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The limitations to the concept of parity of quantum-mechanical states and, in particular, of intrinsic
parity of elementary particles are discussed. These limitations are shown to follow from "superselection
rules, "i.e., from restrictions on the nature and scope of possible measurements. The existence of such super-
selection rules is proved for the case of spinor fields; it is also conjectured that a superselection rule operates
between states of different total charge.

THE POSSIBILITY OF INDETERMINATE PARITIES

A LTHOUGH the present quantum-field-theoretic
scheme to describe elementary particles is full of

mathematical holes, it possesses certain features,
mainly based on invariance properties, that are believed
to be of far more permanent value. The importance of
these features can hardly be overestimated, since they
offer the most reliable guidance that we have in classi-

fying and interpreting the rapidly growing and already
very complex experimental picture.

The purpose of this paper is to point out the possible
(and in certain cases necessary) existence of limitations
to one of these general concepts, the concept of "in-
trinsic parity" of an elementary particle. Even though
no radical modification of our thinking is thereby
achieved, we believe that the injection of a certain
amount of caution in this matter may be useful, as it
may prevent one from calling "theorems" certain
assumptions, or from discarding as "impossible" forms
of the theory; which under a more flexible scheme are
perfectly consistent. Another possible advantage of the
following considerations may be to bring a certain
amount of clarity in a field in which a great deal of
confusion exists. '

The more or less standard position seems to be that
every elementary particle must have a definite "in-
trinsic parity" factor, which can be determined un-

ambiguously from experiment' (at least in principle).
In order to understand the limitations of this view-

point, it will be useful to recall first some simple points
about the formalism.

The transformation properties (in our case, the parity)

' The origin of the present article is an address which was pre-
sented by the last author at the International Conference on
Nuclear Physics and the Physics of Elementary Particles in Sep-
tember 1951 in Chicago and which was based on a review article
which the last two authors are preparing together with V. Barg-
mann. In view of several inquiries concerning the above-mentioned
address, the authors feel that a preliminary publication of some of
the main points in the present paper is justified, even though they
must refer the reader to the review article to appear later for a
more exhaustive and consistent presentation of the whole subject.' This is no doubt an oversimplified version even of "current"
belief, especially in the case of spin ~ particles. This case, however,
will be discussed later in greater detail.

of a certain kind of particles can be described in two

ways; it will be useful to keep both in mind. One can
state the transformation law of the quantized field.
One will say, for instance, that a certain kind of spin-
less particles are the quanta of a "pseudoscalar" field,
i.e., a.field y such that the transformation law for an
inversion at the origin is

y'(x, y, s) = —p(—x, —y, —s). (~)

Alternatively, one can state the transformation law for
the state vector or Schrodinger function F, which gives
the quantum-mechanical description of the state of the
field, ' i.e., one can find the unitary operator I such that

F'= IF (2)

describes the state which is the mirror image of the
state described by F.

The two alternative descriptions of the transforma-
tion law are, of course, very simply related, for in
quantum mechanics the "observables" or operator
quantities, such as the field p(x, y, s) above, transform
according to the law

&'=I&I—',

when the state vector transforms according to (2).
Thus the unitary operator I determines completely

the transformation law for the field quantities, and
conversely, the transformation law for the latter is
sufhcient to determine the operator I. Thus, for in-

stance, if one states that y is a pseudoscalar, this
means that

Iy(x, y, z)I '= —s(—x, —y,
——s), (4)

and from this equation one may infer that I is of the
form:

IP ~( l)&0+&2+N4+" P (5)

where S~ is the number of particles (of the kind de-
scribed by &p) with angular momentum / while a& is an
arbitrary factor of modulus unity, which remains

' In this particular kind of discussion it seems to be a good idea
to avoid the chameleon-like term wave function. We shall adhere
strictly to state-vector in one case and field function in the other.
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IF ( 1)Ng'+Na' jN s'+ ~ F (Sa)

where the N' have the same significanc for the scalar
particles as the N had for the pseudoscalar ones. If
F describes an aggregate of pseudoscalar and scalar
particles, one has, naturally

IF—( 1)Np+Ng+ ~ +ivy'+Ns'+ ~ F (5b)

We can now resume the discussion of the main point.
The customary assumption is that the field quantities
must obey an unambiguous transformation law, or
alternatively, in the quantum mechanical case, that
the unitary operator I is well defined, apart from the
trivial factor co. Once that is granted, it follows for
instance that a scalar field must be either a "true"
scalar or a "pseudo" scalar. Such assumptions are even
believed to be a logical necessity, if symmetry opera-
tions, such as the inversion, are to have a well-defined
meaning at all.

Nevertheless, everybody knows that the transforma-
tion law of spinor quantities, such as the Dirac field f
is not unambiguous. Yang and Tiomno, in their in-
teresting paper4 on the inversion law for spin 1/2 6elds,
which has been the origin of much thinking on this
matter, do in fact assume an essential ambiguity in the
sign of I/I '. While the case of spin 1(2 particles offers
perhaps the best substance to our doubts, it is prefer-
able to state first our position in a quite general manner.

In our opinion, the whole question hinges on what one
can say about the measurability of the field operators.
In fact, if a field is measurable, then it must have a well-
defined expectation value in any given state. The situa-
tion is theo equivalent to the classical one, where one
can argue that there must be a definite transformation
law, just because the fields are regarded as well-defined
physical quantities. If, however, a field quantity is not
measurabl- and, as we shall see below on the example
of the Dirac field, there are such fields —there is no
logical need for an unambiguous transformation law.

It is quite true, of course, that the assumption that
"all Hermitean operators represent measurable quanti-
ties" is often presented as an integral part of the general

4 C. N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950);see also
E. R. Caianiello, Nuovo cimento 7, 534 (1951);8, 749 (1951);9,
336 (1952).

indeterminate in any quantum mechanical transforma-
tion. If one arbitrarily sets co = 1, the vacuum vector Fp

will satisfy

IFp ——Fp, (6)

i.e., the vacuum will be an "even" state. A one-particle
S-state will be "odd, " etc. It is, of course, the presence
of even angular momenta in the exponent of (5) which
characterizes "pseudoscalar" particles, rather than the
arbitrary choice of even and odd states which is con-
ventionally determined by (6). This is, however, a
convenient choice which is usually made.

Similarly, for the particles of a scalar field one finds

scheme of quantum mechanics. It is also true that in the
case of the ordinary nonrelativistic quantum mechanics
of particles this assumption, implausible as it sounds for
all but the very simplest operators, is not subject to
any very serious objection. It should be hardly neces-
sary to point out, however, that a wholesale extension
of the measurability postulate to the physical abstrac-
tions with which the present field theory of "elementary"
particles operates is an unwarranted and enormous
extrapolation, especially in view of our scarce knowledge
of the actual interaction laws.

That no intrinsic difFiculties are inherent in such a
position, will be apparent if one considers that it is
perfectly possible to construct logical schemes in which
the unrestricted measurability postulate is abandoned.
It is indeed surprising, in view of the known nonmeasur-
ability of the Dirac field, that the nature of such schemes
has not been more widely discussed.

What we have in mind is the following. The usual
assumption in quantum mechanics is that it is possible
to carry out a "complete" set of measurements, the
result of which determines the state vector F completely,
except for the usual phase factor. Suppose now instead
that the Hilbert space can be decomposed into certain
orthogonal subspaces A, B, C, such that the relative
phase of the components of F along A, B, C, is in-
trinsically irrelevant. In other words, calling these
components (which are themselves vectors) F„Fi„F„,assume that no physical measurement can dis-
tinguish between the state-vectors

arid
F,+Fi+F,+

e' F,+e'sFi,+e'7F +

(7)

(7')

where n, P, p, are arbitrary phases. It is clear then,
that the expectation value of any operator that has
matrix elements connecting the subspaces A and B, or
A and C, etc. , will be, in general, completely undefined.
Hence such an operator will not correspond to a meas-
urable quantity. Such an assumption is not incom-
patible with the other rules of quantum mechanics, and
in particular with the superposition principle; a linear
relationship between vectors will remain unaltered if
all vectors simultaneously are subjected to the trans-
formation (7'). One may indeed regard this transforma-
tion as a generalization of the ordinary multiplication of
the whole vector by one phase factor.

Another, and more familiar, way of describing this
situation is to say that the state described by (7') is
not a pure state, but a statistical mixture, which could
be best described by a density matrix. ' The assumption
presented above is that such a density matrix represents
the maximum possible amount of knowledge. The sys-
tern can, of course, be in a pure state in the ordinary
sense, but only if only one of the components, say F,

'For this concept see J. v. Neumann, 3fathematische Grugd-
lagen der Quantenmechanik (Verlag. Julius Springer, Berlin, 1932),
Chap. IV.
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is finite. If the above is admitted, the unitary operator
I representing a symmetry operation will be aGected by
a corresponding lack of definition. Ordinarily I will

have no matrix elements connecting the subspaces A,
8, C, ~ ~; it will leave each invariant. Hence the sub-
matrices of I in any of the subspaces A, 8, will

contain an arbitrary factor ~, co&, just as the whole
I contained such an arbitrary factor. Because of the
equivalence of the wave functions (7) and (7') there
will be no way to determine the ratios of ~„cub,
instead of the single indeterminate phase factor there
will be as many as there are subspaces A, 8, . This
means that it will not be possible to make any statement
as to the relative parity of states belonging to different
sub spaces.

It is customary to say that a selection rule operates
between subspaces of the total Hilbert space if the state
vectors of each subspace remain orthogonal to all state
vectors of the other subspaces as long as the system is
isolated. There is, for instance, a selection rule which

prevents any state of an isolated system from changing
its total linear momentum. Similarly, the state vectors
of the subspace containing all states with total angu-
lar momentum J will remain, in a closed system,
orthogonal to all states with any other total angular
momentum. We shall say that a superselection rule

operates between subspaces if there are neither spon-
taneous transitions between their state vectors (i.e. ,

if a selection rule operates between them) and if, in
addition to this, there are no measurable quantities
with finite matrix elements between their state vectors.
This is the situation described above; it entails that the
phase factors co, ~b, . , given above, are all unob-
servable. The new point which we wish to bring out is

that there is definite evidence that such superselection
rules exist in the present formalism of relativistic field

theories. We shall outline a proof for this in one case
and will suggest another case in which it is also very
likely to operate.

The existence of superselection rules allows one more
freedom than one would perhaps like to have. We are
not especially concerned here, however, with the possi-

bility of exploiting this freedom to the utmost limit, ' in

order to produce "monsters" with unexpected proper-
ties. Rather, we are interested in the most simple in-

stances in which the above described situation appears
to prevail. It would be quite wrong to assume that a
superselection rule operates, for instance, between sub-

spaces with difI'erent total linear momenta. The phase
between such states is measurable, and every position
measurement, in fact, involves the measurement of
phases between states of diferent linear momenta.

6 Strictly speaking, even if one assumes a definite transforma-
tion law, one cannot exclude on general grounds a more compli-
cated transformation, such as y'(x, y, s) = co(N) p( —x, —y, —s)
X~(N) ' where the value co(N) =+1 can be chosen at will for
every N irrespective of the product rule. This possibility can be
easily excluded only if y is a locally measurable quantity.

SPINORS

One must introduce a superselection rule between at
least two subspaces of the whole Hilbert space if one
wishes to preserve the relativistic invariance of this
space. The first of these subspaces, A, contains the
states in which the total angular momentum of the
system is an integer multiple of k, the second subspace
8contains the states with half-integer angular momenta.
Let us denote the state vectors of the first subspace by
fA, gA, , those of the second by fB; gB, We shall
consider states 2 '(fA+fB) for which the measurement
of the angular momentum gives with a probability 1/2
an integer angular momentum and with the same prob-
ability a half-integer angular momentum. Let us im-

agine, furthermore, that the two states 2 &(fA+fB) and
2 '(fA —fB) can be distinguished by some measurement.
This is what we mean by the statement that the phase
between the subspaces A and 8 can be measured. We
shall see that this assumption cannot be reconciled
with the requirement of relativistic invariance.

Our proof for this will be based on the transformation
of time inversion. This transforms fA into UAKfA and

fB into UBKfB in which the U are unitary operators
and the E indicates that one has to take the conjugate
complex of the ensuing expression. The crucial point of
our proof is based on the equations7

UAKUAK= 1; UBKUBK= —1. (8)

Naturally, U&E and U&K can be replaced by ~U&E
and ~'U&K without changing the content of the theory
as long as ~co~ = ~a&'~ =1. Such a substitution, how-

ever, will leave (8) unaffected. It is this circumstance
which renders a proof based on the transformation of
time inversion particularly simple.

Applying the operation of time inversion to a state
fA+fB will give ~UAKfA+co UBKfB in which co is, of
course, indeterminate but co'/co, though unknown, will

be independent' of the state vectors fA and fB.Applying
now the operation of time inversion again, we must
obtain a state which is indistinguishable from the
original fA+ fB. The result is

0) UAK(coUAKfA)+07 UBK((a'UBKfB)) (9)

with co'"/co" = co'/&o. Because of this and (8), (9) becomes

cd &dUAKUAKfA+~ ~ UBKUBKfB
= (~"/a&) fA (a&"'/a&') fB=cons—t(fA —fB). (9a)

In view of the different signs in (8), this result was to
be expected; it shows that fA+fB and fA fB must—
remain indistinguishable as long as a time inversion

operator satisfying (8) exists. The same result could
have been obtained by considering rotations instead

' See E. Wigner, Nachr. Ges. Wiss. Gottingen, p. 546 (1932).
This is a crucial point which, however, has been discussed

repeatedly. See E; Wigner, Gruppentheorie und ihre Anmendung
auf die Quantenmechanik der Atomspektsen (Friedr. Vieweg.
Braunschweig, 1931), Appendix to Chapter XX. A simplified
proof will be given in the article mentioned in reference 1.
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of the time inversion. However, the consideration be-
comes somewhat more involved because there is no
equation for rotational transformations, similar to (8),
which would remain unchanged if one replaces the
transformation by a multiple thereof.

It follows from the above that the measurability of
any Hermitean operator $ which has finite matrix ele-
ments (f~, $fz) between the subspaces A and B (i.e.,
between states with integer and half-integer angular
momenta) would lead to a contradiction. In fact, unless

(fz, gfs) is purely imaginary, the expectation values of

g for the states f~+fs and f~ fbi w—ould be different.
However, we have seen that these states are undis-
tinguishable. If (fz, $fii) is purely imaginary, the above
statement applies to the pair of states f~+ifii, f~ if'
which can be shown to be similarly undistinguishable.

Since every spinor field f has the property that both
P+P* and i(f P*) c—onnect the subspaces A and B,
it follows that neither of these two quantities can be
measurable (f itself is not Hermitean and, for this
reason, its measurement need not be considered).

+ ~~-t a Q + ~i+ Q (10)

We are thus led to postulate that: multiplication of the
state vector Ii by the operator e' produces no physi-
cally observable modification of the state of a system of
(mutually interacting) charged fields.

We can give no conclusive evidence for this assertion,
and such evidence may in fact depend on a deeper under-
standing of the meaning of electric charges which we
still lack. Assuming that the assertion is correct, it
follows that the parities of states with diGerent charges
cannot be compared.

As a result, it is clear, for instance, that if certain
experimental data can be interpreted on the assump-
tion that the charged ~-meson field is pseudoscalar and
the other (proton, p-meson, etc.) charged 6elds

CHARGED FIELDS

In the present form of field theory, charged particles
are represented by complex helds. If only one such held
is considered, say y(x, y, z, 3), the Lagrangean and
Hamiltonian functions, including if necessary the inter-
action with external fields, will contain & only in the
bilinear combination y y, i.e., they will be invariant
against multiplication of p by a phase factor e' . We
are thus led to believe that such a factor is an in-
trinsically unobservable modihcation of the field. If
several charged fields q ~, y2, be present, the Hamil-
tonian may contain terms such as q i p2 pi p2 p3', ~ ~ ~

etc. , but in all cases it is invariant against a simul-
taneous multiplication of all fields by the same e' .

This property is known to be connected with the
principle of conservation of the total charge and repre-
sents a very restricted type of gauge invariance. If Q
is the total charge, in terms of e as a unit, multiplication
of y&, y2, . by e' can be achieved by the unitary
transformation

with which it interacts have certain specified inversion
properties, it must be equally possible to interpret the
data on the assumption that the charged m-meson field
is scalar, provided corresponding modifications in the
properties of the other fields are made. 4

APPLICATIONS

Having stressed purely negative aspects so far, let
us see what one can say in an afhrmative sense.

In the first place, the electromagnetic field is no doubt
the one about which we know most. Once it is stated
that the electric field is a polar vector, ' one knows the
properties of any state containing only photons.

The parity of a particle, like the neutral m, which
can decay into a pure photon state, is then in principle
determinable. Another way to do this is to ascertain
which selection rules obtain experimentally in a reac-
tion such as p+~n'+p+p, where no other particle
is created or destroyed.

If we turn now to charged particles, our considera-
tions show that parities are to a certain extent arbi-
trary. This means, as it often happens, that we need a
frame of reference, which is based on conventions, but
is no less useful because of that. We could, for instance,
agree that the m+ mesons are to be regarded as odd.
This would then reduce the arbitrariness in the inversion
law for other particles. For instance, the well-known
capture experiments. in deuterium give indications as to
parity, that can be formulated in the above frame of
reference, by saying that the proton and neutron fields

Pp and fz transform in such a way that Pi*Pe& is a
scalar.

Leaving these special examples, it is perhaps desirable
to state in general what possibilities exist; this will also
clarify the diGerence as well as the area of agreement
between our standpoint and that adopted in the paper
of Yang and Tiomno. 4

The preceding remarks should demonstrate that the
possibility of determining or comparing intrinsic pari-
ties is intimately connected with the possibility of
performing quantum mechanical experiments which
can serve to determine phase differences between difer-
ent parts of a state function. If there were no super-
selection rules, i.e., if all phase differences could be
measured in principle, the relative parities of all par-
ticles could be determined. This could be done in prin-

It is, of course, true that if, in addition to the inversion I as it
is usually understood, (i.e., such that the sign of the charges is
preserved, and E is polar) one believes in the operation of charge
conjugation C as an exact symmetry property of nature it becomes
arbitrary whether one regards I or CI as the inversion law. Adopt-
ing CI, however, none of the states of atoms or nuclei, that one
considers normally, would be a state of definite parity (states of
definite parity would involve superpositions of states containing
protons and anti-protons, etc.). The definition thus is not a con-
venient one to adopt. That C is an exact symmetry property is
moreover still far from proved. The disturbing possibility remains
that C and I are both only approximate and CI is the only exact
symmetry law. This would force us to regard the electric field as
an axial vector. This possibility, however, seems rather remote at
the moment.
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ciple, for instance, by constructing a state which is,
with probability 1/2, a particle A with angular momenta
J and J, about a point and a line, with probability 1/2,
another particle B in a similar state. If this state looks
the same in a mirror which is parallel to the line, and if
rotated by x about an axis perpendicular to the line,
the parities of 2 and B are the same; they are opposite
otherwise. "Less abstractly, one could try to transform
A into B and keep track of the parities of the particles
which were absorbed and emitted during the trans-
formation.

The superselection rule which prevents the compari-
son of phases between states with half-integral and
integral angular momenta makes it impossible to com-
pare directly the parities of spinor particles with those
of integral spin particles. However, if this is the only
superselection rule, it remains possible to compare the
joint parities of two identical particles with that of an
integral spin particle. If this parity be even, one would
be tempted to attribute a real parity to the individual
spinor particle. If the parity is odd, one would be
tempted to attribute an imaginary parity thereto.
However, still proceeding on the assumption that the
spinor superselection rule is the only one in existence,
and that all phases can be measured, the measurement
of which is not forbidden by this superselection rule,
the parities of any two spinor particles can be compared.
This comparison, as any comparison of parities, can
yield only the results "equal" or "opposite. " Hence,
if ooe spinor particle had a real parity in the above
sense, this will be true for all other spinors. Similarly,
if one spinor had an imaginary parity, this will be true
of all others. Less abstractly, some pairs of spinors
may disintegrate in such a way that one will say that
the product of their parities is even, some pairs in such
a way as to make the product of their parities appear
odd. Under the assumptions of this paragraph the prod-
uct of their parities clearly cannot be imaginary be-
cause every pair will be able to transform into integral
spin particles, possibly after absorbing some such
particles. In particular, under the assumption of this
paragraph, it would not be possible for one pair of

"It is hardly necessary to point out that within a subspace A,
or B, . . . the operator 12 must be a multiple of unity, for the
customary reasons; see, for example, reference 7.'./Hence the
parities/of two states, whenever they can be compared, fcan only
be equal or opposite.

identical spinors s~ to show even, for another pair s2,
to show odd parity. In this case a pair of s& plus a pair
of s2 would show odd parity. This would mean, however,
that the parity of a pair consisting of one s& and one s2
particle would have to be indeterminate. This is con-
trary to our assumption.

If we assume that the phases of states with diferent
charges cannot be compared either, i.e., assume a super-
selection rule for charge, there will be no direct way to
compare parities of particles with diferent charges.
However, it will be again possible (unless prevented by
the spinor superselection rule) to compare the product
of the parities of two particles with opposite charges,
with the parity of an uncharged particle. This parity
can again be the same or opposite. Since an identical
pair of charged particles cannot be uncharged, the
square of the parity of a charged particle cannot be
determined under the present assumption. It will be
possible to say that the parity of a particle of unit
charge is ~, where or may be any number of modulus 1.
Still under the assumption of this paragraph, every
other particle with unit charge (and the same type of
spin) will then have parity &e or —re, every particle
with opposite charge the parity or ' or —or '. Clearly,
it will not be possible to attribute a direct physical
significance to the quantity or and one may just as well
call it 1. However, there may be some advantage in
keeping or because it will remind one of the conserva-
tion law for electric charges. An interaction operator
which violates this law will also appear to violate the
principle of inversion symmetry. If one assumes the
conservation law for heavy particles to hold and adopts
a corresponding superselection rule, forbidding the
observation of phase differences between states with
diA'erent numbers of heavy particles, the parity of a
heavy particle will have a new indeterminate factor
or' in it which again will have no immediate physical
significance. Similar remarks apply to or' as were made
above for or. It may be again desirable to keep this
indeterminate phase as a useful formal device to remind
one of this conservation law.

A slightly less general device is that employed by
Yang and Tiomno, who by a suitable choice of factors,
or'=~1, +i for the various particles, succeed in ex-
cluding many of the interactions that one would other-
wise be tempted to assume and which are in contradic-
tion with the conservation law for h,cavy particles.


