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The scattering of =+ and #~ mesons by protons and the production of =+ mesons by gamma-rays incident
on protons are studied with the quantized theory of pseudoscalar mesons with pseudoscalar coupling. The
Dyson transformation is applied to the Hamiltonian to yield a new representation in which the velocity-
independent aspects of the nucleon dynamics are more readily identified. A large “core” term appears in the
meson-nucleon interaction in this representation and is incorporated into the zero-order Hamiltonian. The
remaining interaction terms are treated perturbation-wise or according to the Heitler damping procedure.
It is found that even after separating out the large core term, this method of approach fails to give agreement
between theory and experiment. It does, however, improve on the results of the straight perturbation ap-
proximation and brings the theory in closer accord with the observations. It is suggested that a direct test
of the role of the “core” term is possible in the process of double meson production by gamma-rays incident

on protons.

I. INTRODUCTION

HERE are but a very few physical processes that
are both measurable and sufficiently simple from
the point of view of meson theory that one can avoid
phenomenological methods, and, using only the Yukawa
field equations, attempt to correlate the theory with
the experimental data. It is important to study these
processes and to attempt to uncover what, if any,
aspects of the present field theory formalism can be
used in establishing a quantitative check between theory
and experiment. Perhaps characteristic discrepancies
will be useful in pointing the way to appropriate
modification of the theory.

In this paper we study the scattering of =+ and #~
mesons by protons and the production of #+ mesons by
gamma-rays incident on protons. The quantized pseudo-
scalar meson and Dirac nucleon fields are assumed to
interact by means of the nonderivative pseudoscalar
coupling. Results obtained on the basis of a derivative
pseudovector meson-nucleon interaction are compared.
Perturbation calculations of the scattering and photo-
production cross sections assuming weak coupling be-
tween the meson and nucleons have already been given,!
and they do not fit the experimental data. The aim of
the present work is to narrow the gap between theory
and experiment by going beyond the perturbation
approximation rather than by adopting a phenomeno-
logical approach.

We apply the Dyson? transformation to the Hamil-
tonian for pseudoscalar mesons with pseudoscalar
coupling. This yields a new representation in which the
velocity-independent aspects of the nucleon dynamics
are more readily identified.® The meson-nucleon inter-
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3L. L. Foldy, Phys. Rev. 84, 168 (1951) and private communica-

tion. Foldy has recently developed a somewhat different trans-
formation to a representation with similar features to the one we

action as described in the transformed Hamiltonian
can be separated into one large term suggestive of a
repulsive short-range core interaction between the
mesons and nucleons plus other terms, one of which is
the usual derivative coupling form. The large core term
is incorporated into the zero-order Hamiltonian, and
the remaining interaction terms are treated perturba-
tion-wise or according to the Heitler damping pro-
cedure. It is found that even after separating out the
large core term, a perturbation approach to the re-
maining portion of the meson-nucleon interaction fails
to give agreement between theory and experiment.t
With this method of approach it does prove possible,
however, to improve on the straight perturbation
approximation results in the pseudoscalar theory and
to bring the theoretical results closer to the observa-
tions. We are encouraged to believe that the quantized
field theory of charge-symmetric pseudoscalar mesons
with pseudoscalar coupling to Dirac nucleons may
prove fully adequate for quantitative analysis of ele-
mentary m-meson and single nucleon interactions when
suitable -methods for calculating in the intermediate
coupling region are developed.

II. HAMILTONIAN

We treat the mesons as elements of a charge-sym-
metric pseudoscalar field. This choice is suggested by
recent data and analyses of meson interactions with
nucleons and deuterons.? We assume that the neutrons
and protons (nucleons) represent the two charge states
of a Dirac spinor field. The meson and nucleon fields
are taken to interact by means of the nonderivative
pseudoscalar coupling. Ward, Matthews, and Salam®
have shown that this form of coupling has the ad-
vantage of yielding a theory that is renormalizable in
the sense of Tomonaga, Schwinger, Feynman, and
discuss here. See also G. Wentzel [Phys. Rev. 86, 802 (1952)] for
a brief discussion of this transformation and its application.

4 See conclusion in letter by G. Wentzel mentioned in reference 3.

5 R. E. Marshak, Revs. Modern Phys. 23, 137 (1951).

( 6 P.) T. Matthews and A. Salam, Revs. Modern Phys. 23, 311
1951).
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Dyson. On the other hand, it is known that the deriva-
tive (pseudovector) coupling form gives a nonrenor-
malizable theory.

Including interactions with the electromagnetic field,
the Hamiltonian is thus written as (A=c=1):

H=H,+H+H,;

3
Hy=33 | (r+ | Voa|*+r¢a)dr
a=1

'/ 1 2 9
+ f P v M+ f (G+$dr,
8 -
H=if 3 f Irsrababir, )
a=1

Ho=—c f [A- ($2Vi— b1V o) — B(mohs—mide) Jdr
Yo f Fro(—iy- Aty @)W

+e/2 f A2+ ¢2)dr.

M and p are the nucleon and meson masses, respec-
tively; f and e represent the meson and electromagnetic
(for positive charge) coupling constants; ¢ and §=y*y,
are the quantized nucleon field amplitudes (¥* is the
Hermitian conjugate of ¢); 7, and ¢a, with a=1, 2, 3,
are the conjugate momenta and amplitudes of the
charge symmetric meson field; A and & are the vector
and scalar potentials of the electromagnetic field, re-
lated to the field strengths by $=curlA, E=—grad®
—0A/0t; y=ieB, v4=B, Ys=7Vrv2ysys are the usual
Dirac spinors; 74, 7,= (1473)/2 are, similarly, the two
by two isotopic spin (charge) matrices. The nonvanish-
ing commutation relations in the Schrédinger repre-
sentation for the field amplitudes are

[7a(r), ¢6(r') J= —idasd(r—r'),
[Ci(x), Din(r')]=1(8:0/dxx— 809/ x)8(x—1"), (2)
Dh*(r), ‘l’v(r')]+= 8und(r— rl):
where p and » specify different spin and charge solutions

of the Dirac equations.
The Schrodinger equation reads

i9Q/dt=HQ, 3)
where Q is the functional specifying the state of the
fields. We proceed now by making a canonical trans-
formation to a representation in which the velocity-
independent aspects of the nucleon motion are more
readily identified. By means of a time independent
canonical transformation,

Q=exp(—iS)Y, @
Eq. (3) becomes
10V /dt=exp(iS)H exp(—1S)¥
= (HA+-4[S, H1+#/21[S, [S, H]]
+7'3/3 '[S’ I:S; ES, H]]:H" : ')\I’- (5)
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We choose S to be?
S=f/2M f Fvavse- gudr. 6)

This is the canonical transformation suggested by
Dyson? in demonstrating the equivalence of pseudo-
scalar and pseudovector coupling forms through the
first order in f and used more recently by Lepore? in
discussing higher order processes. The repeated com-
mutators of Eq. (5) may be summed exactly with the
above choice of S to give, with ¢;= —ysai(i=1, 2, 3),

H'=exp(iS)H exp(—iS)=H,+H,

+_2—fﬁf¢*[(vivi¢-—'y51e)~‘c—ea:A,'(‘vX é)s Wdr
M f ¢*74[( 1+iﬂi/!75«"¢)
Xexp[—iU/M)m-vi]—l]wdr

+(2M) fll/*')’a[z(tfsz’ Y5 - ¢><‘v

1 sin%y

sin?y

(Uth?‘ 757!) ¢Xx

beGa)

2x—sin2x

4x3/3

X

—eoid; (¢X(‘X¢))3

Xfxl/*[‘(mv @ —v5m) X ¢+ ¢ X g

1 2x—sin2x ( )
—¢XT 0'1Vz¢ vsm) X
2 4y/3 )6

—sin2y
—ea:Ap*($X 1)3———-—]\I/dr
4x%/3

) [rvrei(2)

—sin?y cos?y

4/3

Y B k3 2 d
+2(2M)f|¢ gelad Vi

TEAY * *
(=) [warvrmexm
sin®y cosy

—V*yswd YreX gY)——dr, (7)
x*

7In the following we apply vector notation in isotopic spin
space and use component notation for ordinary space vectors.

8 J. V. Lepore, Phys. Rev. 87, 209 (1952). The interaction repre-
sentation is used in this work. We stay in the Schrédinger repre-
sentation here, since we do not make a straight perturbation
expansion.
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MESON-NUCLEON SCATTERING AND PHOTOPRODUCTION

where x=(f/2M)=- ¢, and expansions of all factors
which involve x contain only x27, with #» an integer
and x2= (f/2M)*?. The transformed Hamiltonian H’
can be analyzed to show where perturbation calcula-
tions may be expected to be valid and for what processes
the pseudoscalar and pseudovector coupling theories
will yield different results. In Eq. (7) Ho and H, are
the same expressions as in Eq. (1) for the uncoupled
fields and their electromagnetic interactions. The third
term, which we denote hereafter as H,,, is the usual
derivative coupling form of the meson-nucleon Hamil-
tonian and shows the equivalence of the two couplings
in the pseudoscalar theory through terms of first order
in the coupling constant. The coupling constant g nor-
mally used for the derivative interaction is related to
the constant f used here by

g/u=f/2M. @®

An expansion of the fourth term in H’, hereafter re-
ferred to as H.,, in powers of f, gives to leading order

(/2 [(usan. ©)

This expression is analogous to the quadratic term,
(e2/2m)A?, in the vector potential that appears in a
two-component reduction of the Dirac equation.® The
importance of this term has been recognized and
emphasized in the analysis of the nucleon-nucleon in-
teraction problem.®1%! Even in a perturbation ex-
pansion in powers of f it has been shown to give a
large spin independent contribution to nuclear forces.
The relative importance of this term may be under-
stood by inspection of Eq. (7). The H, term is propor-
tional to the large nucleon mass M, whereas M appears
in other terms there describing the meson-nucleon inter-
action only in the combination (f/M). Also the char-
acteristic length associated with the meson field is
1/u, and we may expect the other terms in H’ to be
reduced relative to H. by various powers of the ratio
w/M=0.15.

In the elastic scattering of very low energy mesons
by nucleons, matrix elements of Eq. (9) are known to
give the dominant contribution in a perturbation calcu-
lation. This explains much of the difference in scattering
cross sections between the pseudoscalar and pseudo-
vector coupling theories as calculated by Ashkin,
Simon, and Marshak.? The contribution of the quad-
ratic term, Eq. (9), is analogous to the Thomson scat-
tering of light by charged particles in the low energy
limit. Since nucleon recoil may be neglected at low

9 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), p. 317.

10 R. P. Feynman, hectographed notes of lectures at California
Institute of Technology on ‘“High Energy Phenomena and Meson
Theories,” January (1951), unpublished.

u M. M. Lévy, Phys. Rev. 86, 806 (1952).

12 Ashkin, Simon, and Marshak, Prog. Theor. Phys. 5, 634
(1950). See also M. Peshkin, Phys. Rev. 81, 425 (1951).
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energies, Eq. (9) may be written as

(f/200) f K(r—rn)gdr, (10)

where S K(r—ry)dr=1 represents a fixed nucleon
“source” at ry. The form and sign of Eq. (10) suggest
a short-range interaction of mesons with a repulsive
nucleon core. Indeed, we note that Eq. (10), together
with the mass term, 3u?f¢%dr of the meson self-field
can be interpreted as giving the meson an effective mass
w'= (42K (r—ry)/M)? inside the nucleon source.
For a constant source of radius equal to a nucleon
Compton wavelength 1/M, this gives

w'=p(143(f*/4m) (M /)H)* (11)

An analogous result has been obtained by Schiff'®
in his nonlinear meson theory. The nonlinearity in the
meson equations was observed there to give rise to a
strong short-range repulsion between nuclear matter
and small amplitude meson waves in the vicinity. In
order to estimate the effect of the mass change due to
the core, we may tentatively assign a value to f%/4r
of the order of 7, as suggested by perturbation calcu-
lations of the anomalous magnetic moment of the
neutron!® and of the nucleon-nucleon interaction.!® The
effective mass of the meson interacting with the nu-
cleon source thus appears to be approximately 30u. It
increases for smaller source radii. For a large source
radius, of the order of 5/2M, as suggested by Lévy!
and Jastrow,!” the effective mass is still approximately
8u. These surprisingly large results for u’ suggest two

" things: (a) It is exceedingly dangerous to attempt to

draw any conclusions from meson theoretic calcula-
tions based on a perturbation expansion in powers of
f, and (b) it is necessary to consider the terms of higher
order in fin H..

The fifth anl sixth terms in Eq. (7) (we denote the
fifth term by H, hereafter) are given in a form that
exhibits both their relation to H,, and their invariance
under a gauge transformation of the electromagnetic
potentials. This latter property is seen to follow di-
rectly from the usual gauge invariant prescription

V(l)l——)V(i)l —_ 8A¢2,
Vér—VoateAdy,
V¢3—>V¢>3,

with which the potentials are introduced into a Hamil-
tonian theory. The trigonometric factors that multiply

131,. I. Schiff, Phys. Rev. 84, 1 (1951); see also L. L. Foldy,
reference 3.

14 By Eq. (8) this corresponds to a g2/4r~0.04.

16 J, M. Luttinger, Helv. Phys. Acta 21, 483 (1948) ; M. Slotnick
and W. Heitler, Phys. Rev. 75, 1645 (1949); K. M. Case, Phys.
Rev. 76, 1 (1949); S. D. Drell, Phys. Rev. 76, 427 (1949); L. L.
f‘oldy, Phys. Rev. 83, 688 (1951); B. D. Fried, Phys. Rev. 86, 434

1952).
16 K. M. Watson and J. V. Lepore, Phys. Rev. 76, 1157 (1949).
1 R. Jastrow, Phys. Rev. 81, 636 (1951); 87, 209 (1952).
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these terms in Eq. (7) reduce to unity in the weak
coupling limit, x<1, but are much smaller than one
for larger values of x (or of the coupling constant f),
decreasing at least as 1/x? for x larger than one. The
fifth term H, contributes to the matrix elements
of order f? in a perturbation calculation of meson-
nucleon scattering. The seventh term in Eq. (7) has
the form of a nucleon-nucleon direct interaction and
will not operate in the processes with which this paper
is concerned.’® The remaining terms in the Hamil-
tonian, expressed in the form of Eq. (7), are quadratic
in the bilinear form (YOy), where O is any operator,
and involve only f? and higher powers of the coupling
constant. If the meson-nucleon interaction is weak and
the perturbation procedure of expanding in powers of
f is valid, then these higher order terms may be ex-
pected to add only a minor contribution, relative to
H,, and H,, to matrix elements for elementary processes
such as meson-nucleon scattering and photoproduction
of mesons. In this weak coupling limit all the trigono-
metric factors, such as (x*— cos?x sin?x)3/4x?, approach
unity. If, on the other hand, we go to the strong
coupling limit of large f, these trigonometric factors
may be expected to be considerably reduced, the one
exhibited above decreasing as 1/x2. However, since
these terms are seen to be proportional to a high power
of f, it is difficult to estimate their relative importance
in the Hamiltonian when the weak coupling approxima-
tion breaks down. We have no methods at present that
permit a complete study of them in the form in which
they are displayed in Eq. (7).

From the Hamiltonian in the form of Eq. (7), one
can see which basic processes will have identical or
different matrix elements in a lowest order perturbation
treatment of the pseudoscalar and derivative coupling
forms. As mentioned above, the quadratic term [Eq.
(9)] resulting from a reduction of the series H, in Eq.
(7) contributes to the matrix elements of order f? for
the elastic scattering of mesons by nucleons only for a
pseudoscalar coupling theory, as does H,. They are
not present in the usual derivative coupling theory.
For photoproduction of mesons by gamma-rays in-
cident on protons, and two coupling forms are identical
to order ef in the matrix elements.!® In the calculation
of the anomalous magnetic moments of nucleons the
matrix elements of order ef? are identical for both coup-
ling forms.2® However, the matrix elements of this order
for the electron-neutron interaction differ for the two
types of coupling and converge only in the pseudo-
scalar coupling theory in virtue of the H, term in
Eq. (7).2

18 Such terms are discussed by R. K. Osborn, Phys. Rev. 86,
370 (1952).

19 B. Araki, Prog. Theor. Phys. 5, 507 (1950); K. M. Case,
Phys. Rev. 76, 14 (1949).

2 B. D. Fried, Ph.D. thesis, University of Chicago, Department
of Physics, June (1952), unpublished.

% The terms H, and H,, give individually diverging contribu-
tions to the matrix elements of order ef? describing the electron-
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We have seen that the leading order contribution
[Eq. (9)] in the expansion of H, is quite large. We are
thus motivated to study the higher order terms. An
attempt to estimate their contribution in the non-
relativistic limit is developed as follows. We separate
H, of Eq. (7) into terms proportional to even and
odd powers of f. The even terms contain yg=1 and
7#=1 and thus may be written, as in Eq. (10), as an
interaction of mesons with a classical nucleon source
density in the limit of a nonrelativistic treatment of the
nucleons. The odd terms (f? is the lowest order of the
coupling constant that appears), on the other hand,
are proportional to vs which has matrix elements be-
tween positive energy nucleon states of order |vy|<1.
Neglecting the odd terms in our approximation, we
write

chMfK(r— ry){cos2x+2x sin2x—1}dr. (12)

The matrix element of Eq. (12) for meson scattering
and pair creation or annihilation can be evaluated by
the methods of Glauber.”? We obtain, in the notation
of Glauber,

(H ), =MfK(r— rv){cos2x+ 2x sin2x— 1).dr,

M f K(r—1x) (f2/2M2)(2),

{cos2x— 2x sin2yx)edr,
- f K(t—1x) (J2/2M2) (6?2

XLL=(72/M*)($*)o ] expl— (f%/2M*)(¢*)oJdr. (13)

Since nucleon recoil has been neglected, we use a maxi-
mum meson momentum cutoff of k,~M in evaluating
(%), obtaining 3M?2/8x2, This gives

(H o= (12/200) f K(r—ty)(@)edr

X[1—(3/2m)f%/4r ] exp[— (3/4w) f2/4x].

If we compare Egs. (10) and (14), we see that the higher
order terms are responsible for a reduction of roughly

[1—(3/2m)f*/4n] exp[— (3/4m)f*/4x].  (15)

This reduction factor is plotted in Fig. 1. It vanishes
at f2/4r=2.1. For f?/4w=7 it is equal to —0.44; the
minus sign indicates that the interaction is one of
attraction, in contrast to the repulsive core result
indicated by Eq. (10). For a maximum momentum
cutoff of kn=2M/S5, corresponding to a larger core
radius,*'7 the reduction factor is equal to +0.38.

(14)

neutron interaction. It is only their sum that converges in this
order of a perturbation calculation to the pseudoscalar result. See
also B. D. Fried, Phys. Rev. 88, 1152 (1952), and reference 20.

2 R. J. Glauber, Phys. Rev. 84, 395 (1951).
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If we treat H, in Eq. (12) as a self-energy term and
calculate its vacuum expectation value, we obtain by
the same methods a reduction

L3/4m) f*/4x T [1+ (3/2m)f*/ 4]
Xexp[ — (3/4m)f*/4r]—1},

owing to the higher order terms. This factor is also
plotted in Fig. 1 for comparison with Eq. (15).

In view of the fact that only the first-order scattering
matrix element is evaluated in Eq. (14) and that the
effect of nucleon recoil, neglected in this procedure, is
simulated by a maximum momentum cutoff k,=~M,
we can draw only qualitative suggestions from this
calculation. Clearly, for values of f2/4r as large as
those quoted above, the entire S matrix, must be
studied and the renormalization techniques employed.
However, it is immediately obvious that the power
series expansion from which Egs. (10) and (11) are
derived is not to be trusted. Only for small effective
values of x can the trigonometric factors cos2x
+2x sin2x—1 in Eq. (12) be approximated by 2x2
For larger values of x, this factor oscillates with period
27 and increases in amplitude in proportion to x. Also,
unless the effective value of x is much smaller than
unity, a perturbation calculation is, at best, of ques-
tionable validity. We see from Eq. (15) that for scat-
tering, it is necessary that f2/4w<1.0 for perturbation
methods to be applicable.

We make here the basic assumption that will guide
our treatment of H, in the following sections of this
paper. In studying the elastic scattering of mesons by
nucleons and meson photoproduction in energy ranges
which admit a nonrelativistic description of the nu-
cleon source, we replace H, of Eq. (7) by

(16)

\(f/2M) f e, (17

with X a constant of magnitude less than one, whose
value remains to be specified. For positive (negative)
values of N, Eq. (17) corresponds to a repulsive (at-
tractive) short-range meson-nucleon interaction. The
“constant” A in general may have different values de-
pending on the manner in which Eq. (17) operates in
various processes. Thus, the two reduction factors in
Egs. (15) and (16), plotted in Fig. 1, apply when H, is
treated as a scattering and self-energy term, respec-
tively. However, in applying the Hamiltonian in Eq.
(7) to scattering and photoproduction in the following
paragraphs, we shall be able to deduce only that the
predictions of the pseudoscalar meson theory suggest
qualitatively some features of the observed cross sec-
tions when A<1 is introduced into the core term H.,.
We take as a working Hamiltonian with which to
discuss current accelerator experiments on meson scat-
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tering and photoproduction from nucleons,

H =H0+He+f/2Mf‘//*l:¢iVi¢ . e-eaiAi(vX ¢)3]ll/dl’

FAf2M f Wdde+(1/2M ) f VimeX gydr. (18)

Terms proportional to the nucleon velocity are neg-
lected since their contributions are small compared to
the effects we are interested in studying.

III. ELASTIC SCATTERING

We consider in this section the elastic scattering ot
mesons by protons. The following three processes have
been investigated at Columbia® and Chicago?—27

P+rt—P+rt (a),
P+a—P+a— (), 19
P+r—N+#° ().

The observations on the angular and energy dependence
of the cross sections for these processes are shown in
references 26 and 27.

Theoretical interpretation of these curves has suc-
ceeded only when phenomenology has been used.
Brueckner?® has interpreted the results in terms of
nucleon isobars, and the Chicago group in terms of
scattering phase shifts.?” Our aim here is to see to what
extent a straight meson field theoretic approach suc-
ceeds in fitting the data.

Perturbation calculations fail to predict the observed
behavior. A thorough relativistic treatment of this
2 Jsaacs, Sachs, and Steinberger, Phys. Rev. 85, 803 (1952).

% Anderson, Fermi, Long, Martin, and Nagle, Phys. Rev. 85,
934 (1952).

% Fermi, Anderson, Lundby, Nagle, and Yodh, Phys. Rev.
85, 935 (1952).

26 Anderson, Fermi, Long, and Nagle, Phys. Rev. 85, 936 (1952).

27 Anderson, Fermi, Nagle, and Yodh, Phys. Rev. 86, 793 (1952).
28 K. Brueckner, Phys. Rev. 86, 106 (1952).
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problem has been given by Ashkin, Simon, and Mar-
shak.”? They calculate the matrix elements for scatter-
ing through order f* in the pseudoscalar coupling
theory and through order g? with derivative coupling
(in this case the higher order terms diverge and are not
renormalizable). The sharp rise in cross section as a
function of meson energy is suggested by the calcula-
tion with the derivative coupling form H,,. We write
the differential cross section in the center-of-mass
system for this case, in the low energy approximation
that neglects nucleon recoil, as

do(nt) = (g%/4m)*(4¢"/?)dQ/u? (a),
do(m)=do(rt) (b),
do(7%) =2 cos?0da (n) (),

where do(rt), do(x™), and do(x®) are the differential
cross sections for the three processes as given in Eq.
(19). The coupling constant g for the derivative coup-
ling theory is defined by Eq. (8), w and ¢ are the meson
energy and momentum, and 6 is the meson scattering
angle in the collision center-of-mass system. The theo-
retical prediction of a spherically symmetric 7+ scatter-
ing cross section is in serious disagreement with the
experimental results, as is the ratio of the elastic #* to
elastic plus charge exchange 7~ total cross sections. The
experimental ratio is of the order of 2 at 137 Mev,
whereas the above formulas predict a ratio of 3/5 for
all energies.

The cross sections derived on the basis of a weak
coupling pseudoscalar coupling theory differ from the
results in Eq. (20), as mentioned earlier, in virtue of
the pair term H, of Egs. (7) and (10) and the fifth
term H, to order f? in Eq. (7). The results are

do(nt) = (f*/4m)[(1+w/2M )+ ¢*/4AM*e?

(20)

—(/Muw)(1+w/2M) cosf]dQ/M?> (a),
do(m™)=(f¥/4m)*[ (1 —w/2M )*+¢*/ 4 M *?
+(/ Mw)(1—w/2M) cosdldQ/M2 (b), (21)

do(r%) = 2(f%/47) [ (w/2M )2+ (¢*/4M?w?) cos?
—(¢*/Mw)(w/2M) cosfldQ/M? (c).

These formulas are calculated from Eq. (7) with neg-
lect of nucleon recoil® or from Eq. (18) in the per-
turbation limit A—1. The second term in the right-hand
member of these expressions represents the contribu-
tion of H,, and is seen to correspond to the cross-sec-
tion result of Eq. (20) when relation (8) is inserted.
The core term H, contributes the factor unity in the
first terms in the right members of do(xt) and do(z™)
but does not operate in calculations of the charge ex-
change scattering to this order in f. The factor w/2M
in the first terms results from H,, the fifth term in
Eq. (7). The third terms in the right members are cross

29 Recoil corrections to Egs. (21a) and (21b) due to the core
term are of the same order of magnitude as the w?/M? terms in
the square brackets and must be included if the formulas are to
be discussed with this order of accuracy.
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terms that appear when the matrix elements are
squared to give a cross section.

Again we see that these cross sections stand in dis-
agreement with the experimental data. Whereas the
experimental points indicate a sharp rise in cross sec-
tion with energy and a strong cos?§ angular dependence
for = mesons with energies of the order of 100 Mev,
the expressions (21a) and (21b) are essentially energy
and angle independent in this energy range in virtue
of the dominant contribution from the core term H..
Also the ratio of the total cross sections o(7t):0(7™):
o(r%)=1:1:0?*/2M? is seen to differ considerably from
observation.

It is clear from the above that the first step in an
attempt to reconcile the pseudoscalar coupling theory
with observation must reduce the core contribution
relative to the p wave contribution of H,,, as expressed
in Eq. (20), so that the rapid rise of the experimental
cross section with meson energy may be understood.
As discussed in the previous section, we may expect
such a reduction when higher order terms in f are
considered, and we have lumped their effect into a con-
stant A given in Eq. (18). A perturbation calculation on
the basis of this Hamiltonian gives scattering cross
sections that differ from those given by Eq. (21) only
in that the constant A<1 replaces unity whenever the
latter appears there, i.e., (1d=w/2M)—Aztw/2M). The
charge exchange cross section o(w?) is unchanged since
H. does not contribute to it. The energy variation in-
dicated by these results for N <p/2M ~1/13 suggests
the sharp experimentally observed rise with energy,
but it is still somewhat too gradual. Also, the predicted
angular asymmetry is not in accord with the data. We
reserve further discussion of this latter point till later.
We note here, however, that it is possible to achieve a
more accurate treatment of H, and that it is reasonable
to expect an improved calculation of H, to increase
the relative importance of the p wave contribution H ,,,
thereby sharpening the predicted energy rise of the
cross sections.

The argument for this develops as follows. Consider
the wave equation for the meson amplitudes as ob-
tained from the Hamiltonian [Eq. (18)] in the absence
of electromagnetic fields. If we neglect for the moment
all terms but those obtained from H,+H,, the wave
equation is

[A+E=N(f*/M)K (r) Jbra=0, (22)

for an eigenstate of energy w= (k*+u?)t The straight
perturbation procedure given above for evaluating the
scattering matrix elements corresponds to solving Eq.
(22) by ordinary Born approximation. That is, the
zero-order equation and solutions for the meson ampli-
tudes are

(A+F)¢ra’=0,

dra’= (20L¥) [ ax. exp(ik- 1)+ complex conj.],

(23)
(24)

where L? is the normalization volume, and @xa(Gxa*)



MESON-NUCLEON SCATTERING AND PHOTOPRODUCTION

is the meson annihilation (creation) operator. The
third term in Eq. (22) is then treated as a small per-
turbation. However, the usual criterion for application
of the Born approximation to scattering of a particle
of mass p by a potential of radius ¢ and height Vq
requires®®

[uVoa?| K1 (25)

for ka1, where & is the particle momentum. The core
term of Eq. (22) corresponds to a square potential of
radius ¢ and height (\f%/2uM)(3/4mwa?), so that the
criterion (25) becomes | (3/2)Af?/47| <1 for slow mesons
with ka=~k/M<1, where a has been chosen the order
of a nucleon Compton wavelength. We shall see below,
however, that it will be necessary to take Af?/4r>1
in order to approximate data on meson scattering and
photoproduction. It, therefore, becomes desirable to
abandon the Born approximation. We solve Eq. (22),
instead, by the method of phase shifts as applied in
ordinary single particle scattering by a fixed potential.
Since we have ka<<1 for the processes under discussion,
we can confine our attention to the s and p wave phase
shifts. This method of calculation gives directly the
amplitude of the scattered wave due to H.. We also
use solutions of Eq. (22) as the zero-order meson ampli-
tudes in terms of which to calculate the scattering
matrix elements of H ,,+H .

Since the matrix elements of H,, are proportional to
grad¢ inside the nucleon core, whereas those of H.
depend on the amplitude, the ratio of the p wave
scattering of H,, to the s wave scattering of H, is
increased over the value obtained when perturbation
methods were applied to the core. In other words, the
effect of treating the core in the zero-order wave equa-
tion is to cut down the amplitude of the meson field at
the nucleon source and to thereby increase the ratio
of p to s wave scattering.

In order to compare the solutions of Eq. (22) with
the ones exhibited above for Egs. (23)-(24), we expand
the latter in radial and angular functions

Ora®= QL3 axe > ic171(kr) Pi(cosf)+ complex conj. ],

where j; is a spherical Bessel function and P; is a
Legendre polynomial of order /. The radial solutions of
Eq. (22) inside and outside the core give in place of
(2] jz(kr)

1=0 r<a---cosechBa i,(Br),
r>a- - - col jo(kr)+ka(1—tanhBa/Ba)no(kr)],
I=1 r<a---—cika cschBa i,(8r), (26)
r>a- - -ai ja(kr)+ (ka3 — cothBa/a
+1/(Ba)?}ni(kr) ],
where

w2 (0) G ]()G)]

3 L. I. Schiff, reference 13, p. 168.
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is approximately constant if N>>(k2/3M?)(f%/4m)~! for
a=~1/M; 9, is the spherical Neumann function, and ;
is the spherical Bessel function of imaginary argument
defined so that 44(3)=sinhz/z and 4:(z)=sinhz/2?
—coshz/z; ¢;=(2141)7'. Corrections to these solutions
are of order (ka)?>1. The s wave scattering amplitude
due to the core alone is then given by

—a(1—tanhBa/Ba) = k™! sind. 27

Furthermore, we can use the solutions given in Eq. (26)
rather than the plane waves [Egs. (23)-(24)] in calcu-
lating the scattering matrix elements due to H 4 H .
An additional improvement is possible if we modify the
perturbation method to include radiation damping in
the manner first developed by Heitler.5? Unfortunately,
there exists no quantitative procedure (short of an exact
solution) by which to gauge the accuracy of the Heitler
approximation, which (approximation) takes into ac-
count only the “resistive” effect of higher order proc-
esses.® It will be seen, however, that as a result of
invoking the Heitler damping theory, we are able to
bring the calculated cross sections one step closer to
the observed scattering data.

Goldberger* and others have already applied the
Heitler damping procedure to the calculation of meson
scattering by nucleons for the pseudovector theory in
which only H,, operates in the meson-nucleon inter-
action and H describes the propagation of free mesons.
The work we wish to present here is an extension of
the methods given by Lippman and Schwinger®® and by
Goldberger to the case in which the zero-order Hamil-
tonian is taken as H, plus the core term H,, and the
interaction is given by H,,+H,. But first we present
for discussion the differential cross sections calculated
in the straight pseudovector coupling theory. With
neglect of nucleon recoil, they are

do () =4(82/41r)2‘q—4*(—“—‘1+4x2 il )d-ﬂ
w2 \ (14 222)%4-2?

aQ
e () I
q* 7 cos?d \ dQ
do(m) =8(g?/4m)2— —
(xt) =8¢/ )ww(mx?)

where x=2%(g%/47)(¢*/wp?) corresponds to the x of

3t For Ba>>1 this reduces to the strong coupling limit given by
Wentzel, (see reference 3) and references to previous work given
there. Recently the wave equation of the form Eq. (22) has been
studied more thoroughly in connection with the nonlinear meson
theory, as formulated by Schiff (reference 13), by D. R. Yennie
(to be published) and by E. M. Henley, unpublished. The
methods we use here are sufficiently precise for our purposes since
the core in our equation is the heavy nucleon.

2 W, Heitler, Proc. Cambridge Phil. Soc. 37, 291 (1941).

3 J. M. Blatt, Phys. Rev. 72 461 (1947).

¥ M. Goldberger, Phys. Rev. 84, 929 (1951); E. Corinaldesi
and G. Field, Phil. Mag. 41, 364 (1950) Lepore, Ruderman, and
Wolff, unpubhshed

%, Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950).
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Goldberger, except for a factor 2 that results from using
the charge-symmetric meson theory instead of the pure
charged theory. In the limit x¥—0, Eqs. (28) are seen
to reduce directly to the perturbation results presented
in Egs. (20). If we adjust the coupling constant to fit
an experimental value of 120 mb for the total =t elastic
cross section at a meson kinetic energy of 135 Mev in
the lab system, we find g2/4r=~0.4, corresponding by
Eq. (8) to a pseudoscalar coupling constant of f2/4x
~70. Several interesting features emerge in Egs. (28).
The variation of the total cross sections for =+ and for
7~ mesons as a function of meson energy indicates a
sharp rise in the region 60 to 150 Mev, followed by a
general flattening at higher energies in accord with the
data on 7 scattering (elastic plus charge exchange).
A choice of g#/47>0.5 or g2/4w<0.3 shifts the energy
plateau for the calculated cross section to too high or
too low an energy value, respectively. However, if we
were to adjust the angular distribution of do(xt) to fit
the observed distribution, of roughly 143 cos? at an
energy of 135 Mev, we would require g?/4r=~0.9. For
g¥/4r=0.4 the predicted distribution is 14-0.6 cos®d.
The ratio of o(zt):0(7™)+a(x?) is still less than unity,
in disagreement with the data which indicate this ratio
to be 1.4 at 60 Mev and 3 above 100 Mev, but is in-
creased slightly to 0.72 from the perturbation result of
0.6. In accord with observation, do(7™) is isotropic.

Proceeding now to a discussion of the damping
theory as applied to the pseudoscalar Hamiltonian we
write first, in Goldberger’s notation,® the scattering
matrix for elastic scattering due to H,:

Raqo = — ($q, H:Vq), (29)

where qo and q denote, respectively, the momenta of
the initial and scattered meson, and Wqo(* is defined
by the integral equation

W= Pgo+ A7LH Vg (O (30)

with A=w+ie—H,. This solution incorporates the
boundary condition of an incident free wave, ($qo), plus
an outgoing scattered wave due to the core term H..
The R matrix defined as above is related to the scatter-
ing phase shift 8o, given in Eq. (27), by

Raqo @ = (21r/wqL?) sindy exp(ido). 31)
The total R matrix for elastic scattering is
Rago=—(®q, {H .+ H po+H,} ¥qo") (32)

with H,, H,,, and H, as in Eq. (18) and ¥q,* defined by
‘I/QO+= ¢QO+A—1(Hc+Hpv+Hr)\I/QO+- (33)

It is useful to define Wqo'=Wqot— g+, By Eqgs.
(30) and (33), it satisfies the relation

Voo = A H b Ho) o
+A—1(H0+Hpv+Hr)‘qul- (34)

There are two elements in the prescription yielding the

S. D. DRELL AND E. M. HENLEY

Heitler damping theory approximation to the solution
of Eq. (34).

(1) Only the lowest order matrix elements which
contribute to the scattering, as found by an iteration
procedure, are to be kept (first order for H,, second
order for H,,).

(2) The energy denominator

A= (w+tie— Ho) ' = (w— Ho) ' P—ird(w—H,)

is replaced by its second term —imrd(w— H)), indicating
that contributions from terms off the energy shell are
neglected. Use of the above prescription and Egs. (29),
(32), and (34) allows us to express the R matrix of
H,+H,as

Raqqo’ = Rqap— Raqo®®
=—(Pq, {Hr+HpAH ,} ¥qo )
+im qus(w—wq')ququlqo', (3%5)
where

Byy=—(®q, {Ho+H+HpA Hyp}®y)  (36)

is the lowest order Born approximation scattering
matrix. Equation (35) is the desired extension of the
usual Heitler integral equation, expressed in terms of
the known solutions Wqy(®*. These are essentially the
state functionals for meson field amplitudes given as
solutions of Eq. (22). In the absence of H,, which we
treat by the previously discussed phase shift method,
Eq. (35) reduces to Goldberger’s result.

It is possible to solve Eq. (35) exactly with the trial
form

37)

since all higher order terms in ¢ can be reduced to these.
We consider specifically the scattering of =+ mesons
by protons. The Born approximation scattering matrix
is just
Bago(7t) = —(f2/2MwL¥)(N\w/2M

—0-qoo-q/20M), (38)

corresponding to the cross section (21a) with A—1. The
first term on the right member of Eq. (35) differs from
the Born approximation result because of the appear-
ance of Wqo'9+, defined by Eq. (30), in place of Pqq.
This means that in calculating the matrix elements of
H., and H,, we insert the solutions written in Eq. (26)
for the meson field amplitude that annihilates the
incident meson state of momentum qo in place of the
usual plane wave, Eqs. (23)-(24). The effect of thus in-
cluding the core H, in the zero-order Hamiltonian is to
reduce the s and p wave scattering matrix elements by
the factors

r:=3(8a)~%(1—tanhBa/Ba),
rp,=3 cothBa/Ba(1—tanhBa/Ba),

respectively, relative to the Born approximation. These
factors neglect terms (ka)2<1 and reduce to unity for
Ba—0. Introducing Egs. (36)-(39) into Eq. (35), we

Raa’ = — L7¥(s0g®+ 514 Qo520 g0 X q),

(39)
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obtain éfter some algebra
sot=(f/2M)*(rs/¢*)
X[1+(i/27) (f/2M)*qe(1+2MN ) I,
=—(f/2M)*(ro/®) (14 2ix) /(1 —iz+227),
sz+— —(f/2M)%(r p/0®) (1 —ix+ 222~ L.

The complete R matrix is now known since, by Egs.
(27) and (31),

Rqqo9(7t) = — (2w /wL3)a(1—tanhBa/Ba),

to order (ka)2<<1. The procedure is entirely similar in
the cases of elastic and charge exchange scattering of
=~ mesons by protons. Relating the R-matrix to the
differential scattering cross sections by

do=(L%*/47){| R|*)adQ,
we obtain finally

do(mt)
tanhBa\ 2 w 24w/2M)\
=a2(1—- ) {H—————————-
Ba 14,2

2M\

B%a? coth?Ba  ¢*  144a? cos?d
+ 4N? W M? (14- 242222
ﬁa cothBa q2
A oM (14 2a2)%4 22

cosfd

o 1—x(3+4a2)
x[1+ y*] stz,
2M\ 1+y.2
do(m™)
tanhBa\ 2 o 2—w/2M\
=a2( 1- ) { -
Ba 2MN 1492

_1_13202 coth®Ba ¢* 1 ,Ba cothfa ¢

4)\? w?M? 1+ 9902 A wM
cosﬁr w 14-3xy_
o
ol 2 142
do (%)
tanhBa (w/2MN)? .
o2
Ba 14-2(f%/4m)*(qo/ 2M*)?
+62a2 coth®8¢ ¢* cos? BacothBa ¢
a AMP1E2 A WM
cos o 1—2x(f2/4r)(quw/2M?)

X }dQ, (40)
1422 2M\ 14-2(f%/47)?(q/ 2M%)?

where y, represent

P
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The total cross sections, integrated over angle, are
tanhﬁa)z{ H—L 24-w/2M\
Ba 2MN 14942
B%a? coth?Ba  ¢* 1+4442/3
+ M oM (1t 2x2)2+x2]’
tanhﬂa)zl 1__:0_ 2—w/2M\
Ba 1+y2

o(nt) =41ra2(1—

o(n) = 47ra2( 1—
2M\

+ B%a? coth?Ba  ¢* 1
A2 WM 1492 } ’
tanh, 2 2MN)?
(7 = 87raz( 1— & Ba) ’ e/ )
Ba 14 2(f2/4m)*(qeo/ 2M2)?
1 B%? coth®Ba  ¢* 1
- } (41)
3 4)\? M2 1422

We comment here that proton recoil has been
neglected in these calculations. This means that terms
reduced by w/M relative to unity are omitted. They
have been explicitly calculated and shown to be indeed
small and not to materially affect the above results.
The terms proportional to w/M in the above formulas
appear only in combination with the constant 1/A>1.

In analyzing the above formulas we make the fol-
lowing observations:

(1) The data indicate that p wave scattering (due
to H,,) dominates above ~60 Mev and, therefore, in
order to approximate the energy variation of the ex-
perimental cross sections, we must take 0.3<g¥/4w
<0.5 as we did in the discussion below Eqgs. (28); or
by Eq. (8), 53< f*/4r< 89.

(2) If we restrict g?/4r to lie within the above-
indicated limits, there remain two constants A\ and
(or B) to adjust in order to bring these cross sections
in as close agreement as possible with some of the data.
If we take a to correspond to the nucleon Compton
wavelength, e=1/M, we find that we must take
A=pu/2M=0.075 to fit the magnitude of =~ elastic plus
charge exchange scattering for mesons in the energy
range of 135-215 Mev. The data and theoretical curve
are presented in Fig. 2. The data of Anderson et al. and
of Steinberger et al. are seen to fall somewhat below
the theoretical curve for meson energies below 120
Mev. We may also take a larger source radius of
a=2/M. Choosing A=pu/M=0.15 we fit the data for
the higher energy =~ mesons, but the curve is again
high below 120 Mev. This curve is also plotted in Fig. 2.

(3) The cross section for »t scattering glven in Eq.
(41) is smaller by a factor of roughly ¢ than o(7™)
+o(7%) with the above-indicated choice of parameters
and thus is in disagreement with the observation. If we
attempt to fit o(s) with the data, the 7~ cross sections
are then much too large.
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(4) The data indicate a ratio of o(x%):c(r)=2:1
for incident =~ mesons of energy above 100 Mev. The
formulas in Eq. (41) yield a value for this ratio of
approximately 1.2 at 132 Meyv, increasing to 2 at 200
Mev with both of the above sets of parameters. The
calculated ratio is perhaps on the low side of the ex-
perimental determination.

(5) The data on the angular distributions of the
scattered 7*, 7—, and 7% mesons are too crude to permit
a detailed comparison with the above formulas. The
experiments suggest, however, that at 135 Mev, the
7~ elastic scattering is essentially isotropic, the charge
exchange cross section varies largely as cos?, and the
wt cross section has the rough form of 14-3 cos?¥ as
predicted in a phenomenological analysis that assumes
the scattering to take place predominantly in a
spin § state. We tabulate here the angular dis-
tributions predicted by Egs. (40) with the above choices
of parameters. For g2/4r=0.4, a=1/M, and A=u/2M,
we obtain at a meson kinetic energy of 132 Mev:

do(7=)~[140.35 cosf 42,
do (%) ~[14-1.3 cosf+36 cos?0 1dQ,
do(rt)~[1—0.20 cosf-+0.49 cos?0]dQ;

at the same energy, for g&/4r=0.4, a=2/M, and
A=u/M we obtain:

do(n~)~[1—0.04 cosf 1dQ,
do (%) ~[141.3 cosf+36 cos?61d2,
do(7)~[1—0.51 cosf+0.39 cos?d 1dQ.

The calculated distributions for = elastic and charge
exchange scattering are in satisfactory agreement with
present experimental data. However, the cos con-
tribution to wt scattering is too small by a factor ~6
relative to the data.

It would appear from the above discussions that it is
possible to select a physically reasonable set of three
parameters—the meson-nucleon coupling strength, the
depth and the radius of a repulsive nucleon core po-
tential for meson interactions—which permits reason-
able agreement with experiment on the elastic and
charge exchange scattering of 7~ mesons. On the other

14
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Fic. 2. Elastic plus charge exchange scattering of =~ mesons
by protons as a function of =~ energy. The blocks represent the
data obtained at Chicago and the low energy point was obtained
at Columbia. The theoretical curves are deduced from Eq. (41)
with g2/4r=0.4. The solid curve is for a=1/M, \=u/2M and the
dashed curve is for a=2/M, A=u/M.
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hand, the calculated #* cross section is considerably
too small in magnitude and too flat in angular dis-
tribution. It is encouraging to note, however, that by
going somewhat beyond a straight weak coupling per-
turbation approximation, it has been possible to narrow
the gap between theory and experiment. An analysis of
the perturbation theory suggests that an improved,
intermediate coupling calculation of the meson-nucleon
interaction may be expected to increase the ratio of =+
to 7~ scattering by protons. For »— scattering, the
proton must absorb the incident #~ meson before emit-
ting the scattered one, viz.,

7+ poN—1'4p.
The energy denominator for this process in a second-

order perturbation calculation is E,4w—Exy~w. For
7t scattering, the final meson is emitted first:

7t porttat + Noat' 44/,

and the energy denominator is E,—w—Ey~—w. How-
ever, a bound state of one of the mesons about the
neutron in the intermediate step would reduce the
energy denominator and thereby increase the cross
section.®® Such a state would correspond to a nucleon
isobar. This mechanism would also serve to increase the
ratio o(#?% :¢(7~) which we observed to be on the small
side in the preceding discussion, since charge exchange
scattering proceeds in either of the two ways,

7+ por 7V p'or¥ N,
N

IV. PHOTOPRODUCTION

We next apply the Hamiltonian [Eq. (18)] to a
brief discussion of the photoproduction of =+ mesons
by gamma-rays of several hundred Mev energy incident
on protons. The zero-order Hamiltonian is taken to be

Hot-Nf2/2M f K(r—1x)%dr, (42)

and H,,+H. is treated as a small perturbation. This
calculation differs from the previous work of Brueckner?’
and Araki’® by the inclusion of the core term in the
zero-order Hamiltonian in Eq. (42). The core term
alters the relative amounts of s and $ wave production
and hence alters the angular distribution and excita-
tion function for =+ production.

A repulsive core with A>0 suppresses the s wave
relative to the p wave production, thereby increasing
the angular variation of the differential cross section.
It appears from the experimental and perturbation-

3 An actual calculation has shown that the introduction of a
phenomenological constant I'=w/w’>1, with «’ the reduced
energy denominator, in both nt+4p—rt+7t+N—rt'+4p" and
7+ por+7Y 4 p'Sr¥+ N, makes agreement with experiment
at 135 Mev possible in both magnitude and angular distribution.

37 K. Brueckner, Phys. Rev. 79, 641 (1950).

3 G. Araki, Prog. Theor. Phys. 5, 507 (1950).
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weak-coupling curves given by Steinberger and Bishop®®
(Figs. 17 and 20 of this reference) that such an increase
in the relative p wave contribution may be desirable.
We shall see below that it is also possible to improve
the agreement between the theoretical curve and the
data on the excitation function for =+ production by
increasing the relative p wave contribution in the
pseudoscalar theory. We remark here that suppression
of the s wave in #* production operates so as to increase
the theoretical ratio of #° and #* photoproduction cross
sections, since 7° production occurs predominantly in
the p state.

Foldy*® has given a nonrelativistic perturbation cal-
culation of 7+ photoproduction. Plane wave solutions
to the Klein-Gordon equation for the meson ampli-
tudes [Egs. (23)-(24)] are used in calculating the matrix
elements for this process. For the differential cross
section in the pseudoscalar theory Foldy obtains (both
the pseudoscalar and pseudovector coupling terms yield
the same result)

2*824(1 2¢°®

(43)

Op=—"—"—

sinze)dﬂq,
u drk

Wg—x*

for incident photons of momentum %, and =+ mesons
of momentum ¢= (k?—pu?)? and energy wq,_x emerging
at an angle 6 with the incident photon direction. The
meson-nucleon coupling constant in Eq. (43), g2/4mr, is
for the derivative coupling form and corresponds to
Foldy’s®! 1g% If we calculate the =+ photoproduction
cross section with the zero-order Hamiltonian taken
as Eq. (42), the meson amplitudes are taken as the
solutions [Eq. (26)] of the modified wave equation
(22), so that the s and p wave contributions are re-
duced, respectively, by 7, and 7, as given in Eq. (39).
The resulting cross section is then

2 2 3 2 t 2
do =—e— 1— —[cothBa— 1/6(1]) C—I[( anhﬂa)
2M? 47 \Ba k Ba

2¢%u*—2(1—tanhBa/Ba)g?wex*

Wq—k*

sin20]d9q. (44)

In the limit Ba—0 this reduces to Eq. (43), with the
coupling constants f and g related by Eq. (8). There
are two constants in Eq. (44), g&/4r and Ba, to be
adjusted to give the best fit with the data on the
angular and energy variation of the cross section. In
the discussion of the preceding paragraph on meson
scattering we specified g?/4r=0.4 and Ba=4. This
choice of parameters in Eq. (44) gives a photoproduc-
tion cross section with an energy variation appropriate
for the data but too small in magnitude by roughly 35

3 J. Steinberger and A. S. Bishop, Phys. Rev. 86, 171 (1952).

4L, L. Foldy, Phys. Rev. 76, 372 (1949).

4 The factor 3 appears since we use the charge-symmetric
meson theory in this work, whereas Foldy calculated with a
charged meson theory.
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Fic. 3. The energy distribution of photomesons at 90° in the
laboratory as a function of incident gamma-energy. The solid
theoretical curve results from Eq. (44) with g2/4r=0.4 and Bae
=2.3. The dashed curve is the perturbation result [Eq. (43)]
fitted to the data with g2/4r=1/11.

percent, and with too sharp and too forward an angular
distribution. If we keep g2/4r=0.4, we find that Ba=2.3
gives a cross section of magnitude in accord with the
data. The energy distribution of photomesons at 90° in
the laboratory and the angular distribution at a photon
energy of 255 Mev as calculated from Eq. (44) are
compared with the data in Figs. 3 and 4. The results
of a straight perturbation calculation as calculated
from Eq. (43) and normalized to the data by a choice of
g2/4r=1/11 are also presented for comparison. The
fit between theory and experiment on the energy dis-
tribution of 7 mesons is considerably improved over
the straight perturbation result (corresponding to
Ba=0). The curve for the angular distribution of =+
mesons predicts more scattering in the angular interval
60°-120° than indicated by the rather limited data.
On the other hand, the straight perturbation result
seems to indicate relatively too much s wave produc-
tion and to predict too many mesons in the backward
direction. It is tempting to suggest that one should
choose a smaller value of Ba in the neighborhood of 1.5
and thereby obtain a theoretical angular distribution
median between the two curves drawn and thus in
better accord with the data. If we do this, however,
the energy distribution of mesons at 90° becomes more
similar to the perturbation result and deviates from the
shape of the excitation curve given by Steinberger
and Bishop. When more quantitative data become
available it will be possible to analyze more accurately
the relative roles of s and p wave =+ meson photo-
production.

The fact that the value of Ba used to fit the magnitude
of the photoproduction cross section is smaller than for
the = scattering cross section suggests that the ampli-
tude of the nucleon-meson core, A, is smaller in the
photoproduction than in the scattering process, for a’
fixed radius. This result indicates that the higher order
terms in Eq. (7) that are lumped into the constant A
in Eq. (18) operate somewhat differently in these two
physical processes, and it is a further manifestation of
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FiG. 4. The angular distribution of photomesons in the center-
of-mass system for an incident gamma-energy of 255 Mev. The
solid theoretical curve results from Eq. (44) with g2/4r=0.4 and
Ba=2.3. The dashed curve is the perturbation result [Eq. (43)]
fitted to the data with g2/4r=1/11.

the failure of a perturbation approach to meson theoretic
calculations.

V. CONCLUSION

In conclusion we summarize briefly the aims, methods,
and deductions of this work. We have sought to har-
monize the predictions of the pseudoscalar meson theory
with the observations on meson scattering and photo-
production from protons. Cross sections previously de-
rived for these processes with the assumption of weak
meson-nucleon coupling disagree with the experimental
data. On the other hand, Brueckner?® and Watson*
have achieved striking success by means of a phe-
nomenological approach. In this paper we have adopted
a field theoretic approach to the calculations and im-
proved on the weak coupling perturbation approxima-
tion in two instances. First, we have used the Dyson
transformation to a new representation for the pseudo-
scalar theory that permits a large meson-nucleon inter-
action term carrying the factor M—the core term H.—
to be treated with the zero-order Hamiltonian with
methods that do not limit the meson-nucleon coupling
strength to be small. In this representation we can also
readily identify the velocity-independent features (o, <)
of the nucleon dynamics. Secondly, we have improved
on the perturbation results in the scattering calcula-
tions by applying the Heitler damping theory.

2 K. Brueckner and K. M. Watson, Phys. Rev. 86, 923 (1952).
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The formulas derived by this method come closer to
fitting the observations than do the perturbation weak-
coupling results but are far from satisfactory. It ap-
pears that more powerful techniques of calculation in
the intermediate coupling region must be developed to
provide an adequate basis for the study of the meson-
nucleon interaction, even in a representation that
permits separation of the large core term.*

In particular the higher order terms in 'the exact
Hamiltonian, Eq. (7), remain to be studied. It is of
interest to note here that the core term H,. and the
constant N\ which we incorporate with it in Eq. (17)
may be checked directly in the very near future, when
electron accelerators are operating in the 400-Mev
region, by the process of double meson production by
gamma-rays incident on protons. Thus, at 400 Mev,
the cross section for production of #~ mesons in the
reaction

v+ porttr

is calculated to be® o~(g?/47)?10~*" cm? in a weak
coupling perturbation calculation. The dominant con-
tribution results from the core term H, for which A=1
in the weak coupling approximation. This cross section
result is proportional to A%, and thus a direct measure-
ment of the photoproduced 7 serves to limit the
possible range of values. This is an important point for
the pseudoscalar theory, since we have seen that small
values of AM~u/M to wu/2M are necessary in the in-
terpretation of the scattering and single photopro-
duction data.

As discussed at the end of Secs. ITIT and IV, the failure
to match the 7t meson scattering data and the differ-
ence in the vales of parameters introduced to fit the
calculations on 7~ scattering and on 7+ photoproduction
indicate that an intermediate coupling approximation
is necessary. We are encouraged by our results, how-
ever, to believe that charge-symmetric pseudoscalar
meson theory with renormalizable pseudoscalar coup-
ling may prove adequate for a quantitative analysis
of the processes discussed.

We wish to thank Dr. J. V. Lepore and Mr. R. D.
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4 R. D. Lawson (to be published) has made a perturbation study

of the double photomeson production processes in the pseudo-
scalar theory with both direct and derivative coupling.



