large positive to large negative gradients, do not
result in amplitudes which increase with time.

A practical requirement in the construction of such
a field is that the sectors be separated by short gaps, to
accommodate magnet windings, vacuum pump outlets,
and other equipment. The eBect of adding such short
field-free sections is to change the relation given in

Eq. (4) between p and the parameters 1V and n, equiva-
lent to adding terms on the right-hand side of the
relation. The behavior of the betatron oscillations will

be similar, and the results will not be significantly
difterent if the length of the straight sections is less
than 25 percent of that of the sectors.

SYNCHRONOUS STABILITY

The problems of "synchrotron" oscillations are the
same as for the conventional proton synchrotron as
discussed, for example, by Blachman and Courant, '
except that the relation between particle energy and the
circumference of the equilibrium orbit is changed. If
the momentum of the particle diAers from its value at
the central circular orbit, the new equilibrium orbit is
no longer a circle, but is a periodic alternation of har-
monic and hyperbolic functions superimposed on a

~ N. M. Slachman and E. D. Courant, Rev. Sci. Instr. 20, 596
(1949).

For our particular case, with nr ———ns=Ã'/16»1, this
reduces to

=4.gS/~n~, (9)

while for a conventional synchrotron n= (1—n) '.
Synchrotron stability is governed by the change of

the period of revolution with momentum. In the
standard synchrotron a particle with excess momentum
traverses a path of larger radius and requires a longer
time, since the relative increase in radius is greater
than the relative increase in velocity. This is evident
from the relation

At AL hv ( Ep') hp hp

t L v ( E') p p
(10)

where E& and E are the rest energy and total energy of
the particle, respectively, In our case o. is very small if

dB
n~

dB
n, fs,

(b) HIGH
ENERGY

(0)
IYlVO

(c) LOW

ENERGY

FIG. 4. Stable synchronous orbits in the radial aperture of the
strong-focusing synchrotron. Higher energy particles traverse an
average magnetic 6eld larger than that at the central orbit, and
vice versa, which leads to the strong radial compaction of orbits,

circle of a diBerent equilibrium radius. The orbits for
higher energy and lower energy particles than those at
the central orbit are illustrated in Fig. 4, in which the
curvature of the central orbit is neglected, so that it
appears as a straight line. The dotted lines through the
displaced orbits represent their mean radial positions.
If the gradients in the two sectors are equal and oppo-
site, the average field along these dotted lines is the
same as that of the central orbit. However, the average
field along the actual displaced orbit for the upper
curve (energy excess) is higher than that of the dotted
line in both sectors, and smaller in both sectors for the
lower orbit. This illustrates the spread in mean orbit
radius associated with a spread in momentum. If the
momentum deviation is hp, the fractional change in
the circumference AI. is given by

AL/L= nhp/p,
where

nl n2 + (nt n2)

2(1—nt) (1—ns) 2s L(1—nt) (1—ns)]'

singe sin/2
X (g)

(1—nr) 1 singr costs+ (1—ns) l sings cosf1

yt ——(1—nt) 4/X, and ys ——(1—ns) 4-/X.
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DESIGN CONCEPTS FOR A 30-BEV ACCELERATOR

The potentialities of this strong-focusing principle
can be illustrated by describing its application to the
design of a high energy accelerator. We have chosen to
design for 30-Bev protons, which is 10 times the maxi-
mum energy of the Brookhaven cosmotron, and which
requires an orbit radius of about 300 ft with a guide
6eld of about 11 kilogauss. The aperture within the
vacuum chamber can be as small as 1X2 inches, and
still provides a safety factor of 2 over the computed
maximum oscillation amplitudes. With this radial aper-
ture the e value is determined by the radius and by the
field gradient of 1.1X 104 gauss/inch:

R d& 300X12X1.1X104

8 dr 1.1X10'
' In reference 2 it is pointed out that y can also be negative in a

conventional synchrotron with straight sections.
4 L. H. Thomas, Phys. Rev. 84, 580, 588 (1938).

~ N~ is large, so y is negative for low particle energies,
and changes sign at an energy E& Eo/——n&, while for
the ordinary synchrotron y is always positive. ' This
means that acceleration occurs on the rising side of the
voltage wave for low energies. For example, if the peak
voltage is twice the mean energy increment per turn,
the equilibrium phase angle is 30' as against 150' for
the conventional synchrotron. This leads to electrical
defocusing, as in the linear accelerator, but is more
than compensated by the strong magnetic focusing
described earlier.

As the energy passes through the value E», the equi-
librium phase angle shifts from the rising to the falling
slope of the voltage curve. At this point the frequency
is independent of radius and of energy, as in the modi-
6cation of the fixed-frequency cyclotron proposed by
Thomas. 4 This transition occurs at a rather large
energy. For example, in the design study for a 30-Bev
accelerator described below, it occurs at about 25 Bev.
The introduction of straight sections between sectors
will modify this transition point, and may increase it
above the top energy limit. Otherwise, it is reasonably
certain that the radiofrequency phase can be shifted
at this point to avoid a loss in intensity.

Another consequence of Eq. (8) is that the momen-
tum spread hP associated with a given radial aperture
AR can be very large if the e-values are large. If we
use the example of

~

n
~

=3600, the field will vary from
zero to twice its average value in a radial distance of
2 inches, with the consequence that within this aperture
Ap/p can be as large as &10 percent! This extremely
large momentum acceptance means that at injection
the errors in injection energy and in the frequency of
the accelerating voltage can be of this same order of
magnitude. Furthermore, it shows that the radial
amplitude of the synchronous oscillations is reduced by
nearly the same factor 0,, as compared to the ordinary
synchrotron.

F»G. 5. Cross section of E-magnet with poles shaped to give
n=3600 at an orbit radius of 300 ft. The vacuum chamber illus-
trated has an internal aperture of about 1X2 inches.

With this value of e the optimum number of magnet
sectors %=240, and the length of each sector is 7.85 ft.
We assume that short straight sections will be needed
between sectors, and choose a length of 2.0 ft. The
chosen injection energy of 4 Mev and the angle of
divergence at injection of 10 radian, are those avail-
able from the Van de Graaff injector for the cosmotron.
Detailed calculations of "betatron" oscillation ampli-
tudes for this angle at injection, and those clue to gas
scattering at a residual pressure in the chamber of
1X10 ' mm of Hg, show that the maximum ampli-
tudes (at injection) will be included within a square
area of 0.5X0.5 inch. The radial amplitude of syn-
chronous oscillations at injection depends on the fre-
quency harmonic used for acceleration; a sufficiently
high harnomic should be used to include the entire
allowed phase oscillation range within the energy and
radial limits defined by the chamber. This energy range
accepted by the 2-inch radial aperture is found to be
+10 percent, which is larger than the practical energy
spread of the injector by a large factor. The conclusion
from such studies is that the 1X2 inch aperture is
entirely adequate for the chamber.

The basic magnet structure chosen to provide the
large magnetic 6eld gradients is a "3-pole" magnet
with a single return circuit which can be called an
"E-magnet, " illustrated in Fig, 5. Two poles are shaped
as rectangular hyperbolas, and the third "pole" is a
vertical surface of iron along the vertical axis of the
hyperbolas to maintain zero field at the center of the
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coordinate system (the inner wa11 of the vacuum cham-
ber), Between these poles the 6e1d has the property of
equal and uniform gradients in the radial and vertical
directions, as long as the iron surfaces remain magnetic
equipotentials. The field at the center of the chamber,
along the 2-inch gap chosen for the basic aperture, is
considered the guide field. At injection the magnetic
field at the center is about 30 gauss, and the field varies
from 60 gauss to zero along the 2-inch radial extent of
the aperture. As the field approaches saturation in the
iron at the tips, the area of uniform-gradient, high e-
value field will shrink to a smaller aperture, estimated
to be no less than 1 inch. However, at such high ener-
gies, the oscillation amplitudes will be sufFiciently
damped so that aperture requirements are much smaller,
and no loss in intensity should result. Model studies of
the magnet will be required to determine the exact
shape of pole faces for maximum extent of useful field
at injection and the maximum practical value of guide
field. For the design calculations this maximum guide
field is assumed to be 11 kilogauss across the 2-inch gap,
leading to a requirement of 4.5)&104 ampere turns for
excitation.

The alternation of field gradients in successive sec-
tors can be accomplished by assembling the magnets
alternately with outside and inside return legs, using
the E-shape described above. Figure 6 is an illustra-
tion, not to scale, of this alternate assembly of outside-E
and inside-E magnets. The center line along the axis
of the chamber is on the circle of 300-ft radius, and is
the axis of reversal of alternate sectors. This assembly
retains many of the advantageous features of the C-
magnet design. The magnet gap is available along its
entire length for measurements, and the open side
provides access for vacuum testing and for inspection.
Injection is possible at small angles of inQection, even
though the connecting straight sections are short.
Ejection of a tangential emergent beam is simplified,
and radiations, such as charged mesons from targets
within the aperture, can be emitted through the thin
chamber walls for experimental studies. On the other
hand, the magnetic disadvantages of the C-magnet,
which apply to the uniform-e accelerator, are largely
averaged out by the use of alternating E's. The de-
crease in aperture due to fringing fields as the iron
approaches saturation is now largely cancelled, and the
primary eGect is a reduction of e-values and a slight

R& 500

Fro. 6. Method of assembly of alternately inside-E and out-
side-E magnets around an orbit, with straight sections between
sectors.

decrease in the focusing forces as particles approach
maximum energy. Variations in the e-value due to
remanent fields and eddy currents are unimportant.
Thick iron laminations can be used, of 1- or 2-inch plate,
determined by the economics of magnet construction.

The cross-sectional area assigned to the magnet
windings is set by the power rating of the coil. Several
factors enter in choosing the magnitude of the power.
The primary consideration is the cost of the power,
which is a significant item in operating costs. Another is
the advantage to be gained by reducing the coil heating
per unit length suKciently to make water- or air-cooling
of the coil windings unnecessary. Both these factors
indicate a large coil cross section which means a large
initial cost for the conductors and a proportionate in-
crease in the dimensions and costs of the iron return
circuit. It can also be argued that the power consump-
tion per cycle should not exceed the circulating power
required to provide the stored energy in the magnetic
field. These features require detailed analysis and
balancing. For the purposes of this study, we have
chosen to use about half the power rating and the same
duty cycle as for the present cosmotron, or 300 kilo-
watts averaged over a duty cycle of 1 sec up, 1 sec
down, repeated at 5-sec intervals. With these assump-
tions the required cross section of copper windings is
about 24 in. ' Following the design shapes illustrated in
Fig. 5 we find that the E-magnet iron has external
dimensions of about 12 inches wide by 20 inches high,
approximately the size illustrated in the figure. Since
the cross section of iron is about —,'0 that of the cosmo-
tron, the total weight of iron is about the same; the
weight of copper in the windings is increased by about
a factor of 5.

The acceleration voltage required to attain 30-Bev
energy in 1 second is about 100 kilovolts per turn, or
100 times larger than that for the cosmotron. It is
clear that many accelerating units must be used, dis-
tributed around the orbit and properly phased, pri-
marily to reduce the radiofrequency power. It is also
likely that a high harmonic of the orbital frequency
would be advantageous. The radial amplitude of syn-
chronous oscillations will be reduced by the factor h ',
where h is the order of the harmonic. The harmonic
order should be a submultiple of the number of ac-
celerating units around the orbit, in order to simplify
the problems of phasing. Several methods of applying
the accelerating field to the particles are available.
That used in the cosmotron involves a ferrite-loaded
cavity; in this case, with sectors of 8-ft length, one
might use the metal-pipe vacuum chamber as a "drift
tube. "The driving frequency increases with time as in
the cosmotron, and must be modulated over a fre-
quency ratio of 1 to 12. The broad-band power ampli-
fiers used to drive the accelerating units will be one of
the most difficult. and costly components.
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The frequency tolerance is given by

(12) mvz
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At injection and at energies small compared with the
phase-reversal energy Ej, the allowable frequency error
is large, and the frequency cycle can be "pre-cut. "
However, as the energy approaches E~ the allowed error
becomes very small, and precision methods of fre-
quency control will be required. Electrical pick-up
pulses from the beam of particles can be used for this
frequency control, as can be demonstrated with the
cosmotron.

The vacuum chamber can be constructed of thin-
walled, nonmagnetic tubing, such as stainless steel.
The effect of eddy currents will be negligible. Such a
chamber can serve many purposes. As indicated, it can
serve as a "drift tube" for radiofrequency acceleration.
Units can also be utilized as sensing electrodes to ob-
serve the beam pulses. Such a thin metal-walled tube
can be heated and out-gassed under vacuum to reduce
the residual pressure in the chamber. Small vacuum
pumps can be located at the straight sections between
sectors at 10-foot intervals.

The injector assumed in this study is the equivalent
of the present cosmotron 4-Mev Van de Graaff genera-
tor, although it is possible that higher energies would
be helpful, as from a linear accelerator. Injection could
be accomplished by electrical deflection at a small angle
at one of the straight sections. The time interval for
acceptance, about ~ of a turn, is about 10 microseconds.
Pulse injection at 1 milliampere would result in about
5&(10' particles being accepted, equivalent to the in-
tensity per pulse of the present cosmotron. The radial
contraction per turn at injection would be about 1 mm
at 4 Mev, which seems large enough to result in a
reasonable capture efficiency. The strong focusing and
damping during further acceleration will retain the
beam within the aperture, even through the synchro-
tron phase-reversal point. It seems probable that final
intensities will be equivalent to those obtained with the
cosmotron.

ION FOCUSING IN LINEAR SYSTEMS

An extension of the theory of magnetic focusing by
successive reversals of field gradients leads to concepts
which are applicable to ion optics and to linear ac-
celerators. The principle involves a similar sequence of
alternately converging and diverging magnetic lenses,
and can be visualized most readily by considering the
analogy to lens optics. A single region of inhomogeneous
magnetic field which produces convergence of an ion
beam in one plane will produce divergence in the plane
at right angles. Consider a beam of ions having a mo-
mentum p=BE (where 8 is the radius of curvature in
a 6eld 8), moving in the x direction in a field with com-
ponents: B,=0, B„=kz, and B,= ky. The equations of

FIG. 7. Definition of focal length f and principal plane distance
x~ for a convergent magnetic lens of length l.

d2z 1 dBy
Z=O, or

dx' BR dz

dz —Ez= 0.
dx2

(13b)

The lens property of such a field is illustrated in Fig. 7,
which shows the path of a particle entering the field
parallel to the axis, in the convergent xy plane. If the
length of the region of inhomogeneous field is l, the
particle crosses the axis at F (the focal point), con-
verging from a point P which defines the principal
plane. The distance to the principal plane x„and the
focal length f measured from this plane are given by

1—cosE&l
xg&—

E& sinE&l

E& sinE'l
(15)

where E defines the unit of length and is given by

1 dB„ 1 dB,E=
BE dz BE 'dy

(16)

A sequence of two lenses of this class, separated by a
distance q between principal planes, having coefFicients
E j and E2 and lengths l~ and l2, will have a focal length
given by the familiar lens equation

1P'= 1/fi+ 1/f2 v/fifm. —(17)

It can be noted at this point that F is positive, and so
the combination of lenses is converging, if f2 fi. ———
This means that two equally strong converging and
diverging lenses will be convergent. Applying this to
the magnetic lens case by inserting the relations for
principal plane distances and focal lengths for the two
lenses, the combined focal length becomes

1/F =Ei' sinEi'li cosK2'l2+E2& sinE2&l2 cosEi&li
—dEi'E2& sinEi&li sinE, &l,. (18)

In this expression the distance d is the distance of sepa-

motion, which are equivalent to Eqs. (2) for the cir-
cular orbit, become

d'y 1 dB, d'y
+ y=0, or +Ey=0; (13a)

dx' BR dy dx'
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FIG. 8. Illustration of double-focusing in two magnetic lenses
with field gradients in opposite directions, showing the alternately
convergent and divergent forces and the net convergence of the
system.

poles. Consider a numerical example in which the
aperture, a, is 2 inches and the maximum Geld across
this 2-inch gap is 10 kilogauss. The Geld gradient
dB/dy =dB/ds= 10' gauss/inch. Let us design a magnet
to focus protons of 4-Mev energy, which have a mo-
mentum BR of about 10' gauss-inches, so IC=0.1. If
we choose K'*l=7r/4, and the spacing d is 2 inches, the
length of each magnet unit l is 2.5 inches, the tota1
length is 7.0 inches, and the focal length computed
from Eq. (19) is 4.4 inches. Choice of a smaller value of
EV will lead to shorter magnets and longer focal lengths.
A simpler relation for computing focal lengths can be

ration between the faces of the two magnetic lenses.

If, for a simple example, we choose —E2=Ei=K and
l2= l'&=l, the equation for focal length reduces to

1/F =K&{sinK'l coshK&l sinh—K~l cosK&l

+dK' sinK'l sinhK&t). (19)

The condition that the lens system be convergent is
that the argument E&l be positive and not greater
than some value approaching x, depending on the
magnitude of the separation distance d. Thus, the lens
can be designed for any desired focal length by suitable
choice of K&l and d. In this simple case where the E's
and l's are equal, the focal lengths are equal for dis-
placements in both the xy and xs planes, as becomes
evident when K is subs—tituted for K in Eq. (19).
However, the locations of the principal planes will

differ, depending on whether the initial action is con-

verging or diverging. This leads to an astigmatic image
in the simple case assumed. This astigmatism can be
corrected by modifying the lens system. The double
focusing of the compensating lenses is illustrated in

Fig. 8, showing alternately divergent and convergent
forces in the two sections.

A doubly-divergent magnetic field having uniform
and equal values of dB,/dy and dB„/ds exists between
the poles of a 4-pole magnet with pole faces shaped as
rectangular hyperbolas; the field is zero along the
x axis. Figure 9 shows a cross section of such a magnet.
The complete lens would consist of two such magnet
units of length l, with the second unit rotated by 90'
relative to the Grst. The effective aperture of such a
lens would be a circle of diameter D= (2)&a, where a
is the spacing between the centers of the hyperbolic

FIG. 9. Cross section of a 4-pole magnet with hyperbolic pole
faces to produce uniform and equal field gradients dB,/dy and
&&v/d'z

obtained from Eq. (19) by expanding in terms of the
arguments and using only the first significant terms:

1/F =K'P{sl+d). (2O)

A continuous sequence of such convergent systems
is itself convergent if the separation distance D be-
tween successive image and object focal points is less
than &2F. This relationship is equivalent to that
given in Eq. (4) for the circular orbit. Thus, magnetic
lenses of the type described can be used in succession
to maintain a focused beam over long distances, as in
the linear accelerator.


