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Three phenomenological descriptions of p-P scattering have been proposed to date, two of which, the
singular tensor-force model of Christian-Noyes and the L S force model of Case-Pais, are characterized
by a singular triplet potential. The Jastrow model introduces a hard core in the singlet interaction. The
parameters of these various potentials were all determined, in part, by use of Born approximation estimates
of triplet scattering cross sections at high energies. Inasmuch as the validity of such estimates is not clear
in those cases where the interaction is singular, more exact calculations have been performed at 240 Mev
with the singular potentials (and also, for comparative purposes, with the well-behaved triplet interaction
of Jastrow) using Schwinger s variational method and/or numerical integration procedures. Such calcu-
lations have also been performed at 450 Mev for the singular tensor-force model. To insure the existence
of solutions, a zero cutoB has been introduced in the singular potentials at distances of the order of the
nucleon Compton wavelength.

It is found that, in all instances where the potential is singular, the Born approximation and the use of
Born approximation trial functions in a variational treatment are completely unreliable. More exact calcu-
lations of the differential scattering cross sections than those in Born approximation introduce large aniso-
tropies in the case of the singular interactions and, in particular, in the case of the L S potential. The
hard-core model, on the other hand, is in qualitative agreement with experiment.

Also discussed are the results of calculations of polarization effects in a double P-P scattering and their
implications for the various potentials considered.

I. INTRODUCTION

~

~

ITH tne advent of high energy accelerating
machines, the range of energies available in p-p

scattering experiments has progressed beyond the
classical domain of less than 10 Mev' so as to include
energies up to 450 Mev. Scattering in the classical
domain is consistent with pure S-wave scattering in
singlet states. It is nonetheless clear' that this can only
provide knowledge of two parameters, the scattering
length and the effective range, and leaves undetermined
the shape of the potential. In addition, no knowledge
can be obtained of scattering in triplet states. It was
accordingly believed that experiments at higher energies
which would include contributions from higher angular
momentum states would provide a more unique phe-
nomenological description of the proton-proton inter-
action.

As experiments were pushed to higher energies, it
became increasingly evident that the predictions of
conventional central-force potential models, adjusted
so as to explain the low energy scattering data, would

be in complete contradiction with experiment. These
predictions are characterized by a preponderance of
scattering in the forward direction and relatively negli-

gible scattering at 90'; in contrast to this, experiments
give a fairly isotropic distribution after one takes into
account the Coulomb scattering at smaller angles. In
Fig. 1, we have indicated the general behavior of the
differential cross sections as obtained at 32 and 345 Mev

*This research was supported in part by the AEC.' Energies quoted correspond to the kinetic energy of the inci-
dent proton as measured in the laboratory system.' J. Schwinger, Harvard lecture notes (1946-47) (unpublished);
H. A. Bethe, Phys. Rev. 76, 38 (1949); G. Breit, Revs. Modern
Phys. 23, 238 (1951).

at Berkeley' and as obtained at 240 Mev at Rochester. 4

The isotropy at the two higher energies persists down
to angles' less than 15' below which occurs the expected
rise due to Coulomb scattering. Other data not shown
in the figure give the same characteristic Qatness at 105
Mev' and at 146 Mev, ' with the magnitude of the
diGerential cross section 5 mb corresponding to the
cross section reported by the Rochester group. There
is still a discrepancy of 1 mb in magnitude between
results quoted by the Berkeley group and those quoted
by others; however, there is general agreement as to the
angular dependence.

Although the parameters of the singlet potentials are
predetermined by the low energy results, there is still
freedom in the choice of the triplet potential. Since the
anomalous high energy scattering cannot be accounted
for in terms of central forces, one is led to consider the
only other interactions which may occur in the p-p
system subject to the restriction that the velocities
appear in no higher power than the first, vis. , tensor
(5~2) and L S forces. ' We shall refer to these, collec-
tively, as spin-orbit forces, Various phenomenological
models have been suggested using spin-orbit coupling;
in particular, Christian and Noyes' have employed a
tensor force, whereas Case and Pais" have proposed an

' Chamberlain, Segrh, and Wiegand, Phys. Rev. 83, 923 (1951);
W. K. H. Panofsky and F. Fillmore, Phys. Rev. 79, 57 (1950);
Cork, Johnston, and Richman, Phys. Rev. 79, 71 (1950).

4 C. L. Oxley and R. D. Schamberger, Phys. Rev. SS, 416
(1952); O. A. Towler, Phys. Rev. 85, 1024 (1952).

~Angles of scattering correspond to those measured in the
center-of-mass system.

Birge, Kruse, and Ramsey, Phys. Rev. 83, 274 (1951).
~ Cassels, StaGord, and Pickavance, Nature 168, 468 (1951).
L. Eisenbud and E. Wigner, Proc. Nat. Acad. Sci. 27, 281

(1941).
9 R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).' K. M. Case and A. Pais, Phys. Rev. 80, 203 (1950).
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FIG. 1. Experimental differential cross sections for p-p scattering
at 32, 240, and 345 Mev.

alternative description in terms of L S forces. In both

cases the interactions are singular, the former varying

near the origin as 1/r' and the latter as 1/r'. Jastrow, "
on the other hand, has proposed a well-behaved triplet

tensor potential in conjunction with a repulsive core in

the singlet interaction. All of these models were adjusted

so as to fit the low energy and 32-Mev data, and Born

approximation estimates were made of the scattering

at 350 Mev (except for the singlet scattering with the

hard-core potential for which exact calculations were

performed). The parameters of the different models

are shown in Table I.
In view of the singular nature of both the L S

potential of Case and Pais and of the tensor potential

of Christian and Noyes, the validity of the Born

approximation, even at high energies, is uncertain, and,

for this reason, more exact calculations are highly

desirable. Accordingly, calculations with these models

have been performed using variational and numerical

methods in integrating the diRerential equations. In
order to insure the existence of solutions to the scat-

tering problem, a zero cutoR has been introduced in

the singular potentials at distances of the order of the

nucleon Compton wavelength. The calculations, which

we describe here, are confined to 240 Mev in line with

"R.Jastrow, Phys. Rev. 81, 165 (1951).

experiments currently in progress at the Rochester
130-inch cyclotron. Calculations have also been per-
formed for the singular tensor force at 450 Mev (the
Chicago energy) in order to obtain an estimate of the
energy dependence for a singular potential. The results
bear out that, at these energies, the Born approximation
is, indeed, poor for these potentials. Comparable calcu-
lations performed with the Jastrow model which has a
well-behaved triplet potential show that the Born
approximation is much better, as expected. The re-
sultant cross sections and their implications for the
various potential models considered will be discussed
in Sec. III following a brief resume of the methods used
in the computation which is given in Sec. II.

A particular consequence of spin-orbit forces is that
they lead to a mixing of the triplet spin states so that,
after a single p-p scattering, the outgoing particles are
polarized. "A second scattering of these particles results
in a distribution exhibiting an azimuthal asymmetry.
Since polarization eRects are con6ned to triplet states,
and the relative importance of scattering in these states
increases with energy, such eRects might very well

provide a means of distinguishing among various

potential models which can be adjusted to fit the
unpolarized cross sections. " Calculations of the polar-
ization eRects have accordingly been performed for
each of the three potential models considered in this

paper despite the fact that the agreement with the

ordinary scattering cross-section data is, in some cases,

poor. The results of these calculations are discussed in

Sec. IV.

II. METHODS OF CALCULATION

The analysis which follows is based entirely on the
nonrelativistic Schrodinger equation. Actually, rela-

tivistic corrections involving both dynamic and kine-

matic eRects begin to assume importance at the energies

which we are considering and, at 240 Mev, can amount

to 15 percent. ' Hence, one must allow for deviations

of this order of magnitude in making any comparisons

with experiment.
The differential cross section in the center-of-mass

system for the scattering of a beam of unpolarized

protons by protons for the general case of spin-orbit

forces, taking into account the identity of the particles,
can be written, in the notation of Ashkin and Wu,"as

ms its r

"J. Schwinger, Phys. Rev. 69, 681 (1946); L. Wolfenstein,
Phys. Rev. 75, 1664 (1949).

"We should like to thank R. E. Marshak for suggesting the
use of polarization eBects as a test of potential models which
suggestion served as the initial motivation for the present investi-
gation.

'4 H. Snyder and R. E. Marshak, Phys. Rev. 72, 1253 (1947);
see also reference 10.

'~ J. Ashkin and T. Y. Wu, Phys. Rev. 73, 973 (1948).
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where the singlet amplitude is given by

S,(8) =(1/2ik) P t-C (2L'+1)]-:
even L'

X{exp(2i8')—1}Yz,'(8), (2)

and the triplet amplitude by

L+1
Sm, m, (8, y) =(1/2ik) P P [4m.(2L+1)]l

odd L J=I—1

X {exp(2i8""')—1}(SLm, m, 'm, '~—SLY,)
X(SLY,iSLOm, )Yg '(8 p). (3)

Here, 5L is the singlet phase shift corresponding to the
partial wave of orbital angular momentum L', and 6LJ '
is the triplet phase shift corresponding to the orbital
angular momentum I and total angular momentum J
with s-component m, . The spherical harmonics I L '
and the expansion coefficients (SLY&,—m, 'm, '~SLIT,)
are as de6ned in Condon and Shortley. "The magnitude
of the momentum of each proton in the center-of-mass
system is given by Ak.

It is clear from our introductory remarks that our
essential problem is to obtain a more accurate estimate
of the triplet scattering cross section than is given in
Born approximation for the various potential models
considered. In discussing methods of computation of
triplet phase shifts, we shall for the sake of generality
assume that the spin-orbit interaction includes a tensor
force so that we have to deal with both coupled and
uncoupled radial wave equations.

Three methods were adopted for the calculation of
the triplet phase shifts. Generally speaking, phase shifts
corresponding to small values of angular momentum
were calculated by variational and/or exact procedures.
The remaining phase shifts were always included in the
scattering amplitude in Born approximation. The
computation of phase shifts in Born approximation for
spin-orbit forces is well known and will not be discussed
here 10, 15

The variational treatment of coupled and uncoupled
states was carried out using the procedure of Schwinger. "
It will be recalled that the scattering is considered in
the parity representation which is designated by the
quantum numbers (—)~, S, J, m, where, for a given
value of J, there are two modes or scattering eigenstates
corresponding to the coupling of the I=J—i and
L=J+1 states, and one mode corresponding to L=J.
In the p-p system, the situation is somewhat simplified
in that, for even values of J, one can have only I.=J&1,
and for odd values of J, only I=J. The variational
treatment of the uncoupled states is comparatively
straightforward and will not be discussed further except
to note that the trial functions used were 6' krj ~(kr), =
where j~(kr) =(~/2kr)&J'+g(kr)

"E.U. Condon and G. H. Shortley, Theory of Atomic Spectre
(The Macmillan Company, New York, 1935), p. 76.

' F. Rohrlich and J. Eisenstein, Phys. Rev. 75, 705 (1949}.

Potential model
Singular tensor

force Hard core L .S force

Singlet
potential

Triplet
potential

re in 10 13cm
rg in 10»cm
rp in 10»cm
V, in Mev
Vg in Mev

—Ve, r&r,
0, r&re

e "/"g
VgS12(

/ )2

2.6
1.6

"~ r &rp
Veg (r-rp)/re r)rp

VgS1ge r/rg

Parameters

0.40
0.75
0.60

375—50.8

g-r/re—Ve
r/re

L S d e-r/«
Vg

(r/rg) d(r/rg) r/rg

1~ 18
1.07

45.8
+29.8

"W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).

The coupled modes are characterized by the wave
functions (I' F~ i'™+wgFg+i'™)/rand (u'&Fg i
+w'&F'+i'")/r, where n and y label the two modes
and where the Ig LJ" are the normalized spin spherical
harmonics. "The essential property of the scattering
eigenstates is that, asymptotically, for each mode, NJ
and m J involve the same real phase shift. A variational
expression can be obtained for kcotbJ in terms of the
functions NJ and m J for which appropriate trial func-
tions can then be chosen, say, u'and $qw'. Two values
of $', vis. , $z and $z&, are then determined by requiring
kcotbJ to be stationary with respect to variations in

$', leading finally to the two phase shifts 8' and 8'&.
In our calculations, tcJ and toJ were chosen to corre-
spond to Born approximation functions, i.e., uJ
=krj+ i(kr) and Sz=krj ++i(kr).

The scattering, for each mode, is determined not
only by the phase shift but also by the constant
asymptotic ratio of —mz/uz which we call the amount
of admixture gJ. An integral expression for gJ can be
obtained in terms of the functions NJ and mJ which
one can again replace with the trial function uJ and
$'O'. The two amounts of admixture g" and g'& are
not independent but satisfy

1+pe gg&=O.

It is to be noted that the scattering amplitude
involves three independent parameters for a given even
value of J, vis. , bJ, 6J7 and qJ . On the other hand,
in the I.SJm representation, the phase shifts 8J+]
and 6J+1 ' are complex so that one apparently has eight
parameters but only three are independent. " It is to
be borne in mind that it is only the phase shifts 8J
and 8J& which are computed by a variational principle
but not the amount of admixture q J .

The Born approximation in the parity representation
is obtained from the variational formulation by assum-
ing the potential to be a small perturbation, so that
only leading terms in the potential are considered. We
again use trial functions corresponding to plane wave
solutions. It then follows that the amount of admixture
is unaltered from its value assumed in the trial function,
resulting in the equality q'= $'. This definition of the

Tax,z I. Parameters for phenomenological p-p potential models.
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Thsx,z II. Singlet phase shifts for the singular tensor-force
model at 240 Mev.

where
D„=2—6'h(x ).

bJ, (Born)

0.232
0.232
0.032

0.261
0.237
0.035

Phase
shifts

rc =0.84ff1/~&
Vf in Mev

-18 18
Varia- Varia-
tional tional Exact Born

rc ——1.40&/Mi
p'f =18 Mev

Varia-
tional

b100 +0.897 —0.521 1.119 2.570 0.884 1.067 1.8105

~0.449 O.559 -0.337 —O.3345 —O.442 —O.338 -0.3379

Tash III. Triplet phase shifts for the singular tensor-force
model at 240 Mev.

Clearly, if No, mo and N1, m1 are known, then I and m

can be extended into the asymptotic region by simul-
taneous application of (7) and (10).The choice of 6 is
governed by consideration of the error involved in
neglecting the fourth and higher order derivatives. In
practice, it is convenient to integrate the differential
equations as far out from the origin as possible in terms
of power series expansions and then to extend these by
the numerical procedure.

%e can generally 6nd two independent sets of u and
which are regular at the origin. '0 If these solutions

are m, m, and N~, m~, a %ronskian condition holds,

u~us —usu~ +wows —wswg =0, (12)
120 ~0 Q35

$120 0
K220 ~0.024
f220 0

K121 &0.173
$121 0
X221 +0.184
$221 0

0.233—0.006—0.033
0.004

0.198
0.004—0.068—0.006

0,020
0.005-0.029—0.004

0.202—0.004
0.153
0.005

0.1268
0.0223—0.0399—0.0139

0.3386—0.0139
0.1719
0.0223

—0.037
0—0.024
0

0.172
0
0.184
0

0.018
0.005—0.029—0.003

0.200—0.003
0.154
0.005

0.1108
0.0203—0.0405—0.0127

0.3237—0,0127
0.1725
0.0203

which supplies a useful check on the numerical analysis.
The phase shifts themselves are determined by forming
the appropriate linear combinations which asymptoti-
cally represent the incident plus outgoing spherical
waves.

—0.862
b2+ +0.176
be ~0.029

0.069
0.214—0.049

—0.627
0.186—0.013

b2~1 W 0.074 0.077 —0.071

-0.4093
0.2994—0.0007

-0.867
0.177-0.029

—0.634
0.185—0.013

—0.074 —0.071

-0,4324
0.2864—0.0032

III. UNPOLARIZED SCATTERING CROSS SECTIONS

(a) Singular Tensor-Force Model

%e And, similarly,

B„=2 6f(xs„), —
C = —LPg(x„).

~n+1= Date+ ron 1+Cn—u g— a t

"L. Feinstein and M. Schwarzchild, Rev. Sci. Instr. I2s 405
(i941).

Born approximation in the parity representation is
equivalent to that in the I.SJm representation provided
one consistently neglects terms in 8'.

By an exact procedure, we mean a numerical inte-
gration of the differential equations. The solution of
uncoupled equations was carried out using the particular
method of Feinstein and Schwarzchild. "The extension
to coupled equations was carried through as follows.

The differential equations take on the general form

u"(x)+f(x)u(x)+g(x)ro(x) =0,
~"(x)+a(x)~(x)+g(x)u(x) =0, (5)

where u(x)/x and to(x)/x are the radial wave functions
for 1.=J—1 and I,=/+1, respectively. Now consider
the Taylor series expansions about x of u(x&6). Then

u(x+6)+u(x —6)=2u(x)+6'u" (x)

+(h4/12) u'"(x)+ . . (6)

Neglecting (6'/12)u"(x) and denoting x+ssA by x„
and u(x„) by u„, we have

Christian and Noyes' attempted a 6t of both the
32-Mev and 345-Mev p-p data without seeking to
maintain the charge-independence hypothesis. On the
basis of the lower energy data, they chose for the
singlet potential a square well since potentials of other
conventional shapes yield too much small angle scat-
tering. Since the singlet potential contributes only to
forward scattering at the higher energy, most of the
scattering must take place in triplet states. In conse-
quence of the large momentum transfers which are
required, i.e., large cross sections at large angles, they
were ultimately led to choose a triplet potential which
is singular at the origin and of the form Vt„~
= V~Stss */x', where x= r/r~ (see Table I for the values
of the parameters). Good agreement is obtained with
the 32-Mev data, and Born approximation estimates
give a fairly Aat cross section for angles greater than
30' at 345 Mev. It is to be noted that no choice of
sign was made for Vg since the analysis at 32 Mev is
still conhned to exploring the tail of the potential.
This holds even though one might have expected the
Coulomb-nuclear interference to be sensitive to the
choice of sign.

In actual fact, it is known that solutions to the
scattering problem may not exist for potentials which
have a 1/r' singularity at the origin. "Considering, for
the moment, the radial equations corresponding to the

~ If the potentials are so singular that no such solutions can be
found, a cutoff can be applied at x=x, to the potentials, in which
case the solutions for x&x. are obtained by equating values and
derivatives at x= x,. to those of the inside solutions.

~'N. F. Mott and H. S. W. Massey, The Theory of Atomic
Coffsssoes (Oxford University Press, Oxford, 1949), second edition,
p. 40.
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uncoupled I'o and I'» states for either sign of V~, we have

(up~™)"+(1—2/x' —XJc *'x/x')u, ~"=0) J=O, 1 (13)
where x= kr, K= kr~, ) o= W4.444, X»= ~2.222 for
V~=&18 Mev. For small x, the solutions of this
equation are given by xj„(x), where v(v+1) =2+hz.
Since xj„(x) x"+' when x 0, well-behaved solutions
exist provided v~& 0."Thus, we must have

v = -',[—1a(9+4KJ)&]&~0, (14)
or XJ ~&

—2. Regardless of the sign of V~, this relation
cannot be satis6ed for both J=O and J=1. If —2.5
&Xz& —2, both radial wave functions u(x)/x are
unbounded at the origin; however, one is less singular
than the other. If the potential is so attractive that
XJ ~&

—2.5, the wave functions e(x)/x behave as
x~ exp[& —',i(~ 9+4Xq~)'* logx] near the origin, oscillate
rapidly and their proper linear combination is unknown.
Therefore, in order to insure the existence of well-
behaved solutions for the J=0 and J= 1 partial waves,
we have introduced a zero cutofF in the triplet potential
from the origin to distances r, 5/3fc. The introduction
of such a cutofF would of course, at the same time,
guarantee the existence of well-behaved solutions for
coupled or uncoupled states corresponding to higher
angular momenta; in actual fact, such solutions do
exist in these states in the absence of a cutoG. It is
clear that these considerations are independent of
energy.

Table II lists the singlet phase shifts for the singular
tensor-force model at 240 Mev. Since the shape of the
singlet potential is that of a square well, exact analytical
solutions are easily found, and comparison with Born
approximation phase shifts illustrates the good agree-
ment to be expected at high energies for well-behaved
central potentials. The cross section due to singlet
scattering alone is contained in Fig. 3 and is seen to be
peaked in the forward direction and to fall o6 rapidly
with increasing angle. The concentration in the forward
direction is due to the constructive interference of the
even Legendre polynomials at 0' and the destructive
interference at 90' (the phase shifts are all of the same
sign).

In virtue of the coupling of difFerent angular momen-
tum states, the triplet phase shifts for even J (with the
exception of the degenerate case J=O) are all complex;
in the parity representation, they are real. Phase shifts
for odd J correspond to uncoupled states and are
consequently always real. Table III incorporates the
results of Born, variational and exact calculations of
phase shifts for J~&3 at 240 Mev for two choices of
cut-off radius, r,=0.84k/Mc and r,= 1.40k/Mc. In the

. case of the coupled phase shifts, we use the notation
8r, ~ =Er,~ +if l,~ ' Also listed are .the corresponding
quantities bg, 8gl' and g J in the parity representation. "

~ For a solution to be well-behaved, the radial wave function
N(x)/x must be finite when x=0.

~ We adopt the convention that, qJ~ is always less than one in
absolute value.

The variational calculation for r, =0.845/Mc was
performed for both signs of Vg. Comparison with the
Born approximation shows that considerable changes
occur for V~ = —18 Mev, and the resultant cross section
as shown in Fig. 2 is very anisotropic. '4 A more reason-
able cross section is obtained with V~=+18 Mev, and
this choice of sign was hence used in all further calcu-
lations and is implied throughout the following dis-
cussion. "

The uncoupled phase shift 8»" corresponds to a
repulsive potential, and there is very good agreement
between the variational and the exact values. On the
other hand, 8»" corresponds to a strongly attractive

20
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O
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~10

~ 8

z~ 6
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LLI

u 4

VAR. C ALC.
V = -i8MEV
t I I

30 60
SCATTERING ANGLE

F»G, 2. Differential scattering cross sections for the singular
tensor-force model at 240 Mev corresponding to Born approxi-
mation and variational treatments of the triplet scattering
{V&=+18Mev, r.=0.84k/Mc). In the latter case, phases withJ~&3 were included in variational treatment, higher J phases in
Born approximation. The singlet scattering cross section is exact.

'4 Throughout this paper, Born approximation cross sections
always correspond to those obtained by replacing exp{2ibz) —1 in
the scattering amplitude by 2ib&, where Bz represents the Born
approximation phase shift.

"The fact that there is moderate agreement between the Born
approximation cross section and that obtained by the variational
method for one sign of the potential, V&=+18 Mev, but not for
the other, is to be regarded as quite fortuitous in view of the large
differences in the phase shifts as obtained by the two procedures.
It is evident from Fig. 3 that more exact calculations for the case
V~=+18 Mev maintain the correspondence in cross section with
that given in Born approximation, although the phase shifts
differ considerably {see Table III). This conclusion has also been
reached by Don R. Swanson I Phys. Rev. 87, 208 {1952)).
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FIG. 3. Differential scattering cross sections for the singular
tensor-force model at 240 Mev corresponding to exact treatment
of triplet scattering for two values of cut-off radius (V~ ——18 Mev).
Phases with J~& 2 were calculated exactly, those with J=3, 4,
and 5 were included in variational treatment, higher J phases in
Born approximation. Also shown is the exact singlet cross section.

potential, and the variational calculations, while giving
results which approach the correct ones, are neverthe-
less still far from adequate. This particular phase shift
depends in a sensitive way on the cut-off radius as is to
be expected in view of the fact that no phase shift
exists at all in the absence of a cutoff. It is to be noted
that the coupled phase shifts are not very sensitive to
the change in cut-off radius which is again reasonable
since well-behaved solutions exist even without the
cutoff.

For purposes of simplicity, it is best to compare the
results for the coupled states in the parity representation
(see Table III). Here, the inadequacy of the Born
approximation trial functions is clearly indicated by the
large changes in the amount of admixture q2 as one
proceeds from the Born approximation to the varia-
tional calculation, and then to the exact calculation.
Note that a comparison of Born approximation with

variational estimates for the phase shifts in the more

complicated LSJm representation can be misleading,

although the agreement with the exact results is, in

any case, inadequate.
The cross sections corresponding to the exact phase

shifts for 7=0, 1, 2 and the two choices of cut-off

TABLE IV. Triplet phase shifts for the singular tensor-force model
at 450 Mev (V~=18 Mev).

1.02 1.02
r& in 6/Mc

0.84 1.40
Phase
shifts Born Variational E'xact E~xact

Elm
$120

X3~
gm

+ 21

g 21

E 21

g 21

g 31

n2
g a
$2'Y

1.093

—0.546

—0.041
0—0.009
0

0.210
0
0.241
0

—0.113

—0.928
0.223—0.023

1.160

—0.409

0.010
0.003—0.017—0.002

0.201—0.002
0.175
0.003

—0.108

—0.711
0.191—0.007

2.4135

—0.4406

0.1992
0.0364—0.0352—0.0216

0.4373—0.0216
0.2030
0.0364

—0.3599
0.3996
0.0125

1.7085

—0.4373

0.1629
0.0316—0.0376—0.0190

0.4065—0.0190
0.2060
0.0316

—0.3987
0.3615
0.0074

radius, 0.84k/Mc and 1.40A/Mc, are shown in Fig. 3.
Phase shifts corresponding to J=3, 4, 5 were computed
by means of the variational method and found to be
generally small ((0.05). Higher angular momentum
phase shifts were inserted into the scattering amplitude
in Born approximation. The cross sections remain
essentially Rat at 4.4 and 6.4 mb, respectively, between
45' and 90' and show a rapid rise at smaller angles.
Thus, below 25', the rise of singlet scattering to values
greater than 5 mb renders impossible any satisfactory
6t in this region. The experimental cross section at 90'
corresponds to an intermediate value of r,.

Calculations have also been made of the scattering
cross sections at 450 Mev. Potential models become
quite questionable at these energies; nonetheless, it is
of interest to study the qualitative predictions of the
present nonrelativistic theory in the absence of any
better theory.

Table IV includes the 450-Mev phase shifts for J& 3
as obtained in Born approximation, by variational
treatment and by exact calculation. At this energy, the
Born approximation appears to be even more unreliable.
The fact that the cut-off radius used for the Born and
variational calculations was 1.02k/Mc does not prevent
a comparison of the results as obtained by the various
methods except for the 8~ ' phase shift.

If we compare the results of the exact calculations as
the energy is varied from 240 Mev to 450 Mev (see
Tables III and IV), we see that 8P' is altered only
slightly, while the other phase shifts show increases of
roughly 40 percent. The cross sections as shown in
Fig. 4 are similar in shape for both values of cut-o6
radius, the difference at 90' being 0.7 mb in contrast
to 2 mb at 240 Mev. The rise at small angles is again
a manifestation of the singlet scattering.
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TABLE V. Triplet phase shifts for hard-core model at 240 Mev.

Phase shifts Born

—0.555

Variational

—0.546

(b) Hard-Core Model

An attempt to give a phenomenological description
of p-p scattering within the framework of the charge-
independence hypothesis has been made by Jastrow. "
There is introduced in the singlet state an infinite
potential barrier at small distances surrounded by an
attractive exponential well. The presence of the repul-
sive core allows for agreement with the 32-Mev data
even though an exponential well is used. At high
energies, the main efkct of the core is to change the
sign of the 5-phase shift with respect to the sign of the
D, t, . phase shifts. The resultant 5-D interference
is such as to diminish the singlet scattering at small
angles and to enhance it at 90' which is in sharp
contrast to the singlet scattering observed for the
singular tensor-force model. In triplet states, the hard-
core model has an exponential-well tensor force (the
parameters of the singlet and triplet potentials are
included in Table I). In comparing the predictions of
the hard-core model for scattering at high energies
with experiment, the singlet cross section was evaluated
exactly, while the triplet scattering was calculated in
Born approximation only. " The latter is peaked at

45' and combines with the singlet scattering to give
reasonably Qat cross sections.

In order to test the validity of the Born approxima-
tion for the case of a well-behaved spin-orbit potential,
a calculation of the triplet scattering has been performed
at 240 Mev using the variational procedure. The Born
approximation phase shifts together with those obtained
by use of the variational method are listed in Table V.
It is evident that the plane-wave trial functions are in
this case reliable, as is to be expected.

In Fig. 5, we compare the differential scattering cross
section obtained in pure Born approximation with an
improved cross section based on the variational esti-
mates of the triplet phase shifts for 7~&3 (higher
angular momentum states, as always, being included
in Born approximation). For the singlet scattering, we
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FIG. 4. Differential scattering cross sections for the singular
tensor-force model at 450 Mev corresponding to exact treatment
of triplet scattering for two values of cut-off radius (V~=18 Mev).
Phases with J~&2 were calculated exactly, those with J=3, 4,
and 5 were included in variational treatment, higher J phases in
Born approximation. Also shown is the exact singlet cross section.

have used the exact cross section as abstracted from
Jastrow's published curve at 250 Mev, the variation
in cross section over the energy interval 240—250 Mev
being considered inconsequential. Unlike the case of
the singular tensor-force model, the corrections intro-
duced by the variational treatment are quite small

((0.3 mb for 8) 30')." In view of the nonrelativistic
nature of the calculations and of the present experi-
mental discrepancy as to the magnitude of the cross
section, the quantitative agreement is encouraging.

(c) L S Force Model

g 20

$120

+ 20

$320

g 21

y 21

+321

t- 21

g 31

n2
g a
$2'Y

0.277

0.047
0
0.004
0

—0.124
0—0.166
0

0.080

0.952
0.024—0.143

0.282

0.042—0.005—0.009
0.003

—0.115
0.003—0.166—0.005

0.082

0.877
0.016—0.137

Case and Pais" incorporate in their model the other

type of spin-orbit force which can act between two
protons, ~is. , the L S force. They also try to retain
the charge-independence hypothesis. The model, as
proposed, can only be considered qualitatively since no
attempt was made to 6t the low energy data with any
degree of precision. For example, the singlet potential
was chosen to be of Vukawa shape; actually, this would

20 En the text, we have confined ourselves to one sign of the
odd-parity force, vk. , V&= —50.8 Mev. For the other choice of
sign, Vf ——50.8 Mev, the deviations of the results of the variational
calculations from those of the Born approximation are somewhat
larger (&0.7 mb). The resultant differential cross section is
smaller than that in Born approximation except at small angles.
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lead to too much small-angle scattering at 32 Mev. The
triplet potential is very singular, varying as 1/r' in the
neighborhood of the origin, and only Born approxima-
tion estimates were used to determine the parameters
of the model. The extreme singularity cannot, of course,

FiG. 5. Differential scattering cross sections for the hard-core
model at 240 Mev corresponding to Born approximation and
variational treatments of the triplet scattering. In the latter
case, phases with J~&3 were included in variational treatment,
higher J phases in Born approximation. Also shown is the singlet
scattering cross section which is exact.

TABLE VI. Triplet phase shifts for L S force model at 240 Mev.

Phase shifts
&29.S
Born

V~ in Mev
29.8

Variational

—29.8
Variational

be taken literally" and, in making more exact calcu-
lations, we have accordingly introduced a zero cutoff
at r, = A/Mc.

In the LSJm representation, the operator L S has
definite eigenvalues, so that states corresponding to
difFerent values of L are unmixed in the presence of the
interaction. Hence, the phase shifts are all real.

Table VI shows the results of variational calculations
of the triplet phase shifts for both signs of VP (the
actual parameters employed with the model are listed
in Table I). We note that the P-phase shifts change
rather considerably in going from the Born approxi-
mation to the variational estimates. In view of the
singular nature of the potential, one can expect further
large changes in performing an exact calculation. For
example, for V&=29.8 Mev an exact calculation of the
P'2-phase shift was performed giving 8~' ——0.539. Al-
though the results of the variational calculation can-
not be taken too seriously, the large deviations from
the Born approximation are significant.

The corresponding cross sections which are plotted
in Fig. 6 illustrate the complete inadequacy of the Born
approximation for this type of potential. In fact, the
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qualitative fit with experiment obtained in Born
approximation is almost wholly destroyed by the vari-
ational calculations. Inasmuch as the parameters of the
present model were originally based on a Born approxi-
mation analysis, there appeared to be no point in
carrying out more exact calculations.

IV. POLAMZATION EFFECTS

Consider the scattering, in their center-of-mass sys-
tem, of unpolarized protons by unpolarized protons.
In the presence of spin-orbit forces, it can be shown
that the outgoing particles will be polarized in a
direction normal to the plane of scattering. " Thus, if
we consider that the incoming particles move in the
s-direction, then, particles scattered through an angle
0~, p~ will generally have a nonzero expectation value

FIG. 6. Differential scattering cross sections for the L S force
model at 240 Mev corresponding to Born approximation and
variational treatments of the triplet scattering (U~=&29.8 Mev,
r, =k/Mc). In the latter case, phases with L~&3 were included in
variational treatment, higher L phases in Born approximation.
Also shown is the singlet scattering cross section calculated in
Born approximation.

"This was clearly recognized by Case and Pais who note that
their Born approximation results are only qualitative (see refer-
ence 10)."If we put aside the question of charge independence and do
not consider the n-p interaction, then the analysis of Case and
Pais does not uniquely fix the sign of the triplet p-p force.

~ L. Wolfenstein, Phys. Rev. 75, 1664 (1949); 76, 541 (1949);
82, 308 (1951).



p —p SCATTERING 1107

for the y-component of the spin which is given by

Im P Som (Slm *—S-1m *)

8w(k4 84 4'&) = (15)
(2)& fSsJs+ Q fSm, ', js

0.45—

0.40—

where k~, the momentum of either particle, and B„are
in units of k. For convenience, we consider particles
scattered through 0~, &~=0', since a„will then represent
the only nonvanishing component of the polarization.
If the polarized particles are now scattered again by an
unpolarized proton target, then a consideration of the
scattering in their center-of-mass system shows that
the intensity of outgoing particles will have an azi-
muthal asymmetry given by

I=Is(kr, ks~ 8~& 8&)l 1+28„(kr, 8r, Pr ——0')
XP(ks, 8s, A)], (16)

where the y2-axis is parallel to the y&-axis of the irst
scattering and the s2-axis is in the direction of incidence
of the polarized beam. Io represents the unpolarized
intensity. According to Wolfenstein and Ashkin" and
Dalitz, "

0.35—

0.30—

0.25

0.20

O. I 5

O. I 0

0.05

so that
P(k, 8, y)=28„(k, 8, y), (17)

30 60 90

I=Is(k rks, 8r, 82)71+P(k» 8r, fr=0')
XP(k2, 8s, Q,)]. (18)

This last expression can be further simplified if one
neglects the degradation of energy of the proton in the
first scattering. This approximation is a reasonable one
for the cases of interest to us since the largest polar-
ization eGects occur in the neighborhood of 45' in
the center-of-mass system (on general grounds s'

P sin8cos8cosgg a„cos'"8), and, corresponding to
this angle of scattering, a particle initially having a
kinetic energy of 240 Mev in the laboratory system
will come oG with 205 Mev.

Hence, assuming 8&
——8s ——8, and k& ——ks ——k, Kq. (18)

becomes

SCAT T ER ING ANGLF

FIG. 7. Asymmetries in a double p-p scattering for singular
tensor-force model at 240 and 450 Mev for (a) r,=1.40k/Mc,
(b} r, =0.84k/Mc. The phases correspond to those used in Figs.
3 and 4.

of the potential models which we have considered. The
results are shown in Figs. 7—9. As expected, the maxi-
mum in 28 tends to occur at 0 45'. In the case of the
singular tensor-force model, 28,„is 0.18 and 0.28 for
the energies 240 and 450 Mev, respectively, if we choose
the cut-off radius r,= 0.84k/Mc; the polarization effects

where
I= Io(k, 8)$1+ b(k, 8) cosy],

5(k, 8)=LP(k, 8, ~)] ='
(19)

(20)
0.0 2

Perhaps the more interesting quantity from an
experimental point of view is 25, which we shall refer
to as the asymmetry in a double-scattering experiment:

O. Q l

I(4 =0') -I(4 = Ig0')
28=

I(&=90')
(21)

It is a straightforward matter to use the variational
and/or exact triplet phase shifts computed in Sec. III
in conjunction with the above formulas to evaluate the
polarization effects in a double p-p scattering for each

L. Wolfenstein and J. Ashl. in, Phys. Rev. 85, 947 (1952).
n R. H. Dalitz, Proc. Phys. Soc. (London) A65, 175 (1952).

30 60

SCATTER tNG ANGLE

90

Fzo. 8. Asymmetry in a double p-p scattering for the hard-core
model at 240 Mev. The phases correspond to those used in
Fig. 5.
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have been proposed to describe the p-p interaction,
has been to modify strongly the previous predictions
for those potentials which are singular. Indeed, the use
of Born approximation trial functions in the variational
procedure is, in itself. , inadequate for these cases.

The singular tensor-force model of Christian and
Noyes, which was treated exactly, now presents only
moderate agreement with experiment for the choice of
sign V& ——+18 Mev, but only for angles greater than
45'. The predominance of singlet scattering at lower
angles introduces too much anisotropy, so that devia-
tions from experiment become considerable. The large
corrections, introduced by the variational treatment of
the L.S force model of Case and Pais, lead to an even
less encouraging picture, While it is conceivable that
more exact calculations would remove the large ani-
sotropies, there is no a priori reason to expect this.
On the other hand, the predictions of Jastrow's hard-
core model are essentially unchanged on performing a
variational calculation for the triplet scattering (which
is reliable for this case). The cross section is reasonably
Rat, although its magnitude is somewhat low.

It must be emphasized that the preceding remarks in
regard to the singular potentials are based on calcula-
tions performed with a zero cutoR at distances of the
order of the nucleon Compton wavelength. It is always
possible that a better fit with experiment might be
obtained with a diRerent choice of cutoR. In any case,
the exact nature of the cutoff must be taken seriously.

The asymmetry in a double p-p scattering experiment
was calculated in order to provide an additional means
for distinguishing among the potential models. On this
basis, the hard-core model which is found to yield small
asymmetries is quite diRerent from the singular tensor-
force potential which predicts large asymmetries. The
L S potential also predicts large asymmetries, but it
must be emphasized that this model, particularly, gives
a poor 6t with experiment. Finally, we should like to
reiterate that the foregoing analysis is completely non-
relativistic, and it is quite possible that polarization
eRects, in particular, would be modi6ed in a more
consistent relativistic theory.

We should like to thank Professor R. E. Marshak for
useful discussions.
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An analysis employing the recent nuclear reaction theories of
Wigner and others is given of the experimental data on the low
energy interactions of s, p, d orbital neutrons and protons with C"
and s neutrons and protons with 0".Assuming the equality of
rIn and PP nuclear interactions, it is possible to account for the
data on the s interactions if the level spacing is considered in
addition to the customary two resonance parameters: reduced
width and level position; in particular, the displacement of con-
jugate levels can be attributed to the difference of the external
wave functions for the odd particle, ajthough with an uncertainty
of about 25 percent which is due primarily to the lack of precise
knowledge of the internal Coulomb energy of the excited states.
The large magnitudes of the reduced width and level spacing
indicate that two-body potential interactions exist between the
odd particle and the C" and 0" cores, and the values of the
respective logarithmic derivatives indicate that these interactions
are of about equal strengths. The energy dependence of the radia-

tive capture cross section of s neutrons and protons with C" can
be understood if an additional quantity, the 6nal-state reduced
width, is included in the theory to take into account the energy-
dependent external contribution to the transition moment. The
experimental data are only suKcient to treat the p and d inter-
actions in the one-level approximation; a reasonable explanation
can be given of the observed displacements of conjugate levels in
terms of the differences of the electromagnetic properties of the
odd particle such as: external wave functions, spin-orbit inter-
actions, and variations of the internal Coulomb energy. There is
some indication from the data on radiative transitions that the
independent-particle model also prevails in the p states; on the
other hand, the small reduced widths of these states suggest a
many-body description. Derivations based on the recent theories
are given of the one-channel formulas and of the general one-level
formulas which include the negative-energy alternatives. The
radial dependences of the resonance parameters are discussed.

I. INTRODUCTION

INCR there is considerable experimental material
on the low levels of the mirror nuclei, N" and C",

it seems worth while to attempt a detailed investigation
of such matters as the extent of the validity of the
independent-particle model, the assumption of equality
of en and pp nuclear forces, and the applicability of the

* Now at Los Alamos Scientific Laboratory, Los Alamos, New
Mexico.

recent theories of nuclear reactions. The analysis is
carried out by means of the theories due to Wigner and
others, ' ' and we are therefore concerned with the de-

' E. P. Wigner, Phys. Rev. 70, 15 (1946).
E. P. Wigner, Proc. Am. Phil. Soc. 90, 27 (1946).' E. P. Wigner, Phys. Rev. 70, 606 (1946).

4 Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (19471,
referred to as FPW.

~E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947),
referred to as W-E.

s E. P. Wigner, Phys. Rev. 73, 1002 (1948).


