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assigned to f7/e then the beta-ray feeding that level
should be an allowed transition on the basis of the
assignment of fr 2 for the Ce'4'. Such a transition should
produce a beta-group of greater intensity than any of
the others. Because the 0.71-Mev group is less intense

7/2

Fze. 5. Proposed decay scheme of Ce'": pI =1,39' Mev;
p2 =1.09'Mev; p3 =0.71 Mev; yI=0.290 Mev; y2=0.360 Mev;
p3 0.660 Mev; y4=0.720 Mev; y3= 0.057 Mev; y6=0.126 Mev;

0.160 Mev.

than the 1.09-Mev group, it seems likely that it is not
an unresolved combination of the allowed and. forbidden
transitions. The assignment fq~m as shown in Fig. 5 is
therefore questionable. It also seems unlikely that this
level is fr~2 because the K/L conversion ratio of the
0.057-Mev gamma as measured by Keller and Cork is
less than unity, suggesting an E2 (or higher) transition. "
If the 0.057-Mev transition were an f~~2~hg~t (M1) the
K/L conversion ratio should be much greater than
unity. "Perhaps the 0.057-Mev gamma-ray is in cascade
with an undiscovered gamma which in turn is fed by
the fourth lower energy beta-ray group. A more careful
examination of the low energy end of the beta-spectrum
of Ce'" is required to determine the place of a lower
energy beta-group in the decay scheme and a more clear
picture of the upper-lying levels of Pr'4'. This must
involve obtaining samples of Ce"' without serious con-
tamination by Ce"'. A further possibility, of course, is
that the assignment h9~2 is also incorrect and Pa may
be simply a first-forbidden transition.

The K/L conversion ratio of the 0.290-Mev gamma
is approximately' 10, and the assignment F7~2

—+d«2 is
consistent arith this measurement. From our coin-
cidence experiments we cannot, of course, say whether
the 0.126-Mev gamma lies above or below the 0.160-
Mev gamma in the decay scheme.

The assistance of L. M. Langer and M. Bunker with
the P-spectrometer measurements and of J. W. Starner
with the scintillation experiments is gratefully acknowl-
edged.
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The Parallel Susceptibility of an Antiferromagnet at Low Temperatures*
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The spin wave method of Heller and Kramers is applied to a cubic antiferromagnetic crystal, oriented
so that the direction of alignment of the sublattice spins is parallel to an external magnetic field. Taking
into account exchange interactions and an anisotropy term, then the parallel susceptibility gl& is zero at
T=O'K, in agreement with the result of the molecular field treatment of the problem by Van Vleck. If
nearest neighbor magnetic dipole interactions are included, p)1 is nonzero but negligibly small: y&1~10 "
at &=0'K. For T&0 but, much less than the antiferromagnetic Curie temperature, if the dipole interactions
are neglected and the anisotropy is small, such that P=S(24')&/kT(&1, where IC is an anisotropy con-
'stant, then xn ~ Te. If I'&&1, then x« ~ Tt expL —Si24JElt/kT].

1. INTRODUCTION

A N antiferromagnetic crystal does not exhibit any
net spontaneous magnetization in the absence of

an external magnetic field, because the magnetizations
of the ordered sublattices, below the antiferromagnetic
Curie temperature, are equal and opposite. In an ex-

*This work was assisted in part by the ONR.
f Now at Department of Physics, Pennsylvania State College,

State College, Pennsylvania.

ternal field, the magnetization of a two-sublattice anti-
ferromagnetic crystal depends upon the orientation of
the external field H with respect to the directions of
alignment &e of the sublattice spins.

Using the modification of the Bloch spin wave method
due to Belier and Kramers, ' Hulthen' investigated the

I G. Heller and H. A. Kramers, Proc. Roy. Acad. Sci. (Am-
sterdam) 37, 378 (1934).' L. Hulthbn, Proc. Roy. Acad. Sci. (Amsterdam) 39, 190 (1936).
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susceptibility of a two-sublattice antiferromagnet at
low temperatures, when HJ e. He found, after quan-
tization, that the perpendicular susceptibility ~~ (1—bT'), where b is a constant. Hulthen recognized that,
for small external 6elds, it is energetically favorable for
the sublattice spins to set themselves approximately
perpendicular to the external 6eld if only exchange in-
teractions are considered. Hence, he did not investigate
the case when. H~~e. However, if some anisotropy is
present and 8 is applied parallel to e, the sublattice
spins may remain parallel and antiparallel to the field
rather than turn perpendicular to it.

Generalizing work by NeeP and by Bitter, ' Van
Vleck' investigated both the perpendicular and parallel
susceptibility using a molecular field model. He found
that g~ should be constant between O'K and the anti-
ferromagnetic Curie temperature, and that y» should
be zero at 7=0.

In this paper we apply the spin wave method used
by Hulthen, ' and the recent clarihcations of the
method, "to the case when H~~e. We investigate the
ground state of the system taking into account exchange
interactions, an external field, anisotropy, and nearest
neighbor magnetic dipole interactions. This will yield

at, T=0. Then omitting thc dipole interaction tclIn,
we shall obtain expressions for x» at T&0 for the cases
of small and large anisotropy.

2. y. tt AT T=o'K

A. Neglecting Magnetic Dipole Interactions

Let the lattice structure of our crystal be simple
cubic with N atoms and lattice constant a, subdivided
into two face-centered cubic sublattices, m and n, such
that the six nearest neighbors of any one atom, of
either sublattice, are all members of the other sub-
lattice. We shall assume that, for each of the atoms,
S '~S or S '~—S,where S is the spin quantumnumber
of the atom. Then, writing 8'=5(5+1), since

(5 *)'=8'—L(5 *)'+(5 ")']
and (5„*)'=8'—[(5„')'+(5„&)'7,

therefore
Sm'—8—[(S *)'+(S ")'7/28
5„* —8+[(5,*)'+(5.~)'7/28.

The antiferromagnetic exchange interaction energy
of the crystal is

x,=zp S S.,
Cmg nP

where J is positive and the summation is over all pairs
of nearest neighbors, We note that the sign convention

' L. Noel, Ann. phys. 5, 256 (1936).
4 F. Bitter, Phys. Rev. 54, 79 (1937).' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
6 M. J. Klein and R. S. Smith, Phys. Rev. 80, 1111 (1950).
7 P. W. Anderson, Phys. Rev. 86, 694 (1952). I should like to

express my gratitude to Dr. Anderson for having had the oppor-
tunity to study his paper prior to publication.

This term will maintain the &s axes as the directions
of magnetization of the sublattices. In a magnetic 6eld
II, the directions of magnetization of the sublattices
would become approximately perpendicular to the 6eld
were it not for the anisotropy energy.

Collecting terms, and applying Eqs. (1), the total
Hamil toIllan, K=K«+K«+K«, ls

ac= —3J1VS(5+1)+37{+[(5 *)'+(5 ~)«7

&&(1+~'--)+Z.[(5.*)'+(5.")'7(1+&'+ ))
+J P (5 *5,*+5 ~5.~). (2)

E'= E/3J and a= Hg««s/658 (3)

Consistent with the approximation of (1), we have
dropped terms of higher order than the small quantities
(5 *)'/8' and (5 ~)'/8'.

We introduce, following Anderson, ~ two sets of spin
waves through the transformation,

5 *=(25/Ã)& Pge«k exp(ik m),

5 "=(25/E)& ggP, g exp( —ik m),

S.*=(25/Ã) & Pke, g exp(iit n)

5 "=—(25/N)& PkP» exp( —ik n),

(4)

where ir, the spin wave vector, takes on E/2 discrete
values with k, „,.going from —«rja to +«r/a.

The new operators approximately satisfy the com-
mutation relations

[Qlk& P«k'7 «~kk'& [Q«k) P«k]' «~kt'

All other commutators are zero. Also,

Z-[(5-*)'+(5-")'7=52.(e.e.*+P .P .*),

Z.[(5.*)'+(S.")']=5 Z~(e«.e«.*+P«d'«. '),

Z (5.*5.*+s.s. )=5 Z.(e.e-*+e.*e*.
Cm, n&

P«gP«g P«g P«g)(coskgc+coskyQ+coskt s)

Q«q* is the Hermitian conjugate of Q«q. Henceforth, as
a convenient abbreviation, we shall drop the conjugate
sign and write Q' for QQ*, etc. None of the succeeding
arguments is a6'ected thereby.

for J is opposite to that usually employed in ferro-
magnetism.

In the presence of an external Inagnetic field 8
in the +s direction, there is an additional energy,

~«= —g«s&(Z-5-'+Z. S.*),

where g««sS is the magnetic moment operator for
atom m.

We assume the presence of an anisotropy energy of
uniaxial symmetry which may be approximated by

~,=E'{P [(5 ')'+(S ~)'7++,[(5,*)'+(5.~)'7).
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8= 1+E' 0., —
S=1+E'+a,

8k =
p (cosk~a+ coskpa+ coskga) ~

The bracketed expression in (5) has the form

C'= 8(QP+PP)+S(QP+Pp')+28(QiQp —PiPp).

(6)

Let us transform to new variables q, p by the canonical
transformation

Qi ——(1+w)—'(wqi+qp), Pi=(1—w)
—'(—wpg+pp),

Qp=(1+w) '(q&+wqp), Pp (1—w)——'(p& —wpp).

The mixed terms in 4 will be eliminated if m satisfies
the equation

8w'+ (8+S)w+ 8=0.

The resulting expression for C is

(7)

C = (OwP+S+28w) [(1+w)—PqP+ (1—w)
—

PP P]

+(Cty Sw'+28w) [(1+w)-'qp'+ (1—w) 'p p'].

Since [q&, p~]=[qp, pp]=i and all other commutators
vanish, therefore the eigenvalues of C are

C'= (2~+ 1)(h'+S+28w)/(1 —w')

+(2v+1)(8+Sw'+28w)/(1 —w'), p, v=0, 1, 2, ~ ~ ~ .

Substituting the values of w and 1/w from the solution
of Eq. (7), we obtain

C'=( +l)(S—++[(Ct+ )'—4 ']')
+(v+-', )(8,—S+[(8+S)'—48']1), p, v=0, 1, 2

In terms of E' and o,, we have

C = (2/+1) (ny [(1+El)'—8']')
+ (2v+1) ( —a+ [(1+E')'—8']l)

Only n contains the external field H.
The eigenvalues of the Hamiltonian (5) are, therefore,

BC= —3JES(S+1)
+3JS Q k(2P k+ 1){a+[(1+E')P —8kP]'*)

+3JSQ k(2vk+ 1)( —a+ [(1+E')'—8k']*') . (g)

In the ground state, pg= vg=0, and we have

3Cp= —3JXS(S+1)+6JSQk[(1+E ) 8k ]'. (9)—
The ground state is independent of H. Therefore, at
T=0, when the antiferromagnet is in its ground state,
the magnetization Mp ———(1/V)(BXp/BH) is zero. V is
the volume of the crystal. Likewise, the parallel sus-
ceptibility y«(T=O) =Mp/H=O. This agrees with the

F. Keffer, thesis, University of California, Berkeley, 1952
(unpublished).

The Hamiltonian (2) now takes the form

K= —3JArS(S+1)+3JSQk[ct(Q)k'+Pgk')
+S(Qpk +Ppk )+28k(QlkQ2k PlkP2k)]t (5)

where

result obtained by Van Vleck' from a Weiss molecular
field approach to the problem.

The above analysis is not valid for a sufficiently
strong external 6eld, for then the antiferromagnetic
direction becomes perpendicular to the applied field,
despite the anisotropy term, and the nonzero per-
pendicular susceptibility allows the energy of the sys-
tem to decrease. Mathematically, it can be seen that
if pp) [(1+E')'—8k']', then, from Eq. (8), the ground
state is given by v&= ~. That is, spin waves of in-
6nitely large amplitude are energetically favored. It
is no longer true that S '~$, and the above analysis
is invalid.

B. Including Nearest Neighbor Magnetic Dipole
Interactions

Thus far we have considered only the exchange inter-
action energy. We shall now investigate the effect, on
x» at T=O'K, of including the nearest neighbor mag-
netic dipole interaction energy. The effect of the dipole
interactions on the magnetization of a ferromagnet has
been previously investigated by Holstein and Primakoft. '

The nearest neighbor magnetic dipole interaction
energy adds to the Hamiltonian a term

3G
BC4 Gg——S S,——Q (S r „)(S„r,),

&m, n& g &m, n&

where G=g'ps'/a'. The coordinates of the nearest
neighbors to a lattice point at the origin are

A=a(a, 0, 0), 8=a(0, a, 0), C=a(0, 0, a).

Thus,

K4——G Q (—2S *S,*+S "S„"+S*S,')
&A&

+G Q (S *S,*—2S "S„"+S*S„')
&B&

+G Q (S *S,*+S "S "—2S *S,*),
&C&

where the summation over (A) means summation over
all pairs of nearest neighbors, m and n, such that point
n has the coordinates A relative to point m.

The approximation (1) reduces K4 to the terms

K,=G p (—2S *S,*+S vS„v)
&A&

+G Q (S *S*—2S "S")
&8&

+G p (S *S.*+S vS.v).
&C&

After the transformation (4), we have

BC =2GS P„[(—2 cosk, a+cosk„a+cosk, a)Q, Q
—(cosk a—2 cosk„a+cosk.a)P»Ppk].

T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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g2p 2Q
Mp ——

6J(S+1)V k (K)k—Pk)'K= —3JXS(Sj1)+3J'S+k[8,(Qik +Pik )
+S(Q&k'+Ppk')+2&kQikQok 2FkPikPok], (10) &k+» ' 1+»/Oo '*

X
28o -1—x)k/cto-where 0', and S are defined in (6) and

The total Hamiltonian, 3C=Ki+BCp+Ko+K4, in- leads to
eluding exchange interaction, external field, anisotropy
term, and nearest neighbor dipole interaction, is now

Qi ——[1+(vw) ']—'(vq, +q,),
Pi= Li —(vw)'1 '(—wPi+Pp),
Qp= Li+(vw)') '(qi+wqp),

Po= Li —(vw)') '(Pi —vPo).

(12)

5)k = -', (cosk,a+cosk„a+cosk, a)

(11)
+(G/3 J)(—2 cosk,a+cosk„a+ cosk,a),

Fk = io(cosk,a+cosk„a+ cosk, a)

+(G/3 J)(cosk,a—2 cosk„a+ cosk, a) .

The bracketed expression in (10) has the form

4'= 8(Qi'+Pi')+S(QP+PP)+2$QiQp —2PPiPp.

Transform to new variables q, p by the canonical
transformation

Sk+» 1 X)k/ Sp
1+

20'o 1+Pk/So-

—2L(1—&k/~p)(1+»/~p)]' (15)

Here Sp ——1+K'(= 8+n= S—vk). Second-order terms
and higher in the small quantity, n=glisH/6JS, have
been dropped. In addition, it has been possible to
eliminate a number of terms by noticing the symmetry
relationships between X)~ and 5~ over the range of k
values.

If we expand the expression in curly brackets, in
(15), in powers of K)k/O!p and Pk/Qp, the lowest non-
vanishing even power term has the value

(1/32Cto )(&k—&k) (&k+Pk) .

If e and m satisfy the simultaneous equations

O,v+ Xkw+ t'(1+vw) =0,
Xiv+ti', w+6(1+vw) =0,

then there will be no mixed terms in 4". We get

(13)

Odd power terms need not be considered since they
vanish when pk is performed. (Sk~Fk& is an even or
odd power term according as P+y is even or odd. ) Thus,

gpgH S
Mp ((+k»)'(&k+ &k)')A ~

96J(S+1)a,p' 2V

Q,v'+S+2X)v Ctw'+S+2Fw
gI 2+ Pl

Li+(vw)')' Li —(vw)']'
v

(cosk, „,,a)&v ——(cos'kz, k, za)Av=0,

(cos kz, L za)Av o v (cos kz, v, za)Av
R+Sw'+2$w 8+Sv'+2%v

+
Li+(vw)']' Li —(vw)']'z q P ' we et

Substituting the values of Sk and Fk from (11) and
noting that

The commutators [qi, Pi]=[qp, Po]=i, and all other
commutators vanish. Thus the eigenvalues of C' are

C'= (2p+1) (1—vw) '(ev'+ S+2nv) '*(ew'+ S+25w) l

+ (2v+1) (1—vw)
—'(8+Sw'+ 2nw) '(8+Sv'+2rv) &,

p) v=O) 1)2) '''
In the ground state of the Hamiltonian (10), we have
p, = v=0, yielding

3Cp= —3JES(S+1)+3JSQk(1 —vw) '

X [(Rv'+ S+2X)kv) t(ow'+ S+2»w) i

y(e+Sw'+2X)kw) l(Ct+Sv'+2m'kv)']. (14)

Now, at T=O, the magnetization Mp= —(1/V)(NCp/
BH) = —(gys/6JSV)(BXp/Bn). Thus, Mp can be ob-
tained by differentiating (14) and inserting the values
of v and w from (13). A persistent application of the
rules and procedures of algebra and differential calculus

((X) —S )'(n +rk)')z, ——G'/3J'+0(G'/J').

Therefore,
II g2p ' G' Il G'

MP~
576(S+1) a' J' 576(S+1)J' (16)

and
x„(T=O)=Mo/H 10 'G'/J' 10 " (17)

Thus, we see that the dipolar interactions mix into the
ground state a negligible amount of states having total
S'/0

3. g)t FOR T&0'

Let us now determine the behavior of x«at tempera-
tures above T=O'K but at temperatures low compared
to the antiferromagnetic Curie temperature, so that we
may continue our assumption that S '~S and S,'~—S.

The magnetization is given by M = —(1/V) (BF/BH),
where F= —kT lnZ is the Helmholtz free energy func-
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tion and Z=P exp( —H/kT) is the partition function,
the summation being over all eigenvalues.

We shall take (5) as the Hamiltonian, that is, we
shall include exchange interactions, anisotropy, and an
external field, but not dipole interactions. The eigen-
values of this Hamiltonian are given in Eq. (8), which
we shall write as

ac= —3JXS(5+1)+Pg(p~+-,') Ao)g+ jQk(v~+-', )hu ~,
where A~~+ ——6JS{&o+[(1+E')'—8x']~}.

The partition function is, therefore,

Z e-87%8(8+1)lkr Q exp{ P[(~ +1)~+„

+ (vg+ -', )ka&g-]/k T}

e zN8(8+ )Ikrg g exp{ [(p + )$~ +
pg, ~~Q

+ (vg+-', )fuok ]/kT}
8JN8(s+1)/kT gg exp[ $((//++~A )/2kT]

X[1—exp( —R»+/kT)] '[1—exp( —M&
—/kT)]-'

where P~ and g~ are over the S/2 values of k. Thus,

F= —kT lnZ=3JES(5+1)+~ Qv(Mx++~~ )
+kT gg in[1—exp( —Pure+/kT)]

+kT Z, in[1—exp( —I;/kT)].
Only the last two terms involve the external magnetic
field, and therefore, only they need be considered in
obtaining the magnetization M = —(1/V)(BF/BH).

Expanding the logarithm in an infinite series, we have

The P~ can be evaluated as follows:

Z~= (&/2)(~ exp{ })A.

g )3 ~w/a

p exp{ }dk.
2 (2~) &p„„,.=-.y.

(19)

4mp ( kT I' exp[—p(f 2+I')&]dN,
a' L.2(3)VS& &0

where t'= (72J'5'/k'T') E' =24S'JE/k'T', an'd we have
let k=(kT/2(3) JSa)u. (k, the magnitude of the wave
vector, on the left side, is not to be confused with the
Boltzmann k on the right side. )

In the limit of vanishingly small anisotropy con-
stant E, and thus {, the integral can be performed
readily, and we get

I=(~/3(3) "a')(kTIJS)'~ '. (2o)

Combining (18), (19), and (20), and noting that

2 u '=~'/6

we obtain"

For E'((1, we have (1+E')'~1+2E'. The principal
contribution to the integral will come from values of
Cq in the neighborhood of 1. From (6), we see that
this means k, , „,, 0. In this region, Ck' 1—~3k'a' and
the integral in (19) can be written

ti
00 6JSI= p exp —p (2E'+-', 0'a') ldk

I kT

in[1—exp( —ANk+/kT)]+in[1 —exp( —&~k /kT)]

= —g p-'[exp( —pka)g+/kT)+exp( —pk(ug-/kT)]

M 1 g'pa' (kT)'
&I I

II 144(3)&5'(5+ 1) a' J' (21)

for &=5(24JE)~/kT((1, and T((T,.
At low temperatures and for large values of E, we

have |»1,and the integral I can be evaluated by the
method of steepest descents. %e need only consider
p= 1. 'lA'e get

= —2 Q p 'cosh(6pJSn/kT)
p=l

&(exp{—6pJS[(1+E')'—@&']'/kT}

Substituting a= HgIJs/6JS, we obtain
(22)

M (2/V)(gIJBS/S)Q Q sinh(pSHgpe/SkT)
k p=1

For large values of p, the exponential becomes negli-
gibly small; thus we can write, for Ifgpg&&kT,

sinh(pSHg ps/SkT) =pSHg ye/Sk T.
&(exp[—5(24JE)1/kT]. (23)

"After obtaining this relationship, there came to the attention
of the author a recent manuscript by T. Nakamura in which this
same result is obtained. Nakamura only considers the case of
vanishingly small anisotropy. I should like to thank Dr. Naka-
mura for having had the opportunity to see his manuscript prior
to publication.

Note added irl, proof: Two additional articles have appeared
recently in which the method of spin waves is applied to anti-
ferromagnetism: J. M. Ziman, Proc. Phys. Soc. (London} 6SA,
540 (1952}and R. Kubo, Phys. Rev. 87, 568 (1952}.

Then,

2 S IIg'pg'
M=— Q Q p exp{—6pJS[(1+E')'

V 5+1 kT
—8g']&/kT}. (18)

(kTq '
I=

3(3)&a'5' ( J )
Combining (18), (19), and (22) gives

[(+ ')'- "]'/ }.
XI I

H 24(3)brtS'*(5+ 1) a' I'
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The temperature dependence is

x» ~ T& expL —S(24JE)i/kT],

for i =S(24JK)&/kT»1.

4. CONCLUSION

(24)

There is, as yet, very little information concerning
the separate values of y„and x~ for an antiferromagnet.
GriQel and Stout" have obtained values of y„—x~ for
MnF2 at various temperatures, which, together with
previous work by de Haas, Schultz, and Koolhaus" on

"M. Griffel and J. W. Stout, J. Chem. Phys. 18, 1455 (1950).
"de Haas, Schultz, and Koolhaus, Physica 7, 57 (1940).

the powder susceptibility of MnF2, enable them to plot
the values of x, &

and ~. It is quite clear from their
work that x& is not constant below the Curie point but
increases as T decreases toward zero. This is the type
of behavior predicted by Hulthbn, and differs from the
prediction of the molecular field theory. X„decreases as
the temperature is lowered and seems to approach zero
at T= 0. The data are not sufFicient to allow the tem-
perature dependence of either x&& or x& to be determined
very much more specifically.

It is a pleasure to thank Professor C. Kittel for the
suggestion of the problem and for many discussions
concerning it.
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Ionization Loss and Straggling of Fast Electrons*

E. L. GQLDwAssEg) F. E. MILLspf AND A. O. HANsoN

Department of Physics, University of Illinois, Urbana, Illinois

(Received June 16, 1952)

DECEMBER 1, 1952

The most probable energy loss of 9.6- and 15.7-Mev electrons in samples of about one gram per cm' of
beryllium, polystyrene, aluminum, copper, and gold has been measured. The losses measured were of the
order of one Mev, and the resolution of the apparatus made possible an accuracy of 20 kev. The observed
distributions of energy losses are found to be in good agreement with the Landau straggling calculations for
the light elements. For the heavier elements there is a spreading of the distribution introduced by radiation
and E electron eftects. Calculations made by Yang and Kennedy for gold, including these effects, check well
with the experimental data.

Applying Fermi's correction for the polarization effect at extreme relativistic velocities to Landau's result
for the most probable energy loss, one obtains for the predicted loss in Mev b,„.=0.1537D(ZZ/ZA)
&($19.43+in(D/p)], where D is the absorber thickness in g/cm' and p is the absorber density in g/cm'.
Experimental results for the light elements are in excellent agreement with this theory. The heavier
elements show losses somewhat smaller than those calculated.

INTRODUCTION

HERE have been a number of measurements of
the ionization loss and energy straggling suffered

by electrons in passing through matter, and the general
processes appear to be well understood. A recent study
of the energy loss distributions for electrons having
initial energies up to i Mev has been reported by Chen
and Warshaw. ' They find that the observed most
probable energy loss as well as the energy loss distribu-
tions are in good agreement with the calculation of
Landau. ' Further work with electrons having energies

up to 5 Mev has been carried out by Paul and Reich'
and is discussed by Schultz. 4 They find that the energy
loss at these energies is less than that given by the
theory and attribute the decrease to the effect of
polarization in the material.

The present work represents an attempt to measure
the energy losses and energy distributions at higher

* Work supported in part by the joint program of the ONR
and AEC.

f AEC Predoctoral Fellow.
' J. J. L. Chen and S. D. Warshaw, Phys. Rev. 84, 355 (1951).
'L. Landau, J. Phys. (U.S.S.R.) 8, 201 (1944).
3 W. Paul and H. Reich, Z. Physik 127, 429 (1950).
4 Walter Schultz, Z. Physik 129, 530 (1951).

energies using highly monoenergetic electrons from the
22-Mev betatron.

EXPERIMENTAL ARRANGEMENT AND PROCEDURE

The experimental arrangement for the removal of the
electrons from the betatron and the focusing of the
beam into the chamber has been described in previous
work. ' ' The modifications of the scattering chamber
and the detector arrangements for the present experi-
ments are shown in Fig. i. The electron beam is brought
to a focus upon the absorber samples, which were
mounted on the remotely controlled sample holder at
the center of the chamber. A horizontal slit one inch
long and 0.020 inch high was mounted in the center
of the chamber directly behind the absorbers. This slit
was formed by two pieces of gold —,'6 inch thick. The
adjustable aperture and adjustable collimating slit in
front of the ionization chamber were edged with pieces
of gold 8 inch thick, as described in the previous work. '
Gold was chosen as the slit edging with the idea that
electrons impinging on the slit edge would be scattered
completely out of the beam or be so degraded in energy

~ Lyman, Hanson, and Scott, Phys. Rev. 84, 626 (1951).' Scott, Hanson, and Lyman, Phys. Rev. 84, 638 (1951).


