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The Effect of Final State Interactions on Reaction Cross Sections
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Particles produced in a reaction often interact strongly with each other before getting outside the range
of their mutual forces. Formal effects of such interactions are discussed, and in particular it is shown that
the effect for very strong attractive interactions can be calculated explicitly without having detailed
knowledge of the properties of the reaction. Application is made to some meson phenomena.

I. INTRODUCTION
' "T frequently happens that, when particles are
~ - produced in a nuclear or elementary particle reac-
tion, some of these interact among themselves so
strongly that they influence appreciably the properties
of the reaction cross section. These interactions we shall
call "final state interactions. " Their influence is well
known in nuclear physics where the Coulomb attraction
piays an important role in such phenomena as P-decay.

Recently, strong short-range nuclear interactions
have been found to play a striking part in certain reac-
tions involving mesons. It is with such interactions as
these that we shall be primarily concerned. The im-
portance of recognizing and analyzing the role played
by these interactions lies partly in the observation that
they may greatly modify the angular distributions and
energy spectra of the produced particles and yet play
no important part in the primary mechanism by which
the reaction takes place. That is, it is as if the reaction
first takes place as if there were no final state interaction
and then is distorted by the short-range nuclear inter-
actions before the particles can get out of the range of
their mutual forces. It is to be expected that an analysis
of the reaction will be considerably simplified by sepa-
rating the eRect of these two mechanisms, which we
shall frequently refer to as the "primary mechanism"
of the reaction and the "final state interaction, "respec-
tively. %e shall find that under certain conditions these
terms can be made meaningful by explicitly exhibiting
their individual contributions to the reaction cross
section. Conversely, this separation, when possible, will
provide an indirect means of measuring the scattering
interaction between two particles produced in a reaction.

Perhaps the most striking example of final state
interactions in meson phenomena is that occurring in
meson production by nucleon-nucleon collisions, ' '
where the final state nuclear force influences consider-
ably the spectrum of the produced mesons. '4 The
capture of x mesons by deuterons leads, in a certain
fraction of the events, to a single high energy p-ray
and to two neutrons. 5 The nuclear force between the

'Cartwright, Richman, Whitehead, and Wilcox, Phys. Rev.
78, 823 (1950).' Peterson, Ilo8, and Sherman, Phys. Rev. 81, 674 (1951).' K. A. Brueckner, Phys. Rev. 82, 598 (1951).' K. Watson and K. Brueckner, Phys. Rev. 83, 1 (1951).' Panofsky, Aamodt, and Hadley, Phys. Rev. 81, 565 (1950).

two neutrons modifies the p-ray spectrum and leads
to a means of measuring the neutron-neutron (e-e)
force. ' Present experimental results" are in agreement
with other known characteristics of the e-m force.
Finally, there is a slight suggestion from the work of
Danysz, Lock, and Yekuteli' that a meson-meson inter-
action may modify multiple meson production cross
sections. "

We shall be most interested in those reaction pro-
cesses for which three general conditions are met. These
conditions will imply that the final state interaction
seriously modifies the reaction cross section and also
that the eRect of this is calculable. The first of these is
that the mechanism of the reaction cross section be a
short-range interaction, i.e., that the primary reaction
(irrespective of the final state interactions) be confined
to a certain volume V of order u', where u is the range
of the interaction. It is not unlikely that this condition
will be met by most of the nonelectromagnetic ele-
mentary particle reactions. Second, the eRect of the
final state interaction is to be considered only for low
relative energies of the particles whose interaction is
being considered. For high relative energies, this inter-
action will be expected to be of relatively little im-

portance. Finally, the final state interaction must be
strong and attractive, a restriction which will be made
more precise in the following paragraphs.

To see this, let us suppose the reaction to be pro-
ceeding backwards. That is, we send the produced
particles back into the region of their mutual interaction
in such a manner that the initial state will result. We
suppose that the two particles whose interaction we are
studying have a small relative energy and that the
scattering cross section of these two particles is large
compared to the eRective cross-sectional area of the
volume of primary interaction. In this case the prob-
ability of the two particles "finding" each other in the
vicinity in which the reaction is to proceed is propor-
tional to their scattering cross section. That is, the two
particles start to scatter and, if the interaction between
them is attractive, they will tend to stick together

' K. M. Watson and R. N. Stuart, Phys. Rev. 82, 738 (1951).
'Aamodt, Panofsky, and Phillips, Phys. Rev. 83, 1057 (1951).

R. Phillips, University of California Radiation Laboratory
Report UCRL 1845 (to be published).' Danysz, Lock, and Yekuteli, Nature 169, 364 (1952)."K.Brueckner and K. Watson, Phys. Rev. 87, 621 (1952).
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d qoq —dq sin 8q) (2)

where 8q is the S-wave phase shift for the scattering at
relative momentum q.

When sin'5q becomes of the order of unity for values
of q such that 5/q is still large compared to a, the range
of the primary interaction, a strong correlation in the
emission of the interacting particles will result which
will be described by Eq. (2). This equation then gives
a means of measuring 8q from an observation of the
reaction cross section.

II. BOUNDARY CONDITIONS

In the present section we shall express the transition
rate for a reaction process in terms of the wave function
which describes the final state interaction. We charac-
terize the initial state of the reaction, containing the
colliding particles, by the state function X,. Xa describes
the plane wave motion of the center of mass of each of
the two incoming particles plus any internal coordinates
and satisfies the Schrodinger equation

momentarily. This helps to bring them together into
the region of space from which the primary inverse
reaction can proceed —and thus the transition rate for
the inverse reaction is expected to be proportional to the
scattering cross section of the two particles. On the
other hand, if this scattering cross section were less than
the cross-sectional area of the primary reaction volume,
the 6nal state interactions would be of little help in
"drawing the particles into this latter volume. "

By detailed balancing we can then obtain the cross
section for the reaction itself to be

do. d'qo, ' times other factors, (1)

where q is the small relative momentum of the two
particles and o.

q is their scattering cross section for
relative momentum q. The d'q is, of course, just a
factor in the volume of phase space into which the
reaction proceeds. We suppose q to be small enough that
0q arises only from S-wave scattering. As long as q~0,
one can neglect the q-dependence of the other factors in

Eq. (1), keeping only that of

the transition u—&8:

H =Hp+'U.

4"'+'=x.+ (v+ V)4 J+'.
E Wie —IIO

Here e is a positive real parameter which goes to zero
after the implied integrations are done. We have
similarly the wave function describing the scattering of
the final state particles among themselves:

y~(+) —x~+ vy~(k)
E ~i&—Hp

since E,=EB.
The probability amplitude for the transition u~b

is"
2'~.= (x~, (v+ V)4"'+') (~)

Following the notation of Chew and Goldberger, '~

we express f &+' in terms of the matrix operator Qi+':

P (+)—Q(+ix (10)

The 6nal state interaction e is introduced by decom-
posing 'U:

'U= V+v, (6)

where V is de6ned as 'U —v. e is that specific interaction
between pairs of particles in the final state which leads
to the correct scattering cross section for any pair of
these particles (i.e. , we neglect a possible modification
of ~ due to many body forces—this assumption is dis-
cussed further in the final section). For simplicity in
the following analysis, we can define v to vanish except
when operating on that particular set of particle occu-
pation numbers which we have designated by the set"8"abov" i.e., we suppose the actual interaction to
be multiplied by a projection operator which picks out
the set "B." This is permissible since we define V as
U —8

Following the notation of Lippmann and Schwinger, "
we can write the integral equation for the state function
of the system as

HOXa EaXap (3) where

where Hp is the appropriate Hamiltonian and E, is
the energy of the system.

Among the possible alternate "channels" by which
the reaction can proceed, we shall be interested in that
one to be designated by the set of states "9." The set
"8" refers to a unique set of particle occupation
numbers, while a single member of the set "8"specifies
also spins, momenta, etc. , of each of the particles. We
suppose Hp to be so de6ned that the state functions XB
also satisfy

HOXB EBXB EaXB (4)

The Hamiltonian H of the system will be given by
adding to Hp the interaction 'U, which is responsible for

Q&+& =1+ (V+v)
E,+i p Hp V—v——

with
T=(v+V)Q~+~,

(xB) 2 xa) ~

(12)

"B.Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
"Relations (10) and (12) have been given by C. Moiler, Kgl.

Danske Videnskab. Selskab, Mat. -fys. Medd. 22, No. 19 (1946).
G. F. Chew and M. L. Goldberger LPhys. Rev. 87, 778 (1952)j
have introduced the expression (11).I am indebted to Dr. Chew
and Dr. Goldberger for being informed of this and related algebraic
relations in advance of publication.

From Eqs. (9) and (10),we write the transition operator
T as"
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1——=—(8—A)—,
,A B A B

(14)

we easily obtain

Remembering that from its definition v vanishes
when operating on the state x and using Eqs. (11) and
(12) and the operator relation, "

In Eq. (17) the final state interaction contributes
most explicitly to gs( ', but is also contained in P, '+).
We shall see in the next section that Eq. (17) is already
in a useful form for the applications of that section. It
is possible, however, to exhibit more explicitly the
occurrence of () in Eq. (17). For this purpose we define
00(+) to be 0(+) [Eq. (11)]with ()=0,

Here
T—~(—)t Vg(+)

~(—)t —1+()
E,+is Hp —e—

(15)

(16) and

Qo(+) —1+ V,
E.+i e Hp V— —

1t o(+) —0 (+)&(

(19)

(20)

and ps( ) =co( )xs [see Eq. (8)]. Inserting Eq. (15)
into Eq. (13), we obtain

2's —(y~(—) VP (+)) (17)

Using Eq. (14), we have

Q(+) —Q0(+)+ ~no&+).
E,+is Ho V——i)— (21)

The boundary condition p))( & in Eq. (17) has been
derived previously for several special cases."" The
physical basis rests on the requirement that the final
state contain outgoing waves only and is formally
expressed by the use of "+is" in Eq. (16).

Equations (15) and (16) do not actually lead as
directly to Eq. (17) as we have indicated. The point
is that the parameter e in &o( )t [Eq. (16)] is the same
as the "e" in 0&+). This would mean taking the limit
a~0 for gs( ' and P,(+) simultaneously for use in Eq.
(17). Doing this is clearly not so convenient as being
able to take independent limits for ps( —

& and P, (+);
i.e., using di6erent e's in co& )t and in 0(+). In Appendix
(A) it is shown that this can indeed be done, it being
only necessary to keep both e's positive as the limit ~~0
is being approached.

It is interesting that the boundary condition (17)
follows also from the requirements of time reversal
invariance. It is shown in Appendix (8) that Eq. (16)
follows from the general detailed reversibility require-
ment

UTU '=T,
where ris the transpose of the operator T and U is the
unitary matrix introduced by Wigner" in connection
with time reversal. It is not surprising that time reversal
invariance should determine the boundary condition
on p)) in Eq. (17). We could not expect the reversed
system to return to the (time reversed) initial state
unless we start it in the correct (time reversed) final
state."

"G.F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952).
'4 N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-

hsions (Oxford University Press, London, 1933).
"W. Rarita and J. Schwinger, Phys. Rev. 59, 556 (1941).
' Rose, Biedenharn, and Arfken, Phys. Rev. 85, 5 (1952)."E.P. Wigner, Gottingen Nachr. 31, 546 (1932)."It seems likely that the boundary condition on @z expressed

by Eq. (17) should probably also follow from "causality" require-
ments, as discussed by W. Schutzer and J. Tiomno /Phys. Rev.
83, 249 (1951)j. The work of these authors suggests that the
matrix T has no singularities (except on the imaginary axis) in the
positive-imaginary half-plane, when presented in diagonal form.
0(+) and co(+) contain the scattering matrix, and a related property

From this and Eqs. (17), (19), and (20), we obtain

2,=(~ ( &, Vy, o(+))+.g'&( & ~&( & &y,o(+)),

where Ps( ' satisfies Eq. (7) with x, replaced by x)).
The first term in Eq. (22) is similar to Eq. (17), except
now v occurs only in p&& ). Following the methods of
Chew and Goldberger, " the second term can readily
be developed in the form

(y~(—) QP 0(+))

where Q is a power series in (&.

The second term in Eq. (22) can be expected to be
small compared to the first in two limiting cases. Re-
membering that e was defined in such a manner that it
vanished except when operating on the set "B" of
particle occupation numbers, we see that ()P,"+)
describes the production of a final state "B"followed

by a scattering of the particles in this state. Since
lPii( ' —P)) ( ' vanishes when V~O, this term describes
the repeated interaction of the particles through the
primary interaction V to produce again a state of the
type "B." It is thus clear that when V can be treated
as a small perturbation the second term in Eq. (22) is
of higher order in V than is the first and can be neglected.
On the other hand, if V is a strong interaction leading
to many virtual states (many sets of particle occupation
numbers) we note that the second term in Eq. (22)
picks one very restricted set of intermediate states
(i.e., of type "8") and may consequently be small to
the extent that these intermediate states contribute
relatively little to the reaction.

III. THE DEPENDENCE OF THE REACTION CROSS
SECTION ON THE FINAL STATE INTERACTION

We return to the expression (17) for the transition
amplitude T~ . We suppose that v particles are pro-

is expected for these. On the other hand, co& ) is simply related to
the complex conjugate of co(+), so co( )t should also have this
causal property and thus the T of Eq. (15)~ This would not seem
to be the case, however, had we used, for example, ~&+)t in Eq.
(15).
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duced in the state 8 with rest masses M;, momenta k;,
and energies 5';. The differential cross section for the
reaction in the center-of-mass system is then (we set
A=c=1)

(2&r)4
&

e a
I g(g g;—E,)b(Q ki)

p, J i 1 i

XIId&;Z IT"I' (23)
i 1 SP1QS

Here p, „is the relative velocity of the colliding particles.
The integration is to be carried out over four of the 3n
momentum variables in such a way as to satisfy the
conditions imposed by the 8-functions. The expression
P,~;, is an appropriate average and sum over initial
and Anal spin substates, respectively.

Let us suppose that there are at least three particles
in the Anal state and that the two whose interaction we
are studying have momentum vectors k& and k2. Let us
introduce their relative momentum, q= 2(k, —k,), and
their total momentum p=ki+k2. do will now contain
a factor d'q=q'dqdQ„where dQ, is an element of solid
angle in the direction of q. The values of q, a relative
momentum, will not be afI'ected by the 6-function
describing momentum conservation. When q is suf-
6ciently small compared to E„we can neglect the effect
of energy conservation on the values of q. We then have
the q-dependence of the phase space factor in Eq. (23)
as just

q lqlQq. (24)

In any actual problem it is, of course, straightforward
to calculate exactly the phase space factor, but for
purposes of a general discussion it is convenient to use
the simple form (24).

It now remains to find the dependence of T~, on q,
subject to the restrictions mentioned in the introduc-
tion. Returning to the expression (17) for Ti&, we define

(~I~I )= v~."', (»)

2.0

l.8

l.2
Qa

l.0

0.2 0 4 0.6 0.8 i.0

FIG. i. The spectrum of relative energies of two interacting
particles emitted in a reaction. The total energy of the two
particles is considered to be constant. Curves (i) to (4) are cal-
culated for the following respective values of 2a'/ME Lsee Eq.
(35)j:O. i, 0.25, 1.0, ~. A much sharper peak could, of course,
have been obtained by taking even smaller values of this parameter.

Ts.=(g. ' ', &). (27)

Now it is important to note that 8 does not depend
explicitly upon the variable q, so that the only de-
pendence of 1& on q comes from g, '—). Energy con-
servation will, of course, impose a q-dependence on 8,
but we have seen above that this is a small effect when

q is small.
Since q is considered to be very small, we shall for the

moment suppose that only the 5-wave part of g, ~ ) is
important. That is, we write

g, &
—

& = (e "/qr) sin-(qr+ 6), (28)

where 6 is the S-wave phase shift for the scattering of
particles "1"and "2." Equation (28) is valid outside
the range of the interaction of these two particles. We
next express 8 in terms of the low energy scattering
parameters:

q cot6= 0.+-,'roq'-. (29)

We are interested in r~a or less, so when q is small
enough that qr is small, we have

sin(qr+8)~sin5[1+ar+ ~q'r(ro —r)].
Neglecting the q' term above, we have for the pertinent
values of r,

gq&
—

&(r) e "(si bn/ )fq(r),
-

(31)

where f(r) is independent of q. Equation (31) is also
valid inside the region of interaction of particles "1"
and "2"since then f(r) is the integral of the Schrodinger
equation, which is to a good approximation independent
of q for small q-values. (For more detail see the paper
by Bethe" from which the present argument is taken. )
Inserting Eq. (31) into Eq. (27), we have

T», =e~(sinb/q)(f(r), f&,').

'9 H. A. Bethe, Phys. Rev. 76, 38 (i949).

(32)

where P is an appropriate set of coordinates. R is just
the transition operator in a mixed representation and
has been used previously' in the study of meson pro-
duction in nucleon-nucleon collisions. Let r be that
member of the coordinate set $ which describes the
relative position of particles "1"and "2."In accordance
with the assumption that the reaction takes place within
a certain volume, we suppose E. to vanish as r becomes
appreciably larger than a, the radius of this volume.
Neglecting the interaction of particles "1"and "2"with
others of the final state particles (phase space arguments
lead one to expect a small probability that more than
two particles will have small relative momenta) we can
factor out of ps' & that part, g, & &(r), which describes
the relative motion of particles "1"and "2." Writing
Pe& & =hs' &($')g, & '(r), where 8' and P' do not contain
q or r as variables, we next define

(r
~

8
~
a) =—(h» &

—
&, R),

and have
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do q'dq/(n'+q'). (34)

In Eq. (30) we have neglected the term of order
2q2a(ro a)—COmpared tO unity. ThuS (34) iS ezpeCted
to be valid for q-values satisfying this condition or for
a wavelength 5/q large compared to the radius of the
region of primary interaction. If o. is larger than the
maximum q-values for which Eq. (33) remains valid,
Eq. (34) gives just the usual phase space dependence for
the cross section which is expected to hold near
threshold. "In this case we would not find so pronounced
an effect from the 6nal state interaction —and indeed
might expect to be able to neglect it entirely.

We note that Eq. (33) agrees exactly with the estimate
made in the introduction [Eq. (27)]. The criterion
here found, that

~
n44~ be appreciably less than unity,

is just the condition described in the introduction, i.e.,
that the low energy scattering cross section of particles
"1"and "2"be large compared to the cross section of
the volume of primary interaction.

To illustrate Eq. (34), we suppose that particles "1"
and "2" have a fixed total energy (we introduce the
phase space factor for the center-of-mass motion of
these two particles). The resulting energy spectrum of
relative motion is plotted in Fig. i. In Fig. 2 we plot
the relative angle of emission of the two particles in
the coordinate system in which the entire scattering
system is at rest. For angles less than 15' to 20' there
is a sharp peak, which for larger angles merges roughly
with that dependence to be expected from phase space
arguments. The shape of this correlation curve is
approximately

do (2n)'
+ 02

d012 ME
(35)

where M is the mass of the particles, E is their total
energy, and 0 is the angle between them.

We have assumed that we need consider only S-state
relative motion of particles "1" and "2," which is

probably the case of most practical importance. On the
other hand, gradient couplings do seem to occur in
nature. If to a gradient. coupling there should also cor-
respond a strong P-state scattering at low energies of
two emitted particles, again correlation can occur.
Suppose that in a partial wave analysis of 8 it is found
that only an orbital angular momentum L is important.

' K. P. Wigner, Phys. Rev. 73, 1002 (1948).

The factor (f, 8) is now essentially independent of q for
small q-vs, lues (the only dependence coming from

energy conservation, as remarked previously).
Inserting this expression into Eq. (23) and using (24)

for the phase space factor, the cross section can be
written as

do = sin28 dq times a factor independent of q. (33)

If we keep only the n-term in Eq. (29), this becomes

l,o

04—

0.2—

QO 450
I

90'
e

I

135 I80

Fio. 2. The differential cross section for the production of a
pair of interacting particles with an angular separation 8. Curve
(1) is for an attractive interaction for which n'/ME=0. 01 Lsee
Eq. (35)j.Curve (2) is the correlation to be expected to a repulsive
interaction of about ten times the strength of that for curve (1).

Here 6L is the phase shift for the Lth partial wave
in the scattering of particles "1"and "2." Equation
(33) now becomes

Sln 8L
do. dq.

q2L

If the formula
q2L+1 COt~L 02L+1

holds for a suf6cient range of q-values, then

(37)

(3g)

do~q2L+2dq/( n 4L+2+q4L+2) (39)

and a considerable correlation could result. This would
place quite stringent restrictions, however, on the
interaction leading to 6L.

IV. APPLICATION TO MESON PRODUCTION IN
NUCLEON-NUCLEON COLLISIONS

There are at present two types of known mesonic
phenomena in which the present theory is applicable' ' 5

and possibly a third (the hypothetical meson-meson in-
teraction' ").These phenomena have been discussed pre-
viously, 4' so need not be considered in detail here.
However, the observation of a bound Qnal state of the
neutron and proton in the reaction p+~2r++22+p
(or d) necessitates a slight extension of the theory of
the last section. In reference 4 the meson energy
spectrum was calculated by solving the Schrodinger
equation explicitly for g, & '(r), the neutron-proton wave
function, rather than by using the low energy scattering
parameters. As argued in reference 4, the assumption
that

~
n42~ is small seems to be particularly good for

this reaction, since the range u is expected to be (near
the energetic threshold) considerably smaller than the
range of the nuclear forces. Thus we can immediately

If the low energy scattering is this orbital state in
large, an analysis such as that made for S-states leads to

sin8L
Tz, =e"2 times a quantity independent of q. (36)

qL+1
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use Eq. (32) with the low energy e-p triplet' scattering
parameters for sinb. This gives the part of the meson
spectrum corresponding to an unbound state of the n-p
system.

To calculate the fraction of the time that the reaction
goes as. p+p —&s.++d, we need the deuteron wave
function gz&(r) to insert into Eq. (27)." Actually, we
need only the ratio of gn(r) to g, ' '(r), for values of r
less than the range of the n-p force. To a sufficient
approximation, we can write this as

gD(~) =&Df(~), (40)

where f(r) is the same as in Eq. (31) since the binding
and kinetic energies are small compared to the well

depth [see reference (19)j.XD is a constant normaliza-
tion factor.

An approximate evaluation of XD can be obtained
from Heisenberg's theory of the S-matrix. "We write

gD(r) outside of the range of the ss-p triplet force as

gn(r) = Ce 'r"/r, (41)

where C is a normalization factor and y' is the product
of the nucleon mass by the deuteron binding energy.
Let S(q) be the S-matrix for is-p triplet S-wave scat-
tering. Then Heisenberg's relation is

well. Using this expression and equating Eqs. (40) and
(41), we have

Nn =Ce ~"/(1 —
I
u

I
r) C, (45)

da v2 f'My & sinews
=—

I

—
I

T&(Tp —T)'* G,
dQdT ~ I p) q'

(47)

where q is the relative momentum of the nucleons and
p/2M has been neglected compared to unity. The cor-
responding cross section with the formation of a
deuteron is

since p n and both are suKciently small that
e &"/(1—lnlr) 1 at the well boundary. Then from
Eq. (27), we have

Tii, (deuteron) =C(f(r), R),
which is to be compared with Eq. (32).

From Eqs. (32) and (46) it is easy to calculate the
corresponding cross sections in the center-of-mass
system. Let T be the meson kinetic energy, p its rest
mass, M the nucleon mass, and To the maximum
kinetic energy of the meson. Then the differential cross
section in the forward direction for an unbound n P-
state is to within a numerical factor, G,

dqS(q) =2(2s.)'I Cl ', (42)

where the integral is a closed contour about the pole
of the S-matrix in the positive imaginary half-plane at
the point q= iy. Expressing

S(q) = (cot5+i)/(cot8 —i),

and using Eq. (29) (with a replaced by —lrxI) we

readily evaluate the integral to find that

v=
I ~l (1+l«f ~i)

and

27r(1 —rpy)
(43)

sin6 [1—
I ul r] sinB

f(r),
q r q

(44)

or f(r)~(1—
I
a

I
r)/r near the boundary of the potential

2' When some of the produced particles can be in a bound state,
Eq. (9) is not so useful [see, for example, H. S. Snyder, Phys.
Rev. 83, 1154 (1951)j. In this case it seems preferable to start
with Eq. (17) as the defining equation for Tz . Then the boundary
condition on pz& ) is determined by the time reversal arguments
of Appendix (B). When none of the particles are actually in a
bound state, the arguments of Appendix (A) still imply the equality
of expressions (9) and (17). For the part of pg& ) referring to the
bound state, the use of "+ic"is irrelevant.

~ W. Heisenberg, Z. Naturforsch. 11/12, 607 (1946).

Using expression (30) and comparing the expression
for g, & &(r) for the internal and external region near the
edge of the interaction we have

v(P/f )'
G,

dO 1—rpy

to within the same numerical factor G as that for Eq.
(47). Here p is the meson momentum. In these equa-
tions, it was assumed' that (f(r), 8) contained a factor
of p.

The foregoing cross sections have been transformed
to the laboratory coordinate system and are compared
with the experimental data of Cartwright, Richman,
and Whitehead" in Fig. 3. Here G was taken to be
3.4(10) " cm' (steradian mev) '. For comparison, the
monochromatic spectrum from doD/dQ was "smeared.
out" over the experimental energy resolution. The
agreement with the experimental data seems to be
satisfactory, except possibly at the lower meson
energies. The agreement with the earlier4 calculations,
which involved integrating the Schrodinger equation for
an exponential well, is quite good.

V. FURTHER APPLICATIONS

The applicability of Eqs. (32) and (36) is somewhat
greater than was indicated in Sec. III. Let us suppose
that the state 8 contains two particles whose scattering
is described by a one-level Breit-Wigner resonance
formula at energies for which Eqs. (32) and (36) are
still valid. It is also supposed that the primary inter-
action is sufficiently weak that only the first term in

"Cartwright, Richman, and Whitehead (to be published) and
W. F. Cartwright, Ph.D. thesis, University of California, Berkeley,
California (unpublished).
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rL,2

q~c+i (E Eq) 2+—'I'r- (37')

Eq. (22) need be kept. We write Lsee Eq. (36)]

tan 8r, ———' I'r /(Er, —E) .

The modification of the phase space factor for only
two particles in the state "8"is such as to replace dq

by q
' in Eq. (37), neglecting numerical factors. This

equation then becomes
20—

der
dQdT

i5—

i0--

X IQ crn

MEV STERAD

except for the factors not explicitly written in Eq. (37).
Near threshold q

(' +')1'L,'——Fl., except for a nu-
merical factor. Writing all the neglected factors in the
form (2L+1)I',Z ', we have the cross section for a
one-level resonance reaction involving spinless particles:

ir(2L+ 1) I'r.l',

(~—E~)'+ ll'~'
(49)

Here E is the relative momentum of the two incoming
particles and I',«I'~ by the assumption that V is a
sufficiently weak interaction. The extension to particles
with spin is straightforward.

The usefulness of Eq. (49) lies not in its generality
(rather restrictive conditions were imposed on the
model, such as I',«I'r,) but in its relation of the reaction
cross section to the interaction of the two particles in
the final state. Indeed, expressions (32) and (36) do not
depend upon any specific dependence of 51. on the
energy, but upon being able to write the final state
wave function in the general form (31) for small dis-
tances (when several partial waves are involved, Eq.
(31) is to be replaced by a sum of such terms, one for
each partial wave). This suggests a means of establishing
phenomenological relationships between various proc-
esses—such as between meson-nucleon scattering and
photomeson production.

VI. REPULSIVE INTERACTIONS

When the final state interaction between two par-
ticles is repulsive, one again expects a correlation in the
relative angles and energies of these particles when
produced in a given reaction. Since the particles repel
each other, one expects a smaller probability that
relative angles and energies will be small than if there
were no interaction. There does not seem to be a general,
simple theory to describe this, however, as there was
for the case of the attractive interactions. Also, the
correlations seem to be less pronounced for repulsive
interactions, leading in general to smooth angular
variations which would be difficult to separate from the
relatively weak correlation which might be expected to
occur in the primary interaction itself.

For these estimates a primary interaction in the form
of a very short-range square well was taken. [B in Eq.
(26).] The repulsive final state interaction was also
taken to be a square well and the outgoing particles

j
I

20 30 40 50
MESON ENERGY (MEV)

60 70

FIG. 3. The energy spectrum of II+ mesons produced in the
forward direction in p—p collisions as calculated from Eqs. (47)
and (48) is compared to the experimental data of Cartwright,
Richman, and Whitehead (reference 22). Only the low energy
triplet e—p scattering parameters enter into the shape of the curve,
which is uniquely determined by the theory.

VII. CONCLUSIONS

To study the e6ect of final state interactions on a
reaction cross section, we have been led to the ex-
pression (17) for the transition amplitude. In Eq. (22)
the appearance of the final state interaction has been
somewhat more explicitly exhibited. In a great many
applications the first term only of Eq. (22) need be
kept, the condition usually being that the "primary
interaction" V can be considered to be a small per-
turbation (e.g., as in P-decay).

It has been possible to carry the analysis further for
the consideration of strong final state interactions and
low relative energies, the dependence of the transition
amplitude in this case upon the relative momentum of
two interacting particles being of the form given in
Eq. (32).

In the development of Eq. (32), we have not con-
sidered the possibility that the final state interaction of
two created particles might be modified in the presence
of the primary interaction. This is not expected to
change our conclusions in general, however. First, if
the primary interaction V is weak or impulsive so that
the first term only of Eq. (22) can be used, we need not
expect a modification of v, since V is then essentially
"turned o6" once the particles are created. This con-
dition should cover the photomesonic processes, for
instance. Second, for processes such as meson production
in nucleon-nucleon collisions, for which the range of V

were considered to be mesons. Taking the repulsive
potential to be the negative of a well i00 Mev deep
and having a range of 35/pc, the angular correlation
given in Fig. 2 was obtained. The repulsive potential
in this case was approximately ten times as strong as
was the attractive potential whose correlation is also
plotted in Fig. 2.
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necting states p, and x&. The quantity 6 is

6 =~(e—eo)w—
(E.+iso Hp—v)—

X (V+n). (A-2)
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FIG. 4. The energy spectrum of II-mesons produced in nucleon-
nucleon collisions in the center-of-mass coordinate system. The
final state nucleon-nucleon interaction was taken to be a square
well of range 1.4 5/pc with the corresponding well depths indicated
in the drawing. Curve (c) corresponds approximately to the n—p
singlet force.

is considerably less than the range of v, there should be
no serious modification of v since the eRect of the final

state interaction comes from regions of space for which
V=O. Finally, the usefulness of Eq. (32) implies quite
a predominantly strong final state interaction, which is

not expected to be greatly modified if it is stronger than
the other interactions involved. Here the argument is

perhaps most clearly expressed by the discussion given
in the introduction, which refers to 6nal state inter-
actions whose "eRective area of interaction" is greater
than the "eRective area of the interaction V."

Much less correlation is to be expected when the
reaction becomes weak. To see this we give in Fig. 4
the expected energy spectrum of mesons in the center-
of-mass system when the Anal state nucleon-nucleon
interaction has a range 1.45/pc and (a) a depth of zero

Mev, (b) a depth of 15 Mev, (c) a depth of 23 Mev.
Case (c) corresponds roughly to the m psingle potential. -

We have taken the range of the primary interaction 8
to be zero for this example, which is most favorable for
obtaining large correlations.

APPENDIX A. THE FINAL STATE BOUNDARY
CONDITION

We consider Eq. (15) for T, replacing e by eo in Eq.
(16) for ~& &t. We wish to show that this equation is
equivalent to Eq. (12) for calculating Tz, as long as e,
6p &0 and approach zero independently af ter the
integrals are evaluated. From Eq. (11) with the use of
Eq. (14) we readily find

~(—)t Vg(+)

= V+ (V+s) (V+v)+ 6, (A-1)
E.+is Hp V—v— —

where we have used the assumed property of v—that it
(or any function of it) has no matrix elements con-

Except for 6, Eq. (A-1) agrees with Eq. (12), the
de6ning equation for T. It is now to be shown in the
limit ~ tp~0 that 6 gives no contribution to Tz, when,
and in general only when, e, ep—+0 from positive values.
We define

t =@ — @+p,
E,+iso—Hp —v

(A-3)

a scattering amplitude for particles in states "B."Then
we easily obtain with the use of Eq. (14)

6=0, if c, ep—+0(+);
6=27ri[&&(HO &,)Tj i«—~0(+), co~0( 1) (A—-6)

Had we used a "principal value" definition for co( )t,
6 would again have been nonvanishing.

We recall that the role of e and ep was just to help
keep track of the path of integration and that these
could have been set equal to zero at the outset (by
properly specifying the contour of integration). In par-
ticular, we can go to the limit e, ep

——0 in p~( ' and
P, '+' before evaluating Eq. (17).

APPENDIX B. THE REVERSAL REQUIREMENTS

We wish now to show that the use of p&( ) in Eq.
(17) is required by the time reversal invariance of the
system. The time reversal operator has been given by

1 1
~ = i(&—

&0)i —— T, (A-4)
(E,+imp Hp) (E—,+i& Ho)—

where T is now given by its defining Eq. (12). If we
choose a representation in which Irp is diagonal with
eigenvalue El„we see that Eq. (A-4) will contain an
integral of the form

dEir,
'~

j ~ ~ ~ ~ ~ ~ (A-5)
(Eg E. i op) (Ep —L~'. —is)——

In the limit when e, ep—+0 the only contribution of
the integral (A-5) to 6 will come from the vicinity of
Ey=E, . Thus we can factor t and T out of the integral,
setting k= a in them. This can be done as the scattering
amplitudes are supposed to be well dehned on the
energy shell (that is, when k is set equal to a). We may
also take infinite limits (—~ to + ~) for the integral
(A-5). If eo is positive (e is known to be positive), the
integral vanishes. If ep is negative, the integral is
2m/(e —eo). Thus
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Wigner" and is

E= UEp, (8-1)

where Eo is the operation of taking the complex con-
jugate and U is a unitary matrix. The "time reversed"
of a given operator P is

This relation gives a simple prescription for obtaining
the ps& & to be used in Eq. (17) when the usual scat-
tering wave function is known.

The detailed reversibility requirement, which is a
direct consequence of time reversal, has been given by
Schwinger' and Coester. ' It is

P —=EPE '= VP*U ' (8-2) T—8, —a= gaQB~ as' (8-7)

ga =+Xa Uga p—ag —a
I

There is also the set

(8-4)

(8-5)

We observe in passing that the relation between the
f&+& and f& ' and the p&+& and &&

& ' of Fqs. (7) and
(8) is

=(1/~.)KP .&—+, y, & =(1/~,)Ky,-&+i. (8-6)

For instance, time reversal leaves the Hamiltonian
invariant but changes the sign of momenta, angular
momenta, spins, etc.

In Eqs. (3) and (4) we have introduced the eigen-
functions x, of IIO. Let "A" represent a complete set of
commuting operators for the y, and let the set "a"
represent the corresponding eigenvalues:

~x-= ~x-.

Physically, the set "a" represents the momenta,
angular momenta, spins, and any internal coordinates
of the noninteracting particles of the state "a" (we
are not distinguishing between states "a" and "8"
here). Now under time reversal the momenta, angular
momenta, and spin components change sign, but the
internal coordinates are unchanged. Let us denote the
eigenvalues for a system in this time reversed state by"—a" and the eigenfunctions by z,. On the other
hand, we denote the wave function which results from
applying E to x, by x '. Since z,' and z, describe the
same physical situation, they can differ only by a phase
factor, say p, That is,

where the phases p, and iiz are those of Eqs. (8-4) and
(8-5). We have

T @ . (x ii, T——x .) =(T*x .*, x s*)
= (UT*U 'Ux .*, Ux—-s*)
= ~.*~s(x., LUT*U '3'x~)

We have used Eq. (8-5) in the last step. Comparing
with Eq. (8-7) we see that

UT*U-i= Tt (8-9)

must hold on the energy shell.
Now writing T in the form of Eq. (A-1), we wish to

show from Eq. (8-9) that the boundary condition on
co' )~ is the correct one. That is, we wish to show that

(B~ T—(UT*U ')t~ a) =0, (8-10)

only for the "+i&"boundary condition on a&& &t. Since
the first term of Eq. (A-1) obviously satisfies Eq.
(8-10), this equation reduces to

(8-11)

'4 J. Schwinger, hectographed notes on nuclear physics (un-
published). Relations of the form (B-4) and (B-5) were introduced
and used here in the proof of Eq. (B-7)."F. Coester, Phys. Rev. 84, 1259 (1951).

Now 6 and (Uh*U ')t have essentially the same
structure, so the arguments given in Appendix A for
the vanishing of 6 are here valid. (It may be noted
that (UA*U ')t has the operator v standing on its right,
so automatically vanishes if we wish to apply our con-
dition that n vanishes when operating on x,.)

Thus, just as in Appendix A, we see that the
boundary condition of Eq. (17) is here required.


