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The Electron-Neutron Interaction as Deduced from Pseudoscalar Meson Theory
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Pseudoscalar meson theory with pseudoscalar coupling is used to find a value for the electron-neutron
interaction. By means of the Feynman-Dyson-Wick techniques, the one-neutron matrix elements of the
S matrix are calculated in the usual weak coupling perturbation theory, carried to second order in the
meson-nucleon coupling. Expressions for the magnetic moment and the electron-neutron interaction are
deduced from this. By using the former to fix the coupling constant, it is found that the potential well
representing the latter has a depth of 5380 ev if, as is conventional, this is taken to be square, with a radius
of e'/mc~. The various results found by previous authors and their relation to the present work are dis-
cussed.

I. INTRODUCTION

S EVERAL years after Dee's' attempt to detect
an interaction between neutrons and electrons,

Condon' pointed out that the rather large upper limit
given by Dee could be reduced by a factor of about one
thousand from a consideration of the eGect which such
an interaction would have on the scattering of slow
neutrons. Experiments were carried out in 1947, almost
simultaneously, by Havens, Rabi, and Rainwater' at
Columbia University and by Fermi and Marshal14 at
the University of Chicago, in which the interference
between the electronic and nuclear scattering of slow
neutrons was studied. Both groups gave values of less
than 10 kev for the depth of the interaction potential
well, assuming, conventionally, that this is square with
a radius equal to e'/mc'. Since that time, more precise
measurements have been made, typical results being
(5300&1000) ev, ' (4100&1000) ev, ' and (4200&600)
ev.

The calculation of the electron-neutron interaction
from meson theory has been carried out by several
authors. ' " Of the several varieties of meson theory,
the pseudoscalar is currently in vogue since the pseudo-
scalar nature of the pi-meson has been generally
accepted. However, even with the same theory-
pseudoscalar mesons, pseudoscalar coupling, with the
usual weak coupling perturbation theory carried to the
second order in the meson nucleon coupling —diferent
methods of calculation led to well depths ranging from
1300 ev' " to 5220 ev." Since it has not been certain
whether these discrepancies were due to errors, to dif-
ferent methods of evaluating divergent integrals, or to
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the use of different formal procedures in carrying out the
perturbation theory, a clarification of the theoretical
situation seems very desirable.

Moreover, still another result is obtained from
Foldy's treatment" which makes no use of meson theory.
A Pauli term is simply added to the Dirac equation to
represent the empirical neutron magnetic moment. As
a consequence of the relativistic covariance of the Dirac
equation, it then follows that the neutron will also
iiiteract with an external electric field. If this inter-
action is expressed in terms of an electron-neutron well
depth, a result of 4080 ev is obtained, which agrees with
none of the values which have been calculated from
meson theory.

Qf course, meson theory weak coupling calculations
of such effects cannot be taken too seriously —for
instance, they do not even give the correct neutron to
proton magnetic moment ratio —but it certainly should
be possible to state definitely just what value pseudo-
scalar meson theory does predict for this effect. In this
paper, the electromagnetic properties of neutrons are
investigated with the aid of the Feynman-Dyson-Wick
techniques. Special attention is given to the interpre-
tation of the terms obtained from field theory so that
the relationship of the various results obtained by
previous authors can be made quite clear. Naturally,
the result of this calculation should not be expected to
agree very closely with the experiments, 'even if field
theory is correct, since terms of higher order in the
meson nucleon coupling g have not been taken into
account and g is by no means small. In fact, the mesonic
analog of the fine structure constant must have a
value of about 7 in order to fit the neutron magnetic
moment Lsee Eq. (56) belowj. The chief purpose of
this investigation is to clear away the confusion arising
from the number of theoretical values which have been
reported. The results obtained are in agreement with
those found by Slotnick and Heitler' and by Danco6
and Drell. "

A similar calculation has been made for the case of
pseudovector coupling but no new results were ob-
tained. It is found that the magnetic moment is un-

"L.L. Foldy, Phys. Rev. 83, 628 (1951).
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changed (provided that, as usual, the coupling constant
is multiplied by twice the nucleon to meson mass ratio)
as might be expected from the theorems on the "equiv-
alence" of the two couplings. "However, the electron-
neutron interaction is found to be logarithmically
divergent in agreement with Feynman's conclusions. "

The field theory calculation of the Smatrix is outlined
in Sec. II, most of the algebraic details being left for
Sec. III. These results are discussed and interpreted in
Sec. IV and the status of previous calculations is
explained.

II. CALCULATION OF THE S MATRIX

The system to be studied consists of quantized
nucleon and pseudoscalar meson fields in presence of an
external, c-number electromagnetic field. The charge
symmetric formalism will be used according to which
the mesons are described by three Hermitian fields, @I,
p2, @3, or, alternatively, by the field @3 and the complex
fields

4=(4 +pl )l~&, 4*=(4 p4 )W&. —(1)

The potentials of the external electromagnetic field
will be denoted by A., (i = 1, 2, 3, 4). It will be con-
venient to use the isotopic spin formalism and combine
the proton and neutron spinor fields, Pi, P~, into a
single, eight component spinor,

state functional, F(t), is given by

where
F(t) =e-'~o'G(t),

H p = d'xKp(x)

and G(t) satis6es

paG(t)/ at =H, (t)G(t) = I dpxsc, (x) G(t).

Here

(x)=eiHpt~ e—iHpt gpt~p~ay

api app
+eA, 4 p

— 4 i 4p'v "Pp-" ax„ax.
tt i'+4p'

+e'(A„A„—A4')
2

=gv2 (4'~'v %~4+4'~'vVP4*)

+g4'v'r V4 eA.4r'vV—p

(a$ a/*
+ieA„l @*— P l+e'(A.A„Ap')p—*p (2).

&ax, ax„

The commutation relations for the field operators in
this interaction representation are:

The Lagrangian density is
with

[4( ), 4*(3)j=[4( ), 4 (y)j= —~( —r),
(4(x), 4'(X)) = r(x—X),

with

2 =Zp+Zp+2,

1 $a$ ap $ ( a
+t '@-e- I+&0'l ~"—+~ l0

2 0 ax„ax„) E ax„)
and

1 t sin[(k'+ ti') &tj
A(x) =A(x, t) = !d—'ke*

(2~)' " (Ir'+t ')'

r(x)—=
l

M —q" la(x).
ax„)

~p= gP y'r 4.P, -
8(j)i 8@2eA„—&p — gi PI ~y"Pi —e'A—„A„
~&v ~&v

2+/ 2

2

The actual calculation consists of finding the matrix
elements, between two one-neutron states, of the
operator 5 which carries the initial state function into
the final one:

where 7-', v', v' are the Pauli isotopic spin matrices
which operate on the charge index of P; Pt and y" are
as defined in reference 15; and natural units, A=c= 1,
are used. The usual canonical formalism' leads to a
Hamiltonian density

K=Xo+Xy~

where Xo is the part which remains when e and g are
set equal to zero. Going over to the interaction repre-
sentation, the development in time of the Schrodinger

13 K. M. Case, Phys. Rev. 76, 14 (1949).
'4 R. P. Feynman, Phys. Rev. 76, 769 (1949).
'~ G. Wentzel, Quantum Theory ofFields (Interscience Publishers,

Inc. , New York, 1949).

G(")=sG(—") s = 1+2 s-
n=l

where T denotes the temporal ordering of operators. '

Applying Wick's formalism to the T-product leads to
the Feynman rules, which will be used in what follows.

The one-neutron, time-independent state functionals
will be called F~, F2, while Fo will be used to denote the
vacuum state (no neutrons or mesons present). It is
assumed that Fi describes a state with one free neutron

' G. C. Wick, Phys. Rev. 80, 268 (1950).
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proton momenta, p. The mesons in I and II are charged,
while that of III is neutral.

Specifically,

—eg'
~ d4kg2ty'

82r4 & M+i(n2 —i't)

Fzo. 1. Feynman diagrams.

Mzz ——

Xa(q) y'ur
M+i(nr —k) r42+k2

—Leg p i
fd4pu t~r

8. J M+.p
(nr+n2 2P)—a(q)

Xy'I&
[u'+(nr- p)']Lu'+(n2- p)']

of momentum ni, spinor Ii, i.e., that

(Fe, $(x)Fr) =ure'"'*,

where vie'"" is a solution of the unperturbed Dirac
equation,

( +M )u e'"'*=0ax„)

eg2

Mrrr = d Pu2 'r ur

XSp y' a(q)
M+iP M+ i(P+q) r42+q2

where a„(k) is the Fourier transform of the electromag-
netic potential

This gives

with
(M+ in 1)ur ——0, (3)

A.(x) = t d4ke'2 *a.(k),
'

(2 )'" (4)

nr—= (nr) „y".

(If f„ is any four-vector, the symbol f will denote the
4

matrix P f,y" Also, f g .will mean the scalar product
v=1

4

P f„g„, and f will be used for the three-vector with
v=1
components fr, f2, f2.) Taking the Hermitian conjugate
of (3) and multiplying on the right by y4 yields

urt(M+ in, ) =0.

Similarly, the state F2 has one free neutron with
momentum n2, spinor N2, and

(M+in2) u2 ——0, u2'(M+2n2) = 0

If Fi and Ii2 are different states, .

(F2 Fl) (F2 S1F1) (F2 S2F1)

so the lowest order contribution will come from 53. It
will be proportional to eg' if terms of higher order in e
or eA are neglected. (In this approximation, the e' term
of 3Cr, Eq. [2], may be dropped. ) Thus, to order eg',

(F2, SF1)= (F2, S2F1)=Mr+Mrr+Mrrr,

where M z, Mzz, Mzzz are the matrix ele'ments associated
with the Feynman diagrams of Fig. 1.In these diagrams
solid lines denote nucleons, dotted lines stand for
mesons, and the wavy line indicates the external elec-
tromagnetic field. Neutron momenta are labeled n,

a„(k)=) d4xe '" *A„(x)

g—:n2 —ni.

Hereafter, a„(q) will be written simply as a„, so that a
stands for the matrix a, (q) &". As usual, the nucleon and
meson masses, M and p, are to be understood to have
negative imaginary parts which are set equal to zero
after all integrations have been performed.

+le consider first the integral M»z. It is formally
quadratically divergent, but the spur of the Dirac
matrix in the curly braces vanishes since y', y'y&,
y'yI"y", y'yI"y"y" all have zero spur. Thus, any cut-oG
or regularization procedure which makes the integral
finite will give Mzzz the value zero, so in this sense we
may simply set

3Ezo =0.
The other terms, Mz and Mzz, are also divergent,
although only logarithmically. The subsequent alge-
braic manipulations in which the "convergent" parts
are separated from the "divergent" parts are therefore
meaningful only if we imagine these integrals regular-
ized or cut off in some manner. The terms which appear
"convergent" are those which would remain finite if,
say, the cut-o6 momentum were allowed to become
infinite, while the "divergent" terms are those which
would not approach any hnite limit. The interpretation
of the latter is discussed in more detail below.
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III. ALGEBRAIC DETAILSThe expressions for 3II and 3fqr can be simplified by
rationalizing the denominators and bringing the y
factors together. Using also the Dirac equations for N1 methods 17 We have
and N2)

we find

~I=
—8g

(M+izzz)uz=0, uzt(M+izzz) =0 (1, k„, k„k„)
I d4k

(k' —2nl k+Az)(k' —2n2 k+Az)(k'+d, 2)

2x[1, (xe„)„,k'8„„/4+ (xe,)„(xn„)„]
d'h dy d'k

J 0 J 0 " (k'+6)'
Q2~ACAQy %2'

X (7) = [A (6), 28(h)n„, C(A) 5„„[M'+ (n2 —k)'][M'+ (nl —k) '][@'+k'] 2

In terms of the average neutron momentum,

e—= (el+e2) /2,

+D(h) (nz„n2,+nz, nz„)+E(h)(nl„el.+em, n2.)], (13)

where

Mir may be written

—8g f
Mzz = 2I; d'P

6=xh1+ (1—x)A I+M'x'+ q'x'y(1 —y),

n„=ely+n2(1 —y),

(14)

(15)

1 (I x ~l pl g2y
'

u2 (M+~P)uz(n p)'a A(~) =2 dx
I dy ~ B(h) =2 I dx I dy

X (g) J,
[M'+ p'][u'+(nl —p)'][u'+ (n2 —p)']

k2x
Thus, evaluation of Mz and M'll depends upon a C(&) =—

~
dx~~ dy~l d'k

knowledge of integrals of the form p o (k'+ 6)'

(1, k„, k„k„)
,

, de (~)
(k' —2nl k+az)(k' —2nz k+a, )(k'+a, )

These will now be computed and the result, Eq. (13),
will be substituted into Eqs. (7) and (8) for Mz and
Mqi. It will be shown that both of these are of the form

u,t[H(q') a+ E(q') (aq qa)+ L(q') q'a—jul,

where H, E, and I. are definite integrals containing q'
as a parameter. If the external fields are slowly varying
so that only small values of q' are relevant, it will be in
order to make an expansion in powers of q. Retaining
only terms of order q', we have

Ml+M» =u&t(Ea —-,'F[a, q]—Gq'a)ul, (10)

where E, P, and 6 are calculable constants, or, ex-
pressed in terms of the actual electromagnetic poten-
tials and fields,

1 z' t' t x 1
dx dy I d4k ——— (16)

(kz+~2) 4

*'y(1—y)
D(5)=2 dx I dyJ,

)I 1 xsy2

E(A) =2 dx
~

dyJ,
All of these integrals are "convergent" in the sense
explained above except for C, which is logarithmically
"divergent. "However, it will be seen that in the sum
Mz+Mzz the difference of two such terms appears and
that this is "convergent. "

The result (13) may now be substituted into (7) and
(g) to fznd MI and MII 1n the case of MI ~l 0 slIlce
m~'=e2'= —3P, and d2 ——p,', so

hz =M'XI+ x'y(1 —y) q',

Mz+Mzz = t d'xumte '"&.*(EA+ 'Fp o. —-
with

+G[7'A)u, e'» *, (11)

F„,=8A./Bx„BA„/Bx„, o„„=fy&—, y"]/2i (12).
The statements made in this paragraph will be sub-
stantiated in Sec. III and the values of E, Ii, and 6
will be calculated explicitly. The interpretation of the
result (11) will then be discussed in Sec. IV.

Xz—=X'—IZX+ 1Z,

IZ
—=Zz'/M'.

For Mil, 6»= p,
'—M' and 62=M', so

hz I 3PXII+x——'y(1 y) q', —

Xzz =x'+(zz —2)x+1.

(1g)

(19)

(20)

(21)

"See, for instance, the appendix of Feynman's article, reference
14.
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!
x'y(1 —y)+ x'y' —2x'y+ x/2~1

Q 2M I dx
J, M'Xzz

Writing Az for A(hz), Arr for A(hzz), etc. , Eqs. (6), using (16) through (21) we have

(7), and (13) give

Mz ———(ieg'/16m')u»fiM(Dr+Er)[a, q]
+Drq'a 2(M—'Ei+M'Dr+ Ci) zz)ui. (22)

Similarly, from (6), (8), and (13) we find

M z z
——(ego/8rio) uot( [2iMo(Dz r+Ez r

—28 z z)

+iM'A zz iC—iz]a
+-,'M(Dzi+Eii —28ii+Aii/2)[zz, q])uz. (23)

Adding the two results,

1 t' x'
dx—)

M "o Xr

1 r' x' 1
Q= — dx =—fo(~),

M ~o x'—gx+g M
(30)

*'y(1—y)+xY
M'Xz

since Xzz—+Xz if x~1—x. Thus

"' 2n
fo(g) =1——logy+

2 (4q —g')r*

Mr+Mr z = (eg'/16m') u»( [4iM'(Dz i+ Err —28 i i)
+2iM'(A zz+Ez+Dz)+2i(Cz —Czz)]a
—iDzq'a+M(Drz+Eiz —28ii+A iz/2

+Dr+ Er) [a, q])u, . (24) Similarly,

cos '—, (31)

Note that the two divergent integrals appear only in
the combination

R= —(2i/M') fz(g),

13—4g (1 2g~
f (~) = +!——

! l.g~
3(4—g) 44 3 )

(32)

Ci —Crz= dx dy~ d'k k'x
&&4o 4o

1 1
xl

E (k'+ hi) o (k'+ Air)')

which is "convergent" since

1/(k'+hi) '—1/(k'+ Dr ) ' (26)

behaves as 1/(k')' for large values of k'.
As remarked above, an expansion in powers of q' is

indicated, e.g. ,

A (q') =A (0)+A'(0) q'+

so that to order q', (24) gives

(27)

eg'
Mz+Mzz = uot(Pa+Qua, q]+Rq'a)ui, (28)

16m'

where P, Q, and R are the constants

P =4iM'[Diz(0)+Eii(0) —28ii(0)]+2iM'A zz(0)-

+iM'Ez i (0)+2i[Ci (0)—Ci z (0)],
Q =M [Dr (0)+E (0)—28 (0)+[A zz(0)/2]

+Dz(0)+Ez(0)], (29)

R = —iDz(0)+4iM'[Drr'(0)+Err'(0) —28zz'(0)]

+2iM'A z z'(0)+ 2iM'[Ez'(0)+ Dz'(0) ]

~'[—(4/3) ~'+(17/2) ~—(35/3)]
cos '—. (33)

(4 n)'- 2

However, some care must be excerised in the case of
P, for it contains the difference of two divergent in-
tegrals. The C terms which appear in R, i.e. , Cz'(0) and
Czz'(0), are individually "convergent" since in the
expansion of Cz or Czz in powers of q' the coefficient
of g'is a "convergent" integral. On the other hand, the
terms in these expansions which are independent of q,
i.e., the Cz(0) and Crz(0) which appear in P, are each
divergent and only their difference is 6nite. Therefore,
unless the evaluation of P is done rather carefully,
almost any result may be found. The procedure adopted
here is simply to compute Mz+Mzz directly from (7)
and (8) for the case rzz ——rzo, ui ——uo, using a Lorentz
frame in which

Qy= 112=0.

Then q=0 and we can find P from the equation

eg 'tg
Mr+ Mzr = uztPaui = Pa4,

16+4 16~4

where only the a4 term remains because

Nyt"(Ny= 0~ Nytg Ny= Z.

A straightforward computation leads to the result

Mz+Miz = d'kf(k),

+»[Cz'(0) —Czr'(o)]' where f(k) is a sum of terms which, taken separately,
would lead to divergent integrals. However,

The evaluation of p and E is quite straightforward and
involves only elementary quadratures. For instance, by f(k) =—0,
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so we may conclude that, in this case,

Mi+Mii ——0,
and consequently

(34)

—eg' eg's
fo(.), G= f (~) (35)

It has now been shown that (10) is correct:

M i+M i i upt (——Fa ,'F[—a,—q] G—q'a) u„(10)
with

Thus, in the absence of the perturbation V, states x
which have only the first and second components dif-
ferent from zero will be steady states of positive energy,
while those with vanishing 1, 2 components will be
negative energy states. Treating V as a small perturba-
tion, we may expect that for states of positive energy,
p3, x4 will be negligibly small compared to p&, p2, so
that in a nonrelativistic approximation, odd' matrices,
i.e., those which connect the upper two components with
the lower two, may be dropped. Since

Remembering Eqs. (4) and (5), we have: where
V= PF(H—e iE—e)+47rPGJ,

J„=—(1/47r) 'A„,

Mi+Mii = Jtd4zupte '"'*(2iFe„,P„,+G 'A)uie"
(36)

IV. INTERPRETATION

We shall now discuss the interpretation of the result
(36) of the field theory calculation for the one-neutron
matrix elements of S. Of course, quantities such as the
scattering cross section for neutrons in an external
electromagnetic Geld can be obtained directly from
(36) in the usual way, but in order to find the neutron
magnetic moment and the electron-neutron interaction
it is convenient to deduce from (36) an effective Hamil-
tonian for neutrons moving in an electromagnetic field.
Indeed, if the ordinary Dirac equation for the neutron
wave function ip (nonquantized) were

iF
LpE e e Pp]=-

2M

so

F
divE — e (EXp—pXE),

2M
(40)

and E, H are the external electromagnetic fields, we find

V+LV, T]+ = PFH o—+47rGJ4

+iFEPE e, T]+
Here, odd matrices have been omitted as well as terms
which are of higher order in the neutron momentum, p,
or which involve second or higher derivatives of the
external fields, since we assume the latter to be slowly
varying. Evaluating the commutator, we have

V+LV, T]= PFH e— div—E
(H'+ V)tP= (mP+e p+V)iP= g, (p= iV) —(37) 2M

with
V= p( i2Fo.„„F„„+—G 'A), (38)

then the properties of neutrons deduced from Eq. (37)
using the first Born approximation would be the same
as those obtained from (36). A plane wave expansion
of iP proves this immediately.

Since the electron-neutron interaction experiments
use slow neutrons, it will be in order to consider the
two-components Pauli-Schrodinger equation to which

(37) reduces in the nonrelativistic limit. This reduction
may, for instance, be accomplished by means of a
unitary transformation,

with
=t-' X)

T=(e p/2M)P= —T*.

Then the Dirac equation,

HiP= (HP+ V) iP = it],
becomes

e ~Helix=ix.

For the transformed Hamiltonian we have

H'=e ~I'~
= (1—T+ 'T'+ ) (HP+ V) (1+-T+ ipT'+

=MP+(PP/2M)P+V+LV, T]+" . (39)

(41)
F

+4~GJ4 — e (EXp—pXE).
2M

( p'
( M+ +V' [x'=4',

2M
(42)

V'= —FH a— divE+ 4~GJ4—

(EXp—pXE) (43)

If E=0, then H is static and we may set J4= 0, giving

V'= —FH. e

This shows that F is the magnetic moment of the
neutron. Since

F= —(g'/4n') fp(rl) (e/2M), (44)

the value of this moment in nuclear magnetons is seen

"L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

If y' denotes the two component spinor composed of
the 1,2 components of x, then in a nonrelativistic
approximation, x satisfies the Pauli-Schrodinger equa-
tion
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to be
~~= —(g'/4~')fo(v), (45)

and

J4 ————q'2 4
——

4m.
=Zp)

( p i p
V'=4~i oG—

i p
— (EXp—pXE)

2M) 2M

ea' (fo(~) —f (~) l~
— (EXp—PXE). (46)

2orM'0 2 ) 2M

As pointed out by Fermi, ' the o" (Exp —pxE) term
has no e6ect on the usual experiments on the electron-
neutron interaction and we shall drop it for the re-
mainder of this discussion. (Since the experiments use
unpolarized neutrons, this term, which involves spin
flip of the neutron but not of the nucleus, cannot
interfere coherently with the nuclear scattering, in
which the neutron and nucleus both change their spin
states or both remain unchanged. )

The case where the charge cloud represents an elec-
tron with fixed location has often been used for stating
the results. In this case,

in agreement with previous calculations. ' ""
Consider next the case where H=O and E has as

source a static charge distribution

divE=4m p.
Then

i divE

g' ufo(n)=1.36
~

— —fi(g)
~

kev, (50)
4orkc ( 2

—g' fo(~)
Pw=

4m.kc
(51)

dropping the fi(g) term in (49). His success in thus
finding correctly the part of Vo which involves fo(p)
stems from the fact that both it and the magnetic
moment originate in the F„„o„„term of V, (38). Conse-
quently, both are proportional to g'fo(g) and since their
ratio is determined merely by relativistic invariance,
not by meson theory, fixing one empirically —thus
determining g'fo(g) —makes it possible to find the other
without the use of field theory. However, an approach
of this sort could not. predict the part of Vp which
involves fi(g), since even if a term 'A were added"
to the Dirac equation Hamiltonian along with S„„o„„,
phenomenological considerations would not indicate the
ratio of the coeKcients of the two terms.

The value of Vp found by Case' and by Borowitz and
Kohn" corresponds to dropping the fo(q) term in (49),
retaining only the part involving fi(g). Since fi(g) has
a magnitude about —', that of fo(g)/2, this leads to a low
value for Vp."

For comparison with the result of Slotnick and
Heitler and Danco6 and Drell, it is convenient to
convert (45) and (49) to practical units,

3 g fm ~ (Ac) (fo(g)
Vo =—

(

—
/ ]

—
f

mc'] —fi(g) /

2or 4m. hc I M) Ee') E 2 )

so

p= &pp, d xpp=1'
Using for p the value found by Barkas, Smith, and
Gardnel )—"g' (f.(n)

I -fi(~) l~o
27rMo( 2 j (47)

Qg = ii/M =0.151,

we find from (31) and (33)

(52)

—"g' ufo(n)
W=—)I d'x V' =—

i f,(g) i,
—

2+M' E 2 ) (48)

The neutron sees, then, a potential given by (47). Since
so

fo(g) = 0.820, fi(q) = —0.131;

Vo= 0.736g'/4orkc kev,

pA" = —(0.820/or) g'/4orhc.

(53)

(54)

(55)

a square well of radius e'/mc' with the same volume
integral would have a depth

If (55) is used to fix g', with"

pg = —1.913,

4or (e') '

3 &m)

then

and
g'/4or Ac = 7.33, (56)

3 g' tr m q
' m fo(q)=——

I

—
I —, —fi(v) (49)

2or 4ir kM) e' 2

It is now possible to point out the relation between
these results and those found by previous authors.
Foldy's phenomenological calculation, based on the
anomalous magnetic moment, gives the same result as

' J. M. Luttinger, Helv. Phys. Acta 21, 483 (1948).

Vo ——9.97[-,'jo(g) —fi(g)] kev= 5380 ev. (57)

The fo and fi parts ("magnetic" and "electrostatic"
2' L. L. Foldy, Phys. Rev. 87, 688, 693 (1952).
"Both of these authors have slight errors in their expressions

for f1(p). In Case's Equation (103), the term (13—4p)/3(4 —q) is
given as t (13/3) —4pj(4 —q) '. In Borowitz and Kohn's Eq.
(6.11), the coefIIcient of the cos ' contains 17'/3 instead of 17'/2.
However, neither of these errors has an appreciable effect on the
numerical value of fl(q).~ Barkas, Smith, and Gardner, Phys. Rev. 82, 102 (1951).

2' Bloch, Nicodemus, and Staub, Phys. Rev. 74, 1025 (1948).
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parts) are 4080 and 1300 ev, respectively. The total
value agrees fairly well with Slotnick and Heitler's
figure of 5000 ev and with the 5220 ev'4 obtained by
Dancoff and Drell. LThese values have been re-com-
puted using the choice (56) for the coupling constant. $

'4 This figure was incorrectly stated as 6100 ev in the author' s
letter, Phys. Rev. 86, 434 (1952). The error was pointed out by
Dr. Drell in a private communication.

The discrepancies between their results and the 5380 ev
can probably be attributed to their having used, in
their numerical integrations, slightly different values
for the meson-nucleon mass ratio.

This problem was suggested by Professor G. Wentzel,
whose advice and encouragement are very gratefully
acknowledged. Thanks are also due Dr. M. Goldberger
and Dr. M. Gell-Mann for many helpful discussions.
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Cross Section and Angular Distribution of the D(d, p)T Reaction*

W. A. WENzEL AND WARD WHALING
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The D(d, P)T reaction cross section has been measured by two methods using D20 ice targets. For Ez
from 206 to 516 kev, a double-focusing magnetic spectrometer was used to obtain the momentum spectrum
of the protons and tritons, from which the reaction cross section can be determined. For Eq from 35 to 550
kev, the proton yield from a thick target was differentiated to obtain the cross section. Both thin and thick
target methods were used to measure the angular distribution over the energy range E& from 35 to 550 kev.
The angular distribution is expressed in terms of a Legendre polynomial expansion. Various sources of ex-
perimental error are considered and the probable error of the total cross section is found to be +5 percent.

I. INTRODUCTION

S INCE the discovery by Lawrence, Lewis, and
Livingston' in 1933 that two deuterons can react

with the emission of long-range protons, the reaction
H'+H'~H'+H'+4. 032 Mev has been studied ex-
tensively. Although early investigators determined that
the yield was large and anisotropic, accurate measure-
ments of the cross section have been possible only in
the past few years. ' ' In attempts to extend the meas-
urements to very low energies, some experimental
problems which are minor at higher energies become
increasingly troublesome. The use of thin gas targets
with differential pumping is subject to uncertainties
due to beam neutralization and energy loss. The use of
foils introduces straggling in the beam energy and re-

quires an accurate knowledge of the window thickness
at each energy at which the reaction is to be studied.
The accuracy of the thick solid target measurements has
been limited by uncertainties in the stopping cross sec-

tion, which is needed to obtain the reaction cross sec-
tion from the thick target yield. Recent measurements
in this laboratory' of the stopping cross section of D20
ice for protons of 18—550 kev enable us to measure the

*Assisted by the joint program of the ONR and AEC.
' Lawrence, Livingston, and Lewis, Phys. Rev. 44, 56L (1933).' Bretscher, French, and Seidl, Phys. Rev, ?8, 815 (1948).

Blair, Freier, Lampi, Sleator, and Williams, Phys. Rev. 74,
1599 (1948).

4Moffatt, Sanders, and Roaf, Proc. Roy. Soc. (London) 212,
225,(1952).

'Sawyer, Arnold, Phillips, Stovall, and Tuck, Phys. Rev. 86,
583 (1952).' K. G. McNeill and G. M. Keyser, Phys. Rev. 81, 602 (1951).

~ W. A. Wenzel and W. Whaling, Phys. Rev. 87, 499 (1952).

D(d, p)T cross section by the thick target method with
higher accuracy than has been attained previously.

At higher energies, Eg from 206 to 516 kev, the cross
section was obtained by another method. A double-
focusing magnetic spectrometer was used to measure
the yield of protons and tritons from a thick target as
a function of their momenta. This spectrum of the
emitted particles can be used to determine the "thin
target" cross section, and the observation of both pro-
tons and tritons provides a check on the internal con-
sistency of the experimental method.

The angular distribution of the reaction was meas-
ured by making observations at 10' intervals over the
range el,b from 80' to 150'.Above 200 kev a thin ice tar-
get was used, and the yield at each angle relative to a
monitor counter at ei,b=70' gives the angular dis-
tribution. For deuteron energies below 200 kev it was
necessary to measure the thick target yield at each
angle. The differentiated thick target yield gives do/dQ
at each angle.

II. CROSS SECTION MEASURED WITH THE
MAGNETIC SPECTROMETER

A double focusing magnetic spectrometer was used
to observe particles emitted at an angle of 90.3' with
respect to the incident deuteron beam. The D20 ice
target was deposited on a copper surface cooled with
liquid nitrogen in a target chamber that has been de-

scribed previously. 7 The aperture of the spectrometer
was adjusted to subtend a small solid angle, 0.00127
steradian, at the target, in order to obtain high effective
resolution. A scintillation counter was used to detect


