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For a charge symmetric nuclear Hamiltonian, the operator which changes neutrons into protons and
protons into neutrons (charge parity operator) commutes with the Hamiltonian and is therefore a constant
of the motion. Since the charge parity operator anticommutes with the "3"component of the total isotopic
spin, for nuclei with T3=0 (self-conjugate nuclei) the charge parity is a good quantum number and in the
absence of degeneracy the eigenstates of such nuclei have either odd or even charge parity. This leads to
strong selection rules in nuclear reactions involving self-conjugate nuclei in the initial and final states which
may reasonably be invoked to explain recent experimental results on such reactions. Since states of even
total isotopic spin have even charge parity and states of odd total isotopic spin have odd parity, the selection
rules arising from charge symmetry often coincide with those of charge independence and in such cases a
definitive test of the charge independence hypothesis by the use of these selection rules is impeded. Some
other applications of the charge symmetry principle are discussed.

HAT the neutron-neutron and proton-proton
forces are equivalent apart from electromagnetic

interactions is strongly indicated by the energy dif-
ferences in the ground states and the general similarity
of energy levels in the various mirror nuclei. It is the
purpose of this note to point out that the assumption
of such a charge symmetry of nuclear forces implies
certain strong selection rules' which apply in a small
but experimentally interesting group of nuclear reac-
tions.

These selection rules arise in self-conjugate systems,
that is, systems having equal numbers of neutrons and
protons. For such systems under the assumption of
charge symmetry the Hamiltonian is invariant under
interchange of the neutron and proton space and spin
coordinates. It is therefore possible to define an operator
I' which performs this interchange and can appro-
priately be called'the charge parity operator. ' It is clear
that I' is a constant of the motion with eigenvalues 1
and —1. The wave functions of the system can always
be selected so as to be simultaneous eigenfunctions of
the Hamiltonian and charge parity and therefore may
be characterized as charge even or charge odd. Of

*This research was supported by the AEC and carried out
while the authors were Visiting Scientists at Brookhaven National
Laboratory during the summer of 1952.

' The selection rules referred to would be rigorous were it not
for the neutron-proton mass difference and the fact that the elec-
tromagnetic interactions between nucleons are not charge sym-
metric. This limitation on the universality of the charge symmetry
hypothesis sets practical limits on all derived consequences of the
hypothesis. The fact that these nonsymmetric interactions are
generally weak compared to specifically nuclear interactions for
the cases of interest implies, however, that the selection rules
obtained have considerable potency.

2 The earliest reference to the existence of a good quantum
number for self-conjugate nuclei associated with the charge parity
operator appears to be in a paper of E. Feenberg and E. P.
Wigner, Phys. Rev. 51, 95 (1937).Recently the concept of charge
parity was discussed by L. Trainor, Phys. Rev. 85, 962 (1952), in
connection with its application to the problem of electric dipole
radiation from self-conjugate nuclei. It has the consequence here
of forbidding electric dipole radiation in a transition between two
states of the same charge parity.

course in the degenerate case where two states of
opposite charge parity have the same energy a state
of the system of this energy may be a superposition of
charge even and charge odd states.

A formal exposition of the above described concept
can be conveniently obtained in terms of the isotopic
spin formalism. The operator P can be represented as a
rotation in isotopic spin space of 180' about the 1 axis.
That is, for a system of A particles the total isotopic
spin T is given by

A

T—g ~o&

A rotation of 180' about the 1 axis is then given by

A A

P=exp{krT /2) =II exp{i7rr "&/2) =i"II r, o&,

since exp{ixr&&"/2) =izr& "&.
The charge symmetry of the Hamiltonian implies

that it is a symmetric function of the A particles whose
dependence upon the isotopic spin' can be expressed
in terms of ~&'& ~&'& and ra&" r3&'&. Since [~&"~&'&, Pj
=[r3~'&rao'&, P]=0, it is clear that P commutes with
the Hamiltonian and is a constant of the motion. This
property is not, in fact, restricted to self-conjugate
systems. On the other hand, nontrivial applications of
the concept are in fact so restricted. This arises from
the fact that [P, T37=2PTB that is, P and T3 anti-
commute. Thus a system can be in a simultaneous
eigenstate of I' and T3 only for states of T3 ——0, which
corresponds to the case of equal numbers of neutrons
and protons. The physical meaning of the above is quite

'This form of the Hamiltonian includes (in addition to the
equality of nn and PP forces) the assertion that the interaction
energy between neutrons and protons involves the neutron and
proton space and spin coordinates symmetrically. It is clear that
usually asserted consequences of charge symmetry with respect
to the mirror nuclei are valid only when this additional assumption
is included.
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obvious. I' simply transforms protons into neutrons
and neutrons into protons. Since T3 is simply ~ (X—Z),
the application of I' to an eigenstate of T3 with eigen-
value t3 simply changes it to an eigenstate of T3 with
an eigenvalue —t3.

We note that P'= (—1)" so that for even A, P has
eigenvalues +1 and —1. A further property of P which
is of interest for the discussion to follow is the fact that
[T', P] =0, so that T' and P have simultaneous eigen-
states. Furthermore, a T3 ——0 eigenstate of T' with
eigenvalue t(t+1) must, in fact, be an eigenstate of
charge parity and odd or even as t is odd or even.
This latter result follows from the fact that under a
rotation in isotopic spin space, the eigenfunctions of T'
corresponding to a given t must transform like the
spherical harmonic of order t under the homologous
rotation in coordinate space.

The principal application of the concept of charge
parity arises in the case of reactions between nuclei for
which the incident and product nuclei are individually
self-conjugate. In just these cases, the initial and final
states of the system will be eigenstates of charge parity.
From the fact that I' is a constant of the motion, the
initial and final states must both be charge even or
charge odd. As a specific example one might consider
the Oie(d, n)N" reactions recently investigated by vari-
ous research groups. 4 In this case one finds prominent
n-particle groups corresponding to the ground state
and various excited states of N" but none correspond-
ing to the 2.3-Mev excited state.

'

A reasonable inter-
pretation of this result is simply that this particular
state has charge parity opposite to that of the states
observed. t It is almost certain that the ground state of
N" is charge even, while if the nuclear forces are only
approximately charge independent one would expect a
low-lying charge odd state.

In order to make clear the relevancy of having both
the incident and product nuclei in charge conjugate
states one might note that a reaction like Oi6(d, p)0""
will never be forbidden by charge parity conservation
in spite of the fact that the initial state is charge even.
The requirement that the final state be charge even as
well simply implies that the reactions Oi6(d, p)0"" and
Oie(d, m)F'" occur with equal probability, where the
final states of 0"*and F"*are mirror states.

On the other hand, the observation of nuclear reso-
nances associated with compound nucleus formation
can be affected by charge parity considerations when
only the product nuclei or only the incident nuclei are

'Ashmore and RafIIe, Proc. Phys. Soc. (London) A64, 754
(1950); Burrows, Powell, and Rotblat, Proc. Roy. Soc. (London)
A209, 478 (1951);Van de Graaff, Sperderto, Beuchner, and Enge,
Phys. Rev. 86, 966 (1952).

f Pote added &s proof: E. Feenberg (private communication)
has pointed out that the negative results obtained by the Van de
Graaff, etc. group using 2.1-Mev deuterons might possibly be
attributed entirely to the effect of the Coulomb barrier on the
outgoing n-particles combined with the e6ects of angular mo-
mentum and space parity conservation associated with the prob-
able assignment of spin zero and positive space parity to the N"
state. These sects appear, however, to be unimportant in the
other experiments, which made use of higher energy deuterons.

self conjugate. For example, the observation of a
resonance in the reaction C"(d,p) C" due to the forma-
tion of an excited state of N" implies that the state of
N" is charge even, although in this case the product
nuclei are not self conjugate.

The existence of charge parity has certain interesting
connections with the problem of charge independence

-of nuclear forces. As has been pointed out by Adair, '
the assumption of charge independence also implies
selection rules in nuclear reactions, which, while in-
cluding those implied by charge symmetry, are con-
siderably more far reaching. This is a consequence of
the fact that total isotopic spin as well as charge parity
must be conserved. It is unfortunate, however, that the
role of isotopic spin is obscured in many reactions by the
coincidence of its predictions with those of charge
parity. It has, for example, been proposed that the
2.3-Mev N'4 state is a member of an isotopic spin
multiplet with T =1, while the ground state is T =0.
It is important to realize that it is then not possible for
these states to have the same charge parity. It follows
that it is difFicult to find suitable reactions involving
these states (T=O and T=1) which are allowed by
charge parity conservation and prohibited by isotopic
spin conservation. Thus the observed prohibition of the
previously mentioned reaction, Oi6(d, n)Ni4", yields no
direct information on the strength of np forces as
compared with nN and pp forces. '

Another application of the charge parity operator is
in determining the terms which may be admixed in a
particular state of a nucleus. Thus consider the case of
a neutron and a proton both in the same p orbital in a
nucleus such as in the case of Li'. The terms which
may be constructed from this configuration with total
angular momentum unity are '5&, 'D&, 'I'j, and 'P&.
These terms will not all be admixed (except again in
the case of a degeneracy), since the first three of these
have even charge parity and the last has odd charge
parity.

Our final application of charge parity will be to the
problem of the p-decays of 0" to the 2.3-Mev excited
state of N'4. Definite identification of the excited state
as belonging to the same isotopic spin triplet to which
the ground state of 0"belongs (under the assumption
of charge independence) would confirm the angular
momentum assignment of this state as I=0 and thus
allow an estimation of the P-decay coupling constant
associated with Fermi selection rules. Blatt' has recently
pointed out that Adair's interpretation of the afore-
mentioned 0"(d,n)N'4* result would indeed confirm

' R. K. Adair, Phys. Rev. 87, 1044 (1952).The authors wish to
acknowledge the fact that their thoughts on the substance of this
article were initiated by Adair's work, and to thank V. F. Weiss-
kopf for calling it to their attention.

On the other hand, if one assumes the nuclear forces to be
approximately charge independent then this result does con-
tribute to the identi6cation of the symmetry character of the
state. The energy of the state is then entirely consistent with
charge independence.

7 Sherr, Muether, and White, Phys. Rev. 75, 282 (1949).' J. Blatt (to be published).
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this identification. Furthermore, the fact that the tran-
sition is super-allowed implies that the matrix element
has its maximum value (two). ' The relevance of charge
parity arises from the fact that it weakens the depend-
ence of these conclusions on the assumption of charge
independence and, therefore, strengthens the conclu-
sions drawn. Thus if one considers the deviation from
charge independence as a perturbation, one notes that
there are no nearby states of N" with which the T= 1

state can mix. To elaborate, the energy level dig, gram
of 0'4 indicates a separation of about 6 Mev between

' G. L. Trigg, Phys. Rev. 86, 506 (1952).

the ground state and first excited state. The several
states in the vicinity of the T=1 state of N'4 must,
therefore, all be T=O states. If one now considers
the eBect of a deviation from charge independence
on the T=1 state of N'4 it is clear that the charge
even character of T='0 states prohibits the mixing
(which might otherwise be large) of these states with
the T=1 state. Thus the expectation that the matrix
element of the 0"~N"* transition is two is only
weakly aGected.

It is a pleasure to thank Professor V. F. . Weisskopf
for stimulating and contributory discussion.
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The object of this paper is to present a theory of the structure of elementary particles at rest. Some ap-
plications are included; in particular a solution to an unsolved problem in astronomy is presented.

I. THE UNCHARGED PARTICLE
'

N order to study this particle, let us imagine some-
' & thing with spherical symmetry, associated with
which there is a gravitational field F. About this field
we make some assumptions. In the first place, we as-
sume that at each point there is a density of energy
given by the scalar product F F/S7rp, where y is the
gravitational constant. ' Next we assume, in accord with
the principle of the inertia of energy, ' that this density
of energy is equivalent to a density of mass p given by
the divergence —V F/4m-y.

We therefore have the following equation, where c
is the speed of light in free space:

4xy p = —V' F=F F/2c2.

If we imagine the particle at the origin of a system
of spherical coordinates (r, 6, p) then, on account of
the spherical symmetry assumed, we can take the
components of F in this system to be ( F, 0, 0).Equa-—
tion (1) then becomes one in F with the solution

(2)

where A is an integration constant. This is a rather
decent function. It has a pole of order one at the origin
(instead of a pole of order two, as in Newton's law) and
is integrable square over all space. At the origin
F 2c'/r, independent of the mass of the particle.

W. D. MacMillan, Theory of the Potential (McGraw-Hill
Book Company, Inc. , New York, 1930).

~ G. Joos, Theoretical Physics (Blackie and Son, London, 1951),
second edition.

ym )

pm'�'

/
1+

S~c'r4 4 2c'r&
(4)

The particle is thus seen to invade all space. 4 There-
fore, interaction between two particles can be con-
ceived as taking place by "intimate" contact, since
each must be immersed in the other.

A potential P defined by F=VP is found to be
2c' ln(1+pm/2c'r). The potential energy of a "concen-
trated" mass nz' in such a potential field would clearly
not be symmetric in the masses m and m'. What then
of the principle of equality of action and reaction? Of
course what happens is that in this theory there are
no such concentrated masses, and therefore this con-

' This observation is due to Professor John A. Wheeler, for the
resultant Beld in the case of many particles.

4Things like this already appear in literature. See, e.g., the
section on H. Weyl's Action Principle in Mathematical Theory of
Relativity, A. S. Kddington (Cambridge University Press, Cam-
bridge, 1930), second edition.

In general, if F is assumed to be the gradient of a
scalar function p, Eq. (1) will become one in P with
solution 2c' times the natural logarithm of a harmonic
function. '

In order to find the value of A in Eq. (2), we coin-
pute p by Eq. (1), integrate over all space, and equate
the result to the mass m of the particle. In this way we
find A =1/ym, and Eq. (2) becomes

ym f 'rm ) pm
F=

~
1+

~
(for large r). (3)

r' E 2c'r ) r'

The density of mass results:


