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value of the energy from all the 47 plates 9.48+0.15
Mev.
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For a single electron interacting with the quantized transverse electromagnetic field it is found that, in
the one-dimensional case, the Schrodinger equation can be put into a form like that of a system of coupled
harmonic oscillators. From the classical frequencies of the normal modes of oscillation of such a system the
quantal energy can be determined. While the perturbation method gives a logarithmic divergence in the
interaction energy, one finds by the present method that the energy diverges like the square root of a

logarithm.

A QUESTION which does not appear to have
received a satisfactory answer is whether the
divergences arising in the interaction between a point
electron and the quantized electromagnetic field are
inherent in the problem or are due to the methods of
calculation employed. The purpose of this paper is to
attempt to throw some light on this question by con-
sidering a simplified case in which the electron and the
field are constrained to one-dimensional motion. This
may be regarded as a continuation of earlier work on
one-dimensional fields.!

Let us consider first the more general case of a single
electron, described by the Dirac equation, interacting
with a quantized electromagnetic radiation field. Thus
we do not make use of the hole theory of the vacuum.
Nor do we concern ourselves here with the interaction
with the longitudinal part of the field; this will be
regarded as already included in the mass term of the
Dirac equation. If we think of the system as satisfying
a periodicity condition in a fundamental cube of side L,
we can expand the field in a set of monochromatic plane
polarized waves of proper frequencies with quantized
amplitudes.? Let us label these modes of oscillation of
the field by an integer A\. The Hamiltonian for the system
can then be written

H=ca-p+mc?B—ea-y_» A\+H,, 1)

! N. Rosen, Phys. Rev. 71, 833 (1947), and 76, 202 (1949);
W. Sollfrey and G. Goertzel, Phys. Rev. 83, 1038 (1951).

2 See, e.g., W. Heitler, The Quantum T heory of Radiation (Oxford
University Press, London, 1944), second edition.

where p is the electron momentum, H, is the Hamil-
tonian of the field,

Ho=3 20 (PN’ —Fiwn), (2)
and

Ay=cmd L[ Q\(e™N TH¢ N T)
+ (i/w)\)P)‘(eik)\ t g—ikn r):' (3)

is the vector potential for the degree of freedom labeled
by M at the position of the electron specified by the
vector r. Here ky is 27/L times a vector with integer
components (positive and negative) depending on A,
w=c|kx|, and e, is the polarization vector, orthogonal
to k. The amplitudes QO and Py are pairs of conjugate
variables satisfying the usual commutation relations
for coordinates and momenta. In H, the zero-point
energy has been subtracted.

We now consider the Schrédinger equation for a
stationary state of energy E,

Hy=Ey, “)

where the operator H is given by (1) with p=—i4V,
Py=—1ih(3/0Q))-

To solve this equation let us write the wave function
¥ as an expansion of the form

¢=Z(n) aningomn--Uning -+ my+++

Xexp[i(p'/l—mniky—nks- - -)-x]. (5)
Here

Uning+--ny- - -=“n1(Q1)Mn2(Q2) o 'Mn)\(QA) Tty (6)
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where #,(Q) is a harmonic oscillator wave function
with quantum number #(=0, 1,2, - --) describing the
state of the unperturbed mode of oscillation,

(P24 Q% — how) st =nhwn, ; (7

p’ is a constant vector, the total momentum of the
system; and @ning---my--- is a constant spinor expansion
coefficient. The summation Y is carried out over all
the states of all the degrees of freedom. Substituting the
expression (5) into Eq. (4) and making use of the
relations

[Q+ (/@) PJun= 2nlt/ w)httns,
[Q— (i/w)PTun= (2(n+ 1)/ @)t ©)

one finds that with some rearrangement of terms one
gets an equation which leads to the following relation
among the expansion coefficients:

ECp/ . a-l—mcz,B—l—ﬁ Z)\ n)\(w)\’— Ck)\ . (!) “E:lanlnz R O

—-K Z)‘ &\ a[(Z(n)\—{- l)h/w)‘)'}dmnz cee(nnt1) e
+ (Zn)ﬁ/wx) Yaning - -(ma~1) -+ 1=0, (9)

where
K=ceriLt. (10)
Now define a function ¢, by
o= (maning-- - -Uning---my -, (11)
and an operator
H'=cp'- a+mc*B+3 La(P+ o’ On— i)
X[1= (/e )k @]—2K 3\ Qrer- e, (12)
and consider the equation
H' ¢=Ee. (13)

A simple calculation shows that this also leads to Eq.
(9) as the relation among the expansion coefficients.
Thus we see that the energy levels associated with the
Hamiltonian H’ are the same as those of H. (One can
also discuss the transformation from H to H' as a
unitary transformation from a representation in which
the electron coordinates are diagonal to one in which
the total momentum is diagonal.) The obvious ad-
vantage of Eq. (12) is that the electron coordinates have
been eliminated.

Since the solution of Eq. (13) for the general case
still presents difficulties, let us now go over the one-
dimensional problem. Let the vector p’ have only a
Z component which will be denoted simply by p, and
let the vectors ky also be along the Z axis, the polariza-
tion vectors &\ being in the X and Y directions. Equa-
tion (13) can then be written

[Cpaz+mc2ﬁ+H0(1 - O‘z) - ZK(Qxaz'*‘ Qy%)](P = E%( 14)

where Q. and Q, are the two parts of 3_Q, for e, in the
X and YV directions, respectively.

941

Multiplying both sides of the equation by (14+a.) or
(1—a.) and using the properties of the Dirac matrices,
one obtains relations which can be written

(E—cp)(I+a)e
=[mc*8—2K (Qsast+Qya) J(1— ) o,

(E+cp—2Ho)(1— )
= [mc*8— 2K (Q0tt Qy%)](1+ o) .

Eliminating (14 a.)¢ between these equations and
writing x=(1— a,) ¢, one obtains

(E—cp)(E+cp—2Ho)x=[mc*+4K*(Q-*+Q,) Ix. (16)
If we write

B={[E+op—nc/(E=cp)), o=4KY(E—cp), (I7)

(15)

this equation takes the form
[Hot+ 30(Q*+Q) Ix=E'x,

which looks like the Schrédinger equation for a system
consisting of two sets of coupled oscillators (the coupling
being given by the products Q\Qxs, present in Q.2 and
D).

Let us investigate the classical frequencies of the
normal modes of oscillation of such a system. It will be
enough for us to consider only the part of the system
corresponding to polarization in the X direction, since
the other part will have the same frequency distribution.
For this case, if we let W be the energy, then classically

W=% Zn(Pn2+°-’n2Qn2)+%a' Zm, n Qany (19)

(18)

with
wa=v|n|, y=2wc/L, n==1,%2, .-,

and the frequencies of the system are the roots w of the
secular equation®

oc+v2—w? o a
2,2
o o tyi—w o —0, (20)
T o .

ot+4yi—w? -

where the diagonal elements occur in equal pairs.
Denoting the determinant by F(w?), one finds that it
can be written

F(w?)= [fll'yznﬂ‘*’('yz/ 7%w?) sin®(rw/vy)
X{1+0/w*— (wo/vw) cot(rw/v)}, (21)

so that the roots of (20) are given by the roots of the
equations

sin(rw/v)=0 (w%0), (22a)

(w2 +0) sin_(1rw/ v)= (mow/v) cos(mw/v). (22b)

3 E. T. Whittaker, Analytical Dynamics (Cambridge University

Press, London, 1937, or Dover Publications, New York, 1944),
fourth edition, p. 179,
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It follows (because there are two waves traveling in
opposite direction for each frequency) that half of the
frequencies, those given by (22a), remain unchanged
by the interaction. If we denote the roots of (22b) by
w,' (n=1,2, 3, - --), numbered in increasing order, then
the quantal energy of the system in its lowest state is
given by

E'=k3 (wi—wa), (23)
n=1
which has been doubled to take account of the two
kinds of polarization.

The question now is whether the series in (23) con-

verges. From (22b) one sees that for large values of w,

W' — wp~a/ny,

so that the series in (23) diverges logarithmically. Let
us write

' E'=(ha/v)w, (24)

where w~Z(1/n). From (17) one then obtains the
relation

E2— 2 p*—mict= (4h/v) K*w. (25)

Although in the three-dimensional case K was taken

as in Eq. (10), in the one-dimensional problem it is

better to take
K=cemt-35-}, (10a)
where we think of the electron and field as moving in a
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(long) cylinder of length L and cross-sectional area S.
The right-hand member of (25) becomes (2¢2%c/S)w and
one gets, for the positive energy state,

E~e(2hc/S)wh, (26)

so that the energy diverges like the square root of a
logarithm.

Thus we see that the interaction of the electron with
the transverse field gives a divergence in the energy in
the one-dimensional case. It is of some interest to note
that, if one were using a perturbation calculation based
on the assumption that the interaction between electron
and field is weak, one would regard the right-hand
member of (25) as small; and one would then get, taking
=0 for simplicity,

E~mc2+ (2hK2/ ymc®)w=mc*+ (eh/mcS)w, (27)

which in view of the actual logarithmic divergence of w
leads to a worse type of infinity than that of Eq. (26).

Although the three-dimensional case is much more
complicated and involves features not present in the
simple case discussed here, the result obtained in the
latter suggests rather strongly that the transverse self-
energy of the point electron in the three-dimensional
case is inherently divergent.

In conclusion, I should like to express my indebted-
ness to Professor Wayne A. Bowers for helpful discus-
sions.

PHYSICAL

T is now well established that the capture of negative
p-mesons by atomic nuclei is characterized by (1)
a weak meson-nucleon coupling and (2) the transfer of

* Assisted by the joint program of the AEC and ONR.
t Now at Los Alamos Scientific Laboratory, Los Alamos, New

Mexico.
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Measurements have been made of the mean lifetimes of u-mesons in several heavy elements. Time lags
between the arrival of a cosmic-ray meson in the target and its subsequent absorption—as signaled by the
neutrons and gamma-rays following capture—are measured using large liquid scintillation counters and a
chronotron timing circuit. The timing uncertainty is about 2X107° sec, and the counting rates are such that
a mean life can be determined to an accuracy of 10 percent in about a week’s run at sea level. A short-
lived component of the decay curves was found and identified as due to neutrons from proton-induced stars.
Errors from this effect were avoided. Our latest results for the mean lives, in musec, are

Fe 163127, Hg 58+4, Cu 1169, Pb 764, Sb 9911, Bi 68+%5.
The results are in agreement with the Wheeler Zes* law up through Cu but disagree by a factor 3 for the
heavier elements. They are in reasonable agreement with Kennedy’s calculations (see following paper). The
difference between the mean lives for Hg and Pb is also qualitatively predicted by Kennedy on the basis of
a shell model of the nucleus. Our results, together with Kennedy’s calculation for Pb, allow us to conclude
that the p-meson-nucleon coupling constant has the same value, within about 25 percent, as recent values
of the coupling constants of beta-decay and of the spontaneous disintegration of the u-meson.

I. INTRODUCTION
to a light neutral particle. .

15, 1952

most of the meson rest energy following nuclear capture

That the u-meson interacts weakly with neutrons
and protons was convincingly demonstrated by the
classic experiment of Conversi, Pancini, and Piccioni.!

1 Conversi, Pancini, and Piccioni, Phys. Rev. 71, 209 (1947).



