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Construction of a Potential from a Phase Shift
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Two methods of constructing a potential, in the form of a series, from a given S phase shift are described.
The convergence of one of these is analyzed. Examples show that it can converge comfortably even for po-
tentials which are so strong as to have a bound state. The ambiguity of the potential, connected with the
existence of bound states, is discussed in an appendix.

1. INTRODUCTION The main part of this paper is devoted to a method of
constructing the potential, which is described in Sec. 3.
In Secs. 4 and 5 conditions are established under which
our procedure leads to a solution. Section 6 contains two
examples in which our method is found to converge
comfortably, even for nuclear potentials. It was some-
what unexpected to 6nd that it converges even in the
presence of a bound state; however, in that case we
obtain only one potential out of the whole family which
presumably exists.

In Sec. 7 we describe an alternative procedure which
has the advantage of omitting one of the steps in our
other construction, The convergence is only illustrated
by an example. This section may be read independently
of the rest of the paper.

The authors are well aware of the limited usefulness
of these procedures for an analysis of the two-nucleon
system. The difficulties are manifold. Our method, in
common with the more usual fitting procedures, re-
quires an accurate knowledge of the S phase for all
energies, which is difficult to extract from scattering
data, particularly at high energies. In the case of the
neutron-proton system there is the additional problem
of separating the singlet and, triplet scattering. It is well
known that the low energy scattering data sufBce only
to determine two characteristic constants of the poten-
tial, but not its exact shape. ' Finally, it is quite problem-
atical whether the two nucleon system can at all be
adequately described by a potential, particularly at
high energies.

Possible generalizations to describe higher angular
momenta, tensor forces, and Coulomb and relativistic
scattering are briefly discussed at the end of the paper.

In Appendix 2 we give a generalization of the Levin-
son uniqueness theorem which shows which additional
parameters are necessary to determine the potential
uniquely; The number of these parameters is equal to
the number of bound states.

INCR the early work of Faxen and Holtsmark' the
analysis of scattering data into phase shifts has

been a very useful tool for the interpretation of collision
processes. In the case of the scattering of two nucleons
extensive investigations have been carried out, aimed at
interpreting the phase shifts by means of a potential
acting between the colliding particles. The question, to
what extent a potential can in principle be determined
from a knowledge of the phase shifts and binding ener-
gies, has therefore been of considerable interest.

The problem has been recently clarified in the papers
of Bargmann'4 and Levinson. ' Levinson was able to
show tha, t under very general conditions a short range
potential is uniquely determined by the phase shift
(for all energies) corresponding to a single angular
momentum l, provided there exist no bound states with
the same angular momentum. Thus the phase shift
corresponding to an / so high as to exclude the possibility
of a bound state does at least in principle determine the
potential unambiguously.

On the other hand, Bargmann has given a number of
examples which show that in the presence of bound states
there can be a great variety of widely different poten-
tials giving identical phase shifts and binding energies.

It became clear therefore that, for example, for a
system with bound S states, the potential is in general
not uniquely determined by the S phase shift and bind-
ing energies. However, even in the absence of bound
states, the Levinson uniqueness proof gave no hint as
to how the underlying potential could be constructed.

An attempt in this direction was made by Froberg. '
Since his results were somewhat inconclusive, we
thought it worthwhile to make a fresh investigation of
this problem.

*Postdoctoral N.R.C. Fellow, 1950-51.
' H. Faxen and J. Holtsmark, Z. Physik 45, 307 (1927).' See, for example, N, F. Mott and H. S.W'. Massey, The Theory

of Atomic Collisions (Clarendon Press, Oxford, 1949) second
edition; R. S. Christian and E. %. Hart, Phys. Rev. 77, 441
(1950);R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).

3 V. Bargmann, Phys. Rev. 75, 301 (1949).
4 V. Bargmann, Revs. Modern Phys. 21, 488 (1949}.
5 N. Levinson, Kgl. Danske Videnskab Selsab, Mat. -fys. Medd.

25, No. 9 (1949).
6 C. K. Froberg, Arkiv Mat. Astron. Fys. 34A, No. 28 (1948)

36A, No. 11 (1949);Arkiv Fys. 3, No. 1 (1951).

2. PRELIMINARIES

In this section we introduce the concepts which we
shall use in constructing the potential from the phase
shift.

7 J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);H. A.
Bethe, Phys. Rev. 76, 38 (1949).
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g(z) in ReLz]&0, lie on the real axis (corresponding to
negative imaginary values of k) and are simple; they
determine the energies of the bound states

(2 11)

FIG. 1. The phase shift q(k) and the modified phase shift g(k),
corresponding to the Eckert potential for the n —p 'S state.

With the help of (2.2) one verifies easily that

lim g(z)=1
Z—woo

(2.12)

uniformly for ReLz]—0. Hence, by (2.9), we can set

Restricting ourselves to 5 states, we start with the
Schrodinger equation If, furthermore,

(2.13)

p"+k'y= Vq,

where V(r) satisfies the condition

(2 1)
t r2~ V(r)~ dr&
0

~
V(r) ~rdr& ~.

lim e+'""f(&k, r) =1.
z'~00

(2.3)

The S matrix element and the scattering phase are
then related to f(k, 0) by the equations

$(k) = e"&&+ =f(k, 0)/f( —k, 0), k&~ 0. (2.4)

Let f(&k, r)' be the two linearly independent solutions
of (2.1) which behave at infinity like

one can show' that

g(+0) =mn. if g(0) QO,

~(0) =(m+-,')~ if g(0) =0, (2.14)

where m is the number of bound states.
In the absence of bound states log g(z) is regular for

Re[z]&0; if further g(0) QO, it is continuous for
ReLz]&0 and its imaginary part on the imaginary
z axis is given by the phase shift according to (2.9).
We can therefore express log g(z) in ReLz]&0 in terms
of the phase shift p(k) by Poisson's integral

Since

we can write
f(—k, 0) =f*(k, 0), (2.5)

2i ~" g(k')
log g(z) = —— dk',

'al
oo 21k S

(2.15)

rj(k) = ImLlog f(k, 0)]. (2.6)

We now extend (2.4) and (2.6) also to negative k values.
Owing to (2.5), one then has the relation q(k)+i7( —k)
= 2n~, where we may set n= 0. This gives

rl( —k) = —i7(k). (2.7)

s= 2ik,

g(z, r) =g(2ik, r) =e'""f(k, r), '
g(r) = g(z, o).

Then (2.6) reads

(2.8)

q(k) = 1m[log g(2ik)]. (2.9)

For the further development it is convenient to make
the following definitions:

where we have made use of (2.12).
When the potential does have bound states, both

q(k) and the energies of the bound states are required
for the construction of g(z). This function now has zeros
at the $; and hence log g(z) has logarithmic branch
points there. However, the function g(z), defined by

(2.16)

does not vanish for ReLz]&0 and furthermore has the
same asymptotic properties as g(z). It can therefore be
expressed in terms of its phase g(k) on the imaginary
s axis:

The differential equation (2.1) with the initial values
(2.3) can be combined in the integral equation'

2i r
" g(k)

log g(z) = —— dk,
~& „2zk—z

(2.17)

,( ) 1+ I L1, „„]V() ( )~ (2 10)
wllere by (lie de Ill'tlo of g(z)

s

As shown in reference 4 this equation can be solved by
iteration for Regs] 0, whenever (2.2) is satisfied.
The resulting series converges uniformly in s and r.
It follows that g(z, r) and especially g(z) is regular in

Re[z]&0 and continuous in ReLz]&0. The zeros, $, of

rl(k)=g(k) —2Q tan '
2k

(see Fig. 1).

8 R. Jost, Helv. Phys. Acta 20, 256 (1947).

(2.18)
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Once g(z) is calculated, g(z) can be obtained from it
by Eq. (2.16).

It is now convenient to replace g(z) by an auxiliaxy
potential Vi(r). For this purpose we iterate Eq. (2.10)
which gives

Next we formally carry out the Laplace-inversion' and
obtain

oo ~00

V,(r) = V(r) —Q dr, dr,
l 2J=ll t'1

g(z) —1=P ~ dr, drp drl
l=l 4p T)—1

X (1—e "l)(1—e z(rl—rl))—. . . (1 e z(r l r t—t)t)—-

' V(ri) V(rp) ' ' ' V(«) (2 19)

For small V(r) this equation reduces to

&it(r, rirp rt) V(ri) V(rp) V(rl), (2 26)

where

1(.(r, ri rl)

L,—l, l (1 e
—zrl) (1 e—z(rp —rt})

g(z) —1—— dr(1 —e *")V(r),
z p

(2.20)

which suggests the introduction of the auxiliary poten-
tial Vi(r) defined by

z'1
Ltst

t'2 t'1

=j dti
J

r
~f,—r l-1

42z ~ ~

dp
00

g(z) —1=—
~l dr(1 e*')Vi(r—),

p

or, from (2.19), by

(1—e "*)LV((r) —V(r)]dr
Jp

(2.21)

Ol

XL 1(Z.e z(tl+tp+ ~ —+).ttr. ))

~1

dt's dt2 ~ ~ ~

4p

fit)—T)—1

4p

X tt'(r —ti—tp — —tl) (2.27)

00 00

dr i I drl (1 e")——
2

)((1—e z("l rt)) . (1—e
—««—«—»)

E(r, rirp rl)

'r 1 p ~2 t'1

dt's ~ dt2
ar Jp

fO
'r l 'r l-1

4p

V(ri) V(rp) V(rl) (2.22).

Under the assumption

lrv(. )l & V, (2.23)

the right-hand side of (2.22) tends to zero as z ap-
proaches infinity. This suggests that the solution Vi(r)
of (2.22) satisfies the condition

&& S(r—t,—t,— t,); (2.28)—

b(x) denotes Dirac's b-function.
The proof that the series (2.26) for Vl converges and

satisfies Eqs. (2.25), (2.24), and therefore (2.22) is given
in Appendix 1.

The results of this paragraph can be summarized as
follows:

If a potential satis6es the conditions

"p
L Vi(r) —V(r)]«=0 (2.24)

r
L
V(r)

L

dr( ~, (2.29)

which will be verified after the solution is obtained
(see Appendix 1).Equation (2.22) now takes the form

e "LV(r)—Vl(r)]
4p

r'L V(r) Ldr(~z

rl V(r)L &M&~,

(2.30)

(2.31)

00 00

drl drl-
t=p J, J„, ,

&& (1 e zrl) . ' (1—e z(rl rt t))— — —-
V(r,) V (r,) V(rl). (2.25)

then

(a) rt(k) is an odd function which is continuous and
differentiable except possibly at k=0 Lsee Eq.
(2.14)] and which tends to zero as k—+& tzp.

' G. Doetsch, Theoric Nnd An2tftendlng der Lap/ace Transforma-
tion (Dover Publications, New York, 1943).
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(b) g(z) is regular for ReLsj) 0 and is expressible in
terms of rl(k) and the energy values of the bound
states by Eqs. (2.16)—(2.18); for s—+~, g(s)~1.

(c) There exists a potential Vi(i), satisfying (2.21),
which obeys the inequalities

V (r) =XVi(r)+ Q ),"V (r).
nb=2

(3.4)

we introduce an auxiliary parameter X, by which we
multiply Vi(r) and expand V(r) in a power series in X:

rl Vi(r) l«& ~,
Introducing (3.4) into the integral equation gives

(2.32)

lv()I&A. .

3. CONSTRUCTION OF THE POTENTIAL
FROM THE PHASE

(2.33) XVi(r) = V(r) —Q «, «, «i
1=2 P r1 J vI

XK(r, ri ri) V(ri) V(ro) V(ri) (3.5)

x0+i R

rVi(r) = lim
~~ 2@i 4*0—ia

d
e"'—s(g(s) —1)ds, xo) 0 (3.1)

ds

vanishes for r&0, is of bounded variation, and is ab-
solutely integrable, it represents the solution. ' We
assume further that

r
l
V, (r) l

&M, & ~, (3.2)

r
l
V, (r) l

dr= Ii& ~.
Jo

(3.3)

It will be recalled from (c) in Sec. 2, that these condi-
tions are in fact satisfied whenever the phase and energy
levels are due to a potential V(r) satisfying (2.29)
and (2.31).

Fina!'.r, we formally solve the integral equation
(2.26) for V(r) by successive approximation. To do this,

We now turn to the construction of a potential which
will reproduce a given phase shift rl(k) and given energy
levels.

In the presence of bound, states it is by no means
certain that, for given phase and bind. ing energies, this
inversion problem has a unique solution. In fact,
Hargmann4 has constructed continuous families of
potentials with identical phase shifts and bound states.
A complete solution of the inversion problem would
consist of a construction of all potentials corresponding
to a given phase and binding energies. The method of
the present paper, however, yields at best a single
potential out of this manifold. .

On the other hand, when q(0) =0, so that no bound
states exist, these complications do not arise if one
admits only potentials satisfying the conditions (2.29)
and (2.30), and the inversion problem has at most a
single solution. This result has been proved by Levinson. '

Our procedure will be to construct successively the
functions g(s), Ui(r), and V(r) from Eqs. (2.16)—(2.18),
(2.21), and (2.26).

We first construct from the given phase and energy
levels the function g(s) by means of (2.16)—(2.18). We
then postulate that there exists a solution Vi(r) of
Eq. (2.21). In particular, if the expression

and equating to zero the coeKcient of 'A, m=2 leads
to the recursion relation

V-(r) =2
L=2 v1+vp+ +vI=m aJ 0

dri dr2 ' ' dr)
'r l-1

XK(r, riro ri) V.i(ri) V.o(ro) V.i(«). (3.6)

When this is solved, we set X= 1 and obtain formally

V(r)= 2 V-(r)
m=1

(3.7)

We will show in the next section, that the series (3.7)
converges (almost everywhere), provided that

r
l
Vi(r)

l
«—2 ln2 —1=0.38630. (3 8)

We cannot prove that the V(r) defined by (3.7) will

satisfy the integral equation (2.26). However, we will

show in Sec. 5 that under the condition

l
V (r) l

rdr= K& ~.
m=1 40

(3.9)

4. THE CONVERGENCE PROOF

In this section we will prove that (3.8) implies the
convergence of the series in (3.7) and we will derive
properties of the V(r) thus defined. To do this we need
first some properties of the kernels K(r, ri ri), de-
fined in (2.28), to which we devote a subsection.

V(r) exists (almost everywhere) and satisfies (2.22) and
therefore (2.19). From this it follows that V(r) repro-
duces the original phase q(k). Since the condition (3.8)
implies (3.9), we are sure that (3.7) represents a solution
of the inversion problem.

The estimate (3.8) is probably rather crude and
potentials for which it is satisfied cannot have bound
states. The examples discussed in Sec. 6 converge con-
siderably beyond this estimate, in fact well into the
region of bound. states.
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The Kernels K(r, r, rt)io but from (4.1)

These are conveniently discussed with the help of the &M(r, ui u&)
non-negative quantities =M(r, ui ui i)

tt 1 p tt2 ~ttE

M(r, ui . u&)= I dt's I dt2 . I dt,
Jp

M—(r u—~, ui u~ i), (4.8)

and since r,)u, , (4.6) gives the estimate

X&(r—ti—4— —ti) u1=0 (41) lK(r, rir2 r~)l~(r, r2 r ) ' ' ' ' "
We obviously have ~ (rir2. . .r() (&—2) I & (4 9)

dp

Qo l

e *"M(r, u, u~)dr=+ —(1—e ' ").
k=1 Q

We also require an estimate for
(4.2)

rlK(r, ri rt)
l
dr= ' rM(r, ui. ui i)dr

By multiplying out the product on the right-hand side
in (4.2) and Laplace-inverting term-by-term, we get

M(r, u, ui) = {[r]'—P [r ui]—
(t 1)!— but

+ rM(r ui, ui —~ ut i)dr; (4.10)
Jp

where

+P [r—uI, —u,]'
k&s

+(-1)'[r-u,-u, — -u, ]'), (4.3)

j rM(r n, ui u—( i)dr

e
—'"M(r —n u ui )dr

J ) 1 —1

dS p z=p

x for x—0
x]=

0 for x(0.
(4 4)

and therefore

l—1 i
= ——e * g —(1—e *"")

dS k=1 2 z=p

(4.11)

for
M(r, u, u, ) =0

r(0 and r) P u~.

It follows from (4.1) that

" rlK(r ri" «)l«
0

d &—11
=——(1+~ '"') lI -(1—~ *"")

ds Is=1 g z=p

Furthermore, itis easy to see from (4.1) that M(r, ui u&)

as a function of r is symmetrical around the point
or with (4.7)

u,u,u, . ui i(P u~) (4.12)

1
rp

j rlK(r, r, ' 'r~) Idr~rir2 'ri. '

0

(4.13)

M(r, ui u() (u,u, ui) ~'

By the definition (2.28) of the kernels we have

(4.6)

and monotonically increasing for r&rp and correspond-
ingly decreasing for r) rp.

Finally, by integrating (4.1) first over t& we get the
estimate M(r, ui &)uu~, &u. u& i, and since u& may
be taken as the largest Nk, it follows that

The explicit form of K(r, rir2) is shown in Fig. 2.

The Convergence of the Series

First we notice that the conditions (3.2) and (3.3) are
sufficient to ensure the existence and integrability of
rV (r) [compare (4.9) and Fig. 2]. From (3.6) we get
the estimate

8
K(r, ri ri) = M(r, ui u—i),

Br

Nl rl +2 r2 rl' 'NL rt rl—1

(4.7)

r lV (r)ldr
Jp

m

dri dr2 dr~
l=2 2)k=m Vp Tl

"These kernels are discussed by E. Rufener, ilA'tteilungen der
Uereinigung Schweitzer Versicherungsmathematiker (to be pub-
lished). .

X, rlK(r, ri r~)ldrl V.i(ri)l
" l& i(«)l, (4.14)
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or

and
W(xs) = log2=0. 69315 (4.24)

xp ——L2 log2 —1]/Ii ——0.38630/Ii. (4.25)

The series (4.20) will therefore converge at x=1,
provided that

Il—0.38630;

note that in this case

(4.26)

W(1)=0.69315. (4.27)

Summarizing, we have the result: If (4.26) is satisfied,
then

FIG. 2. The kernel E(r, rIr2) used in the construction of the second
and higher approximations { see Eq. (3.6)]. r

I V-(r)
I
dr —0.69315.

oa

m=1 &p
(4.28)

and with (4.13),

mI„g Q dr,
l=2 Zvte=m iJ p

dt'2

rV„(r) =rV(r)
m=1

(4.29)

Applying now a theorem from the theory of real func-
tions, "we can conclude that

00

dr& g r &
I
V &(r&) I

(4 15) converges almost everywhere to an integrable function
J „, , s=i (in the sense of I.ebesgue) and that

For symmetry reasons this can be rewritten as

m 1 00

I„Q—P —g rI V.s(r) I
dr

E=2 $ t Zvt, =m I=i Jp

and finally

therefore,

00 oo

rV(r)dr= P rV (r)dr;
p

-i J,

00

rV(r)dr~ P I ~0.69315(1,
Jp m=1

(4.30)

(4.31)

1
I,„g—Q I.,I., I.t(m=2, 3 ).,

i=2 )~ Zvf, -m

lf we now define J by

(4.17) and according to a well-known theorem it follows that
if (4.26) holds, the potential V(r) does not produce
bound states. "

We have now constructed a V(r) and shown that it
leads to a finite

1 (4.18)J =P —P J.,J., J.t(rts=2, 3 ),
i=2 lt ~„=m

then we have
I J (rrs= 1, 2, 3 ). (4.19)

W(x)= Q J x" (4.20)

To solve the recursion (4.18) we introduce the generat-

ing function

r
I V(r)

I
dr

p

We can, however, not be sure that it satisfies the Eq.
(2.26) from which it was constructed, since our'esti-
mates for the kernels K(r, ri r~) do not guarantee the
proper convergence of the integrals. However, to prove
that a potential reproduces a given phase shift (and
given bound states, when such exist), it is sufficient to
show that it satisfies (2.22). This will be done in the
next section.

then substituting from (4.18) gives

or
W(x) Iix= e~&*' 1—W(x)— —

x=Ii 'L2W(x)+1 —e~'*'j.
(4.21)

(4.22)

The singularity, which determines the convergence
radius of (4.20), is located at the smallest root of the

equation
(4.23)

S. PROOF THAT V(r) REPRODUCES THE PHASE

The result, which we want to prove in the paragraph,
is a little more general than would be necessary to
prove that the V(r) constructed in Sec. 4 reproduces the
phase rl(k). It is the following:

If the V (r) constructed by (3.6) have the property

"C. Caratheodory, Vorlesungen ueber reelle Funktionen (B. G.
Teubner, Leipzig, 1918), p. 605, Satz 3."A potential can have a bound state only if fo"r

~
V(r) l dr~ 1;

see, for example, R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
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that

where

then

g I =K&~,
m=1

I„= r~ V.(.) ~dr,

(5 1)

(5.2)

We transform the left-hand side of (2.22) [Re[s])0]
in the following way:

00

A(s) =— ' dr(1 —e z")[V)(r)—V(r)]
p

N

dr(1 e—*") P V (r)+R2(z)v (5.9)
S~p m=2

where
r p V„(r)=r V(r) (5.3)

m=1
I

converges almost everywhere to an integrable function;
V(r) satisfies Eq. (2.22) and therefore reproduces the
phase ))(k) and the bound states.

The existence of U(r) as well as the inequality

1 Jv zz

R)(s) = —— dr(1 —e *") P V (r) (5..10)
Z~p m=N+1

Introducing the recursions (3.6) for V in the first
term of (5.9), we get
N

2 V-(r)

~
V(.))rdr K (5 4)

follows from (5.1) by an argument similar to that of the
last section.

To show that V(r) satisfies Eq. (2.22) we are now

going to transform the left-hand side of that equation
until it is equal to the right-hand side, but before we do
this, we need the convergence of a series, which is re-
lated to the sequence of the I 's.

We consider the analytical function

f(x)= P I„x"
m=1

(5.5)

which is, according to (5.1), regular for ~xl &1 and
continuous for

~

x) «1. The same therefore holds for

F(x)=ef"=1+P a x,
m=1

where

m

dr 2 dr2
vvv=2 l 2 ZvZ zz 0 r1

dr)K(r, r) r()

X V.)(r))V.2(r2) V.)(r))
00

taboo

dr2 dr2
l 2Zvp&NQp

dr)K(r, r) ~ r()
7'l—1

X V.)(r)) V.2(r2) V.)(r(). (5.11)

Substituting this in (5.9), interchanging the order of
integration, "and using the definition of K(r, rq r(),
(2.27), gives

a =Q —Q I.)I.2 I.(~0.
L=l 1 1 ZvIe=m

In particular, F(1) exists so that

F(1)=1++ a„&~,
m=1

and therefore the series P a converges. "
m=1

(5.7)

(5.8)

p
00

A(s) =P dr) ' dr,
(=2 &0 ~ ry

1
(1 e zrl) (1 e z(r2—r&)—)—

~r~ y S

(1—e *'"' "'-") P Vv)(r))V.2(r2)
ZvIe&N

E'

l=N+1 t | 3
(a)

I„&-,
m=N+1 3

(b)

Let e be an arbitrarily small positive number; then
we can determine an A' in such a way that N

dr, dr2

V.((r()+R)(s)

(1—e *(" r)-»)v(r&)V(r, )

~00

dr) (1 e
—zr&) (1 e

—z(rz—r»)
S

QO

a„&-.
m=N+1 3

(c) V(r()+R2(s)+R)(s), (5.12)

"K. Knopp, Theoric end Anmendung der unendlichen Reihen
(Julius Springer, Berlin, 1931), third edition, p. 519.

'4 Since all our integrals and sums are absolutely convergent,
the order of integrations and summations can be freely inter-
changed,
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where

Rz(s) =E
1=2 Jp

ca

IRz(s)l= Z
+1~p

df2

00

(1 e
—zrz)

&r~y s

(1—e
—'&"'—"'-») Q Vr)(rg) V.,(r,)

Z vk&N

««~l V(r))
I
rz

I V(rz)
I

~r' 1

1
r)

I V(r))
I

—Q E'&—, (5—.19)
i=N+1 l t 3

where (a), (b), (c) have been used as well as (5.1), (5.7).
Therefore

Finally,

00

~(s) =P
l=2 &p

df1

IR~(s)+R~(s)+R~(s) I
«.

From (5.9), (5.14), and (5.20) it follows that (2.22) is
satisfied. This concludes the verification.

where

dr) —(1—e
—*"')(1—e

—'~"z—"»)
r~ 1 S~

' ' '(1 e
—z(r)—r)-») V(r)) V(r&)

V(r))+Ra(s)+R~(s)+R~(s), (5.14)

6. TWO EXAMPLES

k cot g(k) = —u+-', r,k'

We shall now work out in detail a simple example
which shows how the method can in principle be used
for a determination of the potential. We consider a
particle obeying the Schrodinger equation (2.1) whose
phase shift is given by

oo

Rz(s)= P ~ dr~
l=N+1 0 p

dr2

1
dr) (1 e '"')— ——

l'f) 1 S

' ' ' (1 e z(r) r) z)) V(—r)).—. . —V(r)) (5.15)

1 A

—(1—e *) = ~ e z~'du' ~u, Re[s]~0, (5.16)
s p

What remains is to estimate R)(s), R~(s), Rz(s). With
the help of

k coty(k) = u+ ', rok—'- (6.1)

This expression is taken from the theory of the effective
range7 and luckily is particularly easy to treat by our
method.

We first discuss the case n &0, rp) 0, which corre-
sponds, for example, to singlet neutron-proton scatter-
ing. In this case one can see from (6.1) that q(+0) = 0
so that the system has no bound state [compare (2.14)].

By means of the relation tan 'x= (i/2) log[(1 ix)/—
(1+ix)],we write q(k') explicitly as

q(k') = tan '[(k'/ —u+ —,'rok')]
= i/2 log[(z'+a)(s' b)/(z' a)—(s'+b)]—, (6.2)

where
one justifies easily

N co

IR~(s)l=
i

r 2 IV„(r)l= P I„&- (5.17)
~J p m=N+1

'
m=N+1 3

N

I Rz(s) I
—P dry drz

Jr~

d« P r,
l
V.,(r,) I rgl V Q(r~) I

~~1 1 Zvg+N

00 m

"Iv)(«)I—= 2 2 —2 I il ~

m=N+1 l=2 l t Zvk=m

s' = 2ik',

a= (2/ro) [1+(1—2uro) '],
b= (2/ro) [—1+(1—2uro) '].

We now calculate g(s) by means of Eq. (2.15):

2i )" g(k')
log g(s) = —— dk'

x 4-" 2ik' —s

1 t'" ds' s'+a s' —b

log +log
2ni ~—z~ s' —s. s'+b s' —a

= —log L(s+a)/(s+ b)];

(6 3)

(6.4)

(6.5)

since c&b&0, we have integrated the first and second
00

(5 1g) terms by closing contours in the right and left half-
m=N+1 3 planeS, reSpeCtiVely. HenCe We Obtain the Simple eX-
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pression

where

g(s) = (s+b)/(s+a)
= 1+li2a/(s+ a),

li = —(a b)/—2a.

(6.6)

(6.7)
0.0

V
(IO cm )

0.5
I

I.O
l

r (IO cm)
l.5

I
2.0

I

Expanding the potential V(r) in powers of A, -OS

V(r) =Q XmV„(r),
1

(6.8) -IO

we find first, by Eq. (3.1),

XrV,(r) = i e-—s[g(s) —1jds
2x'i ~—i~ ds

or

2a'X I'" 1
e"' ds

2s-i ~ —' (s+a)'

= 20,2' e—ar
)

Vi(r) =2a'e '"
(6 9)

(6.10)

In the present case the calculation of the higher ap-
proximations is best carried, out by Laplace transform-
ing Eq. (3.6), using the first expression of Kq. (2.27)
for the kernels:

e '"V (r)dr

oo oct

I' d„ I' d„
l=2 vI+v2+ ~ ~ vl=m aJ 0 0 ry

00 1

j dr, (]—e
—a») (1 e

—*(ro—ni)
7'l—1 S

so that

Similarly,
V&(r)=2a&(—e ar+2e oar)

Vo(r) 2a&(e—ar 4e oar+ 3e oar)— —

(6.13)

(6.14)

1
—(1—e *'"' " ")Vri(ri)Vro(r, )
s

V.i(ri) (6.11).
Thus with (6.10) we find

( 1 2
e '"Vo(r)dr= 2a'i — +——

i
(6.12)j, E s+a s+2a)

The erst three approximations with numerical
constants corresponding to n p—singlet scattering
(er.= —00422X10+" cm ' ro=2.6X10 " cm, a=1.45
X10" cm ', li= —0.469) are plotted in Fig. 3. In the
same 6gure the exact solution corresponding to the
g(s) of Eq. (6.6) is plotted, vis

V(r)=2'(1+X)a'e ar/[1+) (1—e '")j' ' (6.16)

We see from (6.16) that the radius of convergence is

IXI =1, more than twice the value appropriate for
e—p singlet scattering. The convergence of our pro-
cedure is therefore unexpectedly good, , when compared.
with our criterion (3.8), which assures convergence
only up to

I
liI =0.193.

As a second case we consider again (6.1), this time
with n) 0, ro) Oand 2aro&1. This means that g(+0) = s.
so that the system has one bound, state whose energy,
Eo———4(o'(/o)0), is necessary for the construction
of g(s).

We first write d,own the auxiliary phase

g(k') = il(k') —2 tan —'(po/2k')

("-b)("+ )("-~.)'=—log, (6.17)("- )("+b)("+&.)'
where a and b are given by (6.14) and a) 0, b&0 (see
Fig. 1).

The function g(s) is given, according to (2.17), by

2i t
" g(k')

log g(s) = —— dk'
x &-~ 2'' —s

1 p ds

2.;J,„.
(s' —b) (s'+ a)

log
(s'+6)'

"RO '-

FIG. 3. Three successive approximations to the Eckert potential V,
corresponding to n —p singlet scattering.

etc. The total potential, therefore, is

V(r) =2a'Ie ar(X—'A'+X' — )

+ e- -(2X'—4X'+ )

ye—oar(3l 3 . . .)
(6.15)

(+I.)'= log
(s b) (z+a)—

and therefore g(s) is, by Eq. (2.16),

g(s) =g(s) (s—Eo)/(s+6)
= (s' —4')/[(s —b) (s+a) j.

(6.18)

(6.19)
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In the case of the neutron-proton system one finds
experimentally that $0= b;—i.e. , the bound state
coincides with the absolutely smaller zero of the S
matrix" defined by Eq. (6.1), namely,

lated the g(z) which corresponds to its phase shift and
bound states. In this case it is not necessary to calcu-
late first g(k) and the $; explicitly, since the g(z) for
this potential is well known:"

(2ik+ b) (2ik —u)
S(k) =

(2ik —b) (2ik+ a)

00 1
(6.20) g(p, z) = 1+P-

~=& I!(1+z)(2+z). "(n,+z)

V(r) =pe-" (6.22)

(where r is measured in convenient units), and calcu-

Equation (6.19) now simplifies to

g(z) =(z+b)/(z+o), (6.21)

which is of the same form as (6.6); however, in the
present case b is negative.

The construction of V is exactly the same as before,
leading again to (6.15) and (6.16). The numerical
values for I—p triplet scattering are: n=0.186)&10"
cm ' rp= 1.56)&10 '3 cm, a=2.114)(10'3 cm ',
X= —0.606. Therefore the convergence of our method
is only slightly worse than for singlet-scattering where
X was —0.469.

It should be recalled, however, that in general, when
there are bound states, there is no guarantee that the
potential constructed by our method is the only solu-
tion. In the present case this ambiguity is illustrated, by
the family of alternative potentials which has been
constructed by Bargm, ann. ' Figure 4 shows the poten-
tial V(r), Eq. (6.16), to which our method leads, as well

as two equivalent potentials V2(r) and V4(r), selected
from Bargmann's Eqs. (4.10) and (4.12) by setting
8=0.1 and 0, respectively.

The Exponential Potential

In order to see whether the good convergence in the
last example was accidental we have also calculated a
second example.

We have taken an exponential potential,

( 1)8 1 ] ~ +m

=1++ p' P —.(6.23)
8=& (s—1)! (s+z) ~=o m!(m+s)!

V~(r) is now calculated from (2.21)

1
g(p, z) —1=— dr(1 —e *")V, (r)

p

(!"
q.!„)'dre *'~ V, (r')dr' ~, (6.24)

which gives after Laplace inversion and di6erentiation

( 1)s—1se—sr ~ +m

V~(r) =Z (6 25)
(s—1)! =o m!(m+s)!

For the n p triplet sys—tem, we take our unit of
length as rp=0. 75&(10 " cm and, p, =2.13. Then one
finds

V~(r)= —[0.538e "+2.061e '"+1.374e '"

+0.369e 4"+0.052e '"+0.004e '"+ ]. (6.26)

To calculate V2 and Vs one uses the easily established
formulas

dry dr2K(r, rq, r2)e "'e e"'

1 1—e e"+—e &~+e&' (6.27)
~(~+p) ~p

V(r)
(~0' cf

*

r(10 cm) ~ I

&i dr2 K(r, ri~2rg)e ~"'e ~"e &"'

0 ~l

1
e ~"

& (p+~)( +p) p( +p+~))

-2
vg(r

~p(~+ p+v)
g
—(P+y) &

«4
e
—(e+e+p) r (6 28)

~(p+ v) (~+p)

FIG. 4. Three . phase equivalent potentials corresponding to
the e—p triplet state. All the curves go through the same point
at r=0.

'~ For the few potentials examined so far the S matrix vanishes
at points in the k plane corresponding to bound states.

To simplify the calculation of V3 we have used the ap-
proximate expression

Vg(r) = —(0.6e "+3.8e--" 4'),

'6 For example, reference 12, p. 845.
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which is accurate to with, in a few percent. The potentials
obtained in the first three approximations, which can be
calculated with relatively little eRort, are shown in
Fig. 5, together with the exponential potential. The
curves apparently converge satisfactorily towards the
exponential potential. " It might be remarked here
that for the same potential, successive Born approxima-
tion diverge up to about 20 Mev.

V

05 t.o 1.5
I

r(IQ gm) ~

7. THE TANGENT METHOD

Instead of basing our construction of the potential
on the integral Eq. (2.10) whose solutions behave like

f(k, r)~e '"" for large r, one can also consider integral
equations corresponding to other boundary conditions.
One of the most natural possibilities is

«5

v(0)=o,

r-+op: 22(r)—+Sinkr+tanr) COSkr

(7.1)

(7 2)

«6-

where

y(r) =sinkr+ g(r, r') V(r') y(r')dr', " (7.3)
V p

g(r, r') = ——(sink(r+r') —sink
~

r r'
~

)—
2k

The integral equation which is equivalent to the
Schrodinger equation (2.1) and these boundary condi-
tions is

QL

Fro. 5. Three successive approximations to the exponential
potential V(r) corresponding to the n —p triplet state.

We now solve (7.3) by iteration and substitute the
resulting series into (7.6):

~00

—k tanr)(k) sin'kr V(r)dr+ p dr ~ dr2
4p Jp

1 p "+"'
cosktdt. (7.4)

dr„sinkr V(r)g(r, r2) V(rq)

g(r„2, r„)V(r„) sinkr„. (7.7)
For r +~, (7.3) gives—

1
y(r) = sinkr+

~

—— sinkr'V(r') 22(r')dr'
~

coskr (7.5)
k&p ) —k tauri(k) = pj's(k), (7.8)

To solve this equation for V(r), in terms of tanri(k),
we write formally

so that

—k tang= t sinkrV(r) 22(r)dr.
Jp

(7.6)

'7A simple function —theoretic argument shows that if our
procedure converges it must converge to the exponential potential."Froberg's method (see reference 6) is equivalent to starting
with the integral equation

p(r) =sin(kr+g)+ k(r, r') V(r') p(r')dr',
r

where k(r, r')=(1/k) sink(r' —r). The solution of this equation,
which has the asymptotic form y(r) —+sin(kr+q), is obtained by
iteration and substituted into the equation

0=sing(k)+f k(0, r') V(r') rp(r')dr',
0

which comes from the boundary condition y(0) =0. Finally, one
writes sing(k) =XF(k), expands both V (r) and sin(kr+q) in powers
of X, and equates to zero the coef6cients of ) . The resulting equa-
tions can be solved for the successive terms in the expansion
of V(~).

V(r) =2 ~"V-(r)
1

(7.9)

—k tan2)(k) =
Jp

sin'kr V2(r) dr, (7.10)

00

0= sin'krV (r)dr++
4p 2 Zvg m4p

dr2»nkriV i(ri)g(r2, r2) V"2(r2)
4p

g(r2 2, r2) V.2(r,) sinkr2, 222=2, 3, . (7.11)

substitute into (7.7), and equate to zero the coe%-
cients of p, p,', . Finally we set p, =1.This gives the
following set of equations:
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In practical applications it may be most convenient
to substitute (7.16) into (7.15) and do the integrations
over the r; before that over k. However, in Fig. 6 we
also show K(r, rrrs) as function of r, ri, and rs

We do not consider it worthwhile to present here a
proof for the convergence of this proced, ure for small
enough ti(k). Such a proof can be given along the lines
of Sec. IV. One can notice immediately, however, that
the method d.oes not apply to potentials with bound
states since in that case (d/dk)[k tauri(k)] has a quad-
ratic singularity where ri(k) =(pr/2), and hence Vi(r),
Eq. (7.12), does not exist.

To illustrate how this method works, we consider
again the phase shift given by (6.1), which we now
write as

FrG. 6. The kerne1 K (r, r1r2) used in the tangent method for
the construction of the second and higher approximations [see
Eq. (7.15)g. where

—k tang= —yak'/(P'+k'), (7.17)

Given tant'(k) we can now successively solve these
equations for Vi, Vs, . We first differentiate (7.10)
with respect to k and Fourier invert, obtaining as first
approximation

y= 2/rp, P'= —2cr/rp, (7.18)

and p is eventually taken as 1. We restrict ourselves
to the case where P is real and, for definiteness, positive
to avoid a singularity in tant'. From (7.12) and (7.15)
we find

4 r" d
rVi(r) = —— (k tauri(k—)) sin2krdr. (7.12)

pr "p dk
Vi(r) = 4vPe —"" (7.19)

f
(1—cos2kr) V (r)dr

2 0

(7.13)

and assume, subject to later verification, that

To solve for V (r), m&2, we begin by writing the
first term in (7.11) as

Vs(r) = 4p e '—e'+4y'Pre e"+4y e e" (7.20).

To determine the conditions under which the series
(7.9) for V(r) converges when p= 1, we use the fact that
the potential corresponding to (7.17) is exactly known
and, since there are no bound. states, even unique. With
our present notation we have [compare (6.16), (6.7),
(6.4), and (6.1)]

V(r)=2K(1 +X)a'e '"/[1+X(1—e '")]' (7.21)

aJ p

V (r)dr=0, rrr)2. (7.14)
where

Now we Fourier invert (7.11) and obtain

V (r)=P Q dr, drs
l=2 Evje m p 0

ri= us+ (I 'v'+40') *' (7.22)

)t= I 'b/ 0)' I (v/2P) I:~'(—v/2P)'+1]' (7.23)

Thus we see that the expansion (7.9) for V(r) converges
for p= 1 only if

Qp

where

K(r, r, ri)

driK(r, ri ~ ri) V.i(ri) V r(ri), (7.15) (7.24)

Comparison with (7.17) shows that for this particular
potential one has convergence only if

(7.25)

4
dk cos2kr sinkrig(ri, rs)

for all k.
It is interesting to compare the convergence of this

procedure with that of the method discussed. earlier.
At the limits of convergence of the present expansion

g(rr i, ri) slilkri. (7.

One verifies (7.14) immediately from the fact that

Edr =0.

q/2P= 1: X=1—V2= —0.414,

p/2P = —1: X= 1+v2 = 2.414,
(7.26)

so that in the case nf the attractive potential (~/2p= 1)
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our other procedure has a larger radius of convergence,
while for the repulsive potential the present method is
better.

8. CONCLUDING REMARKS

In conclusion we should like to survey briefly some
possible generalizations of our procedure.

The simplest of these is the generalization to higher
angular momenta. It is easy to give the formal expres-
sions corresponding to our kernels K(r, rirp ri). As
a result of the centrifugal barrier, the potential be-
comes electively weaker for higher /, and, therefore the
convergence of our method for a given potential is likely
to become better. Also, for suKciently high l, the unique-
ness problem, connected with the existence of bound
states does not occur. On the other hand, the phases for
l.&0 are not so well known experimentally, and the ker-
nels considerably more complicated than for S states.

The inclusion of tensor forces in the framework of
our procedure does not seem to be unfeasible, but is
undoubtedly quite complicated.

The extension to the case of a repulsive Coulomb
field seems to be promising. Jauho'" has already gen-
eralized, Levinson's results to this case, and, there can be
little doubt that the present method can also be adapted
to it. For the proton-proton system one has the ad-
vantages of more accurate measurements and. no bound
state complications. These would seem to make a study
of this case worth while.

Finally an investigation of the relativistic equation
may be interesting for application to the scattering of
high energy electrons by nuclei.

This paper was begun at the Institute for Theoretical
Physics in Copenhagen and concluded at the Institute
for Advanced Study in Princeton. We should like to
express our great appreciation to Professors Niels Bohr
and Robert Oppenheimer for making our collaboration
on this problem possible. We are also very grateful to
Professor V. Bargmann for many helpful discussions.

APPENDIX 1. CONVERGENCE PROOF FOR THE
SERIES 2.26

We have to show that under the assumptions

With the notation

Fi(r) = —
I

«i
6p Jpj

the series in (2.26) reads

Vi(r) = V(r)+2 Fi(r)
L=2

(A1.6)

We will first prove (A1.3). From (A1.1) and (A1.2) we
6nd

where

f
g(r) I

V(r)
I
«& ~ ,

gr for 0&r&1
g(r) =

r for 1&r

(A1.7)

(A1.8)

Analyzing first rF2(r), we get from Fig. 2

f
r trr+ry

IrF&(r) I
=r dr, dr&I V(ri) I I V(rp) I

p ~r

+ " d " «plV(ri)IIV(r)IJ, ~ r+r1

f
T T+Tl

dri I dr&rpl V(ri)
I I V(rp)

I

P T

+ «ig(ri) «pg(rp) I V(ri)
I I

V(rp) I, (A1 9)
r

and finally with (A1.1), (A1.2), and (A1.7)

I
rFp(r)

I
=MI+A'& pp. (A1.10)

For the estimate of rFi(r), 1~3, we use the first estimate
in (4.9) together with the property of the kernels
K(r, ri ri) to vanish for r) ri [compare (4.5)j. This
gives for rFi(r)

I«(r)l &M&~,

t

rl V(r) I«=I& ~,

po0 F00
(A1.1)

I
rFi(r) I

~
I dri drp
p

(A1.2)

the function Vi(r) defined by (2.26) exists and has the
properties

drig(ri)g(rp) g(ri) V(r, ) V(rp)
~t—1

V(ri) A'/1!. —(A1.11)

lrV, (r)
I
&Mi&~, (A1 3) Introducing (A1.10), (A1.11), and (A1.1) into (A1.6)

gives

r
I
V,(r) I

dr =I,& ~.
Jp

(A1.4)
1

I rVi(r)
I
&M+MI+A'+Q —A'=M & pp, (A1.12)

i=3 )!
' P. Jauho, Ann. Acad. Sci. Fennicae, Ser. A, 80 (1951). which proves (A1.3).
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The proof of (A1.4) goes exactly along the lines of the
convergence proof in Sec. 4. Using (4.13) one verifies
easily

00 ~ I'
rI Vi(r) I«~I++ —=Ii& ~. (A1.13)

0 i=2 )!

here we have abbreviated f(k, 0) by f(k) and f(k, 0) by
f(k) and used the fact that by our assumptions

f(k) = f(k) (A2.9)

ip(k, r) and p(k, r) are regular functions for all complex
values of k. ' For large

I
k

I
they behave as

Furthermore, we note that as a consequence of (2.30)
we also have

(A1.14)

y(k, r) sinkr/k,

p(k, r) ~sinkr/k.

Similarly we have, for large
I
k

I
and Im[k]=0,

(A2. 10)

(A2.11)

an equation which, however, we did not use in the text.
Therefore we omit the simple proof.

Finally, it follows easily from (A1.1) and (A1.2) that and therefore
all the Fi(r) are integrable, and from (2.27) we get

f(k r) ~e ikr-

j(k, r) e ""
(A2. 12)

(A2. 13)

f(k)-1. (A2. 14)

4p

which together with (A1.6) gives

[V(r)—V, (r)]dr =0.

(A1.15)

(A1.16)

Following reference 19 we discuss the expressions

k QO

C, (k, r) = y(k, r) ' f(k, p)F(p)dp (A2. 15)
f(k)

and
k

42(k, r) = f(k, r) ~~ y(k, p)F(p)dp, (A2. 16)
f(k) ~ p

rI V(r)
I
dr& m, (A2. 1)

APPENDIX 2. A GENERALIZATION OF
LEVINSON'S THEOREM'

Levinson has proved that for a given S phase shift
and in the absence of bound states there exists at most
one potential satisfying the conditions

where F(r) is a continuous and continuously differen-
tiable function, which is di6'erent from zero only in a
finite r interval.

Integrating Ci(k, r) over a contour C consisting of a
large semicircle in the lower half-plane and the real
axis, we get a contribution only from the zero of f(k)
at k= —i~:2p

4 p

( ir.)—
C i(k, r)dk= 2mi. — .

&p( iz, r)—
(A2.2)

f( ig, p)t(p—)dp, (A2. 17)
r

where

(A2. 18)f(k) (df/dk—=).

We now introduce the following abbreviations for
the bound state wave function:

v ( i~, r) =—-vo(r),

P( i ~, r) =—jo(r), —
(A2. 19)

(A2.20)(A2.3)~o"+k'v = Vv,

v "+k'C = ~v, (A2.4) and the notation

We shall now give a generalization of this theorem under
the same conditions (A2. 1) and (A2.2). In the notation
we follow the paper of Jauho. "For simplicity we first
discuss the case of a single bound state.

We assume that for the given phase shift and binding
energy there exist two potentials V(r) and V(r) and
corresponding wave functions ie(k, r) and p(k, r) satis-
fying the equations

and the boundary conditions

ip(k, 0) =0, (p'(k, 0) = 1, (A2.5)

p(k, 0) =0, p'(k, 0) = 1. (A2.6)

These functions are related to the functions f(k, r) and

f(k, r) of (2.3) by the equations

p(k, r) = (1/2ik)(f(k)f( —k, r) f( k)f(k, r)), (A2—.7)—

p(k, r) = (1/2ik) (f(k)f( k, r) f( k)f—(k, r) }; (A2—.8)—

yo(r) = [f( i", r)/f'( i~, —0)], —

go(r) = [f( i~, r)/f'( ia—, 0)]. —

In terms of the notation of Sec. 2, ~= &/2.

(A2.23)

(A2.24)

C= [2i ~f'( i~, 0)/f( i~)], — —(A2.21)

C= [2iaf'( i~, 0)/f( ——i~)]. (A2.22)

C and C are real and positive (see reference 8 p. 265).
Finally, we clearly have the relations
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We can now rewrite (A2. 17) as

)+K 00

J. C &(k, r)dk s—iCys(r) ps(p)F(p)dp

C g(k, r)dk, (A2.25)
S,C.

where the first integral goes over the real axis and the
last over the large semicircle. Levinson has shown that
one can substitute in the last integral the asymptotic
expressions (A2. 10—14), which gives

C r(k, r)dk

dk sinkr e '~'F(p)dp+R(K), (A2.26)

We now add to (A2.32) its complex conjugate which,
with (A2.8), leads to

F(r)=2C9o " A(p)F(p)dp
r

2 p+" k'dk 00

+- i
— 9(k, «) s(k, p)F(p)dp; (A234)- -- lf(k)l

similarly we obtain from (A2.33)

F(r) = 2C g, (r) p, (p)F'(p)d p
Jq

2 r
+" k'dk

+— g(k, r) 1p(k, p)F(p)dp. (A2.35)-~-- lf(k)l

Interchanging the role of p and g, C and C, we find
from the last equation

where
lim R(K) =0.

if,"~00

An integration by parts leads to

00 1
e '"I'F(p)dp= —e 's"LF(r)+Ri(K)],

ik

(A2.27)

(A2.28)

F(r) =2Cys(r) A(p)F(p)dp
4 p

2 p+" k'dk r

+- 1e(k, r) I p(ki p)F(p)dp (A2 36)
~-- If(k) I'

If naut C=C, i.e., f'( ia, 0)—=f'( i~, 0)—, addition of
(A2.34) and (A2.36) yields

where again
lim Rr(K) =0.

Substituting (A2.28) into (A2.26) gives

(A2.29)
F(r) =Crps(r) ~ &ps(p)F(p)dp

40

2 p+" k'dk
+—

I
—y(k, r) P(k P)F(P)dP (A2 37)

C'r(k, r)dk
S.C.

dk
=-,'F(r) ~ —(1—e "' )+R,(K)

where
= ——,'is.F(r)+Ra(K),

lim R, s(K)=0.
+—+00

(A2.30)

(A2.31)

(A2.32)

Finally, substituting (A2.30) into (A2.25) gives

F(«) =2CÃo(r) po(p)F(p)dp
4 „

2i r+" kdk
+— 9 (k, r) f(k, p)F(p)d p

f(k)

A similar procedure applied to (A2. 16) yields

r

F(r) =2Cv o(«) " v o(p)F(p)dp

Since without the bar this is the usual completeness
relation, one can now easily prove that, in fact, p(k, r)
= y(k, r) and gs(r) = ps(r) and hence V(r) = V(r). This
demonstration follows reference 5, p. 14 or reference
19, p. 39.

Thus to a given r)(k), ~, and C there corresponds, at
most, one potential satisfying the conditions (A2. 1)
(A2.2). On the other hand, two potentials with the
same «)(k) and ir but different C are, of course, neces-
sarily different since their bound state wave functions
are different. In the cases of the phase equivalent poten-
tials of Bargmann (reference 4) the positive parameter
C assumes all values between zero and infinity so that
there cannot be any additional phase equivalent poten-
tials with the same binding energies satisfying (A2. 1)
and (A2.2)."

Clearly in the general case of ns bound states the
potential is uniquely characterized by r)(k), a; and the
m positive parameters C,.

Note added in proof: —Since this paper was submitted, explicit
expressions have been found for a family of potentials with the
same phase shift and binding energies as those of a given potential.
This family can be shown to be complete since the parameters C;

2i p+" kdk
f(k, r) v(k, p) (Fp) pd.

f(k) & p

(A2.33)
"In case (b) reference 4, p. 491, one finds f'( i~, 0) = o/(P —1), —

1&P&~; in case {c), f {—i~, 0)=o/{1+a), —1(a&~. In
both cases o &0.



992 R. JOST A N D W. KOHN

of Appendix 2 take on all values 0&C;& ~ Lpaper submitted to
The Physical Review; see also B. Holmberg, Nuovo cimento 9,
597 (1952)j.

Further, an important paper by I. M. Gel'fand and B. M.
Levitan LDoklady Akad. Nauk. S.S.S.R. n Ser. 77, 557 (1951)j
has come to our attention. By adapting their methods to the
present case the problem of finding the potential corresponding
to given f(k) and constants C; is reduced to the solution of linear
integral equations. One introduces an auxiliary potential V(')(p)
with corresponding solutions q" (k, y) and bound states at E, '.
It's "spectral function" p(')(8) is defined by

d'p(1) (jV —gC,.o)g(g g,.o)) g 0

d'u")(~) 1 v'~
~ lp"'(v'E)I"

To Gnd the potential V(r) corresponding to a given p(E) one
evaluates

G(r, s) =fd[p(E) —p&'&(E)]y~'&(QE, r) r o&(QE, S)

and solves the integral equations

E(r, s)+G(r, s)+J X(r, t)G(s, t)dt= 0
for positive r. Then

dE(r, r)
dr

It is a simple consequence of this theory that for a given phase
shift, the position of the bound states is completely arbitrary.
- A paper on applications of the Gel'fand Levitan theory to
scattering problems is in preparation.
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Excitation Cross Section for Helium Atoms*

SAUL ALTsHULER
Department of Physics, Iowa Skate College, Ames, Iowa

(Received February 28, 1952)

The excitation scattering of electrons from helium atoms is investigated in order to examine quantita-
tively the errors introduced by the fact that the description of the helium target is only approximately known.
The cross section is calculated in Born approximation using formally equivalent matrix elements which
weight the wave functions differently in space. Similar shapes for angular distribution and total cross sec-
tion vs energy curves are obtained although absolute values. differ.

INCE exact wave functions for complex atoms are

~

~

~

~

~

~

~ ~ ~

~ ~

not available, there is an uncertainty introduced in
scattering calculations which is distinct from those in-
herent in the Born approximation. The approximate
wave functions, such as those of Slater, usually are well
determined with respect to the energy of the state and
are less well determined in regions other than those
which contribute the most to the energy. For scattering
problems such errors may be quite serious. A similar
situation occurs in the calculation of optical transition
probabilities, and investigations have been reported.
This difhculty has never been quantitatively examined
for collision problems.

To make this study, we follow the suggestion, ad-
vanced by Bates, Fundaminsky, and Massey, ' of em-

ploying two formally equivalent expressions for the
diBerential cross section, both of which are within the
Born approximation. These expressions are not neces-

sarily the same in actual calculation since they weight
the various regions of coordinate space differently.

The cross section for a momentum change dE for
excitation of an atom from state p to state &7 is given

*The research reported in this paper has been sponsored by the
Geophysical Research Division of the Air Force Cambridge
Research Center.

'D. R. Bates and A. Damgaard, Trans. Roy. Soc. (London)
A242, 101 (1949); S. Chandrasekhar, Astrophys. J. 102, 223
(1945).' Bates, Fund'aminsky, and Massey, Trans. Roy. Soc. (London)
A243, 93 (1950).

in Born approximation' by

I(E)dK =
2

Q ~l e '*+,&Pp*dr&d—rs dr„, (1)
2+3

where the summation is made over the atomic electrons,
and where K=k,—k„, k„=wave number of the in-
cident electron, k,=wave number of the scattered elec-
tron, k,'=k„'—26E, and AE=E,—E„, the internal
energy change of the target; in all of these symbols
Hartree units have been used.

The summation over the atomic electrons is made
readily if product type wave functions are used. For
the ground state of helium

0'p= A(&
I
r&)AP'I rs) (X=1.687)

while for an excited state —other than an S stat-
the Eckhart approximation' to the wave function is
used, i.e.,

=2 'gp(2 Ir&)P t (1 Irp)+&&rp(2I rp)tP t (1
I rl)},

where &P t (f&7
I
r) is the wave function of a single elec-

tron in the mhn state moving in a field of charge X.

'N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Clarendon Press, Oxford, England, 1949), second edition, pp.
226 ff.


